A service for managing Vertex AI's Endpoints. v1beta1
Package
@google-cloud/aiplatformConstructors
(constructor)(opts)
constructor(opts?: ClientOptions);
Construct an instance of EndpointServiceClient.
Name | Description |
opts |
ClientOptions
|
Properties
apiEndpoint
static get apiEndpoint(): string;
The DNS address for this API service - same as servicePath(), exists for compatibility reasons.
auth
auth: gax.GoogleAuth;
descriptors
descriptors: Descriptors;
endpointServiceStub
endpointServiceStub?: Promise<{
[name: string]: Function;
}>;
innerApiCalls
innerApiCalls: {
[name: string]: Function;
};
operationsClient
operationsClient: gax.OperationsClient;
pathTemplates
pathTemplates: {
[name: string]: gax.PathTemplate;
};
port
static get port(): number;
The port for this API service.
scopes
static get scopes(): string[];
The scopes needed to make gRPC calls for every method defined in this service.
servicePath
static get servicePath(): string;
The DNS address for this API service.
warn
warn: (code: string, message: string, warnType?: string) => void;
Methods
annotationPath(project, location, dataset, dataItem, annotation)
annotationPath(project: string, location: string, dataset: string, dataItem: string, annotation: string): string;
Return a fully-qualified annotation resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
dataItem |
string
|
annotation |
string
|
Type | Description |
string | {string} Resource name string. |
annotationSpecPath(project, location, dataset, annotationSpec)
annotationSpecPath(project: string, location: string, dataset: string, annotationSpec: string): string;
Return a fully-qualified annotationSpec resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
annotationSpec |
string
|
Type | Description |
string | {string} Resource name string. |
artifactPath(project, location, metadataStore, artifact)
artifactPath(project: string, location: string, metadataStore: string, artifact: string): string;
Return a fully-qualified artifact resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
artifact |
string
|
Type | Description |
string | {string} Resource name string. |
batchPredictionJobPath(project, location, batchPredictionJob)
batchPredictionJobPath(project: string, location: string, batchPredictionJob: string): string;
Return a fully-qualified batchPredictionJob resource name string.
Name | Description |
project |
string
|
location |
string
|
batchPredictionJob |
string
|
Type | Description |
string | {string} Resource name string. |
checkCreateEndpointProgress(name)
checkCreateEndpointProgress(name: string): Promise<LROperation<protos.google.cloud.aiplatform.v1beta1.Endpoint, protos.google.cloud.aiplatform.v1beta1.CreateEndpointOperationMetadata>>;
Check the status of the long running operation returned by createEndpoint()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.cloud.aiplatform.v1beta1.Endpoint, protos.google.cloud.aiplatform.v1beta1.CreateEndpointOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to create the Endpoint in.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Required. The Endpoint to create.
*/
// const endpoint = {}
/**
* Immutable. The ID to use for endpoint, which will become the final
* component of the endpoint resource name.
* If not provided, Vertex AI will generate a value for this ID.
* This value should be 1-10 characters, and valid characters are /[0-9]/.
* When using HTTP/JSON, this field is populated based on a query string
* argument, such as `?endpoint_id=12345`. This is the fallback for fields
* that are not included in either the URI or the body.
*/
// const endpointId = 'abc123'
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callCreateEndpoint() {
// Construct request
const request = {
parent,
endpoint,
endpointId,
};
// Run request
const [operation] = await aiplatformClient.createEndpoint(request);
const [response] = await operation.promise();
console.log(response);
}
callCreateEndpoint();
checkDeleteEndpointProgress(name)
checkDeleteEndpointProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1beta1.DeleteOperationMetadata>>;
Check the status of the long running operation returned by deleteEndpoint()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1beta1.DeleteOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the Endpoint resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/endpoints/{endpoint}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callDeleteEndpoint() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteEndpoint(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteEndpoint();
checkDeployModelProgress(name)
checkDeployModelProgress(name: string): Promise<LROperation<protos.google.cloud.aiplatform.v1beta1.DeployModelResponse, protos.google.cloud.aiplatform.v1beta1.DeployModelOperationMetadata>>;
Check the status of the long running operation returned by deployModel()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.cloud.aiplatform.v1beta1.DeployModelResponse, protos.google.cloud.aiplatform.v1beta1.DeployModelOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the Endpoint resource into which to deploy a Model.
* Format:
* `projects/{project}/locations/{location}/endpoints/{endpoint}`
*/
// const endpoint = 'abc123'
/**
* Required. The DeployedModel to be created within the Endpoint. Note that
* Endpoint.traffic_split google.cloud.aiplatform.v1beta1.Endpoint.traffic_split must be updated for the DeployedModel to start
* receiving traffic, either as part of this call, or via
* EndpointService.UpdateEndpoint google.cloud.aiplatform.v1beta1.EndpointService.UpdateEndpoint.
*/
// const deployedModel = {}
/**
* A map from a DeployedModel's ID to the percentage of this Endpoint's
* traffic that should be forwarded to that DeployedModel.
* If this field is non-empty, then the Endpoint's
* traffic_split google.cloud.aiplatform.v1beta1.Endpoint.traffic_split will be overwritten with it.
* To refer to the ID of the just being deployed Model, a "0" should be used,
* and the actual ID of the new DeployedModel will be filled in its place by
* this method. The traffic percentage values must add up to 100.
* If this field is empty, then the Endpoint's
* traffic_split google.cloud.aiplatform.v1beta1.Endpoint.traffic_split is not updated.
*/
// const trafficSplit = 1234
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callDeployModel() {
// Construct request
const request = {
endpoint,
deployedModel,
};
// Run request
const [operation] = await aiplatformClient.deployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callDeployModel();
checkUndeployModelProgress(name)
checkUndeployModelProgress(name: string): Promise<LROperation<protos.google.cloud.aiplatform.v1beta1.UndeployModelResponse, protos.google.cloud.aiplatform.v1beta1.UndeployModelOperationMetadata>>;
Check the status of the long running operation returned by undeployModel()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.cloud.aiplatform.v1beta1.UndeployModelResponse, protos.google.cloud.aiplatform.v1beta1.UndeployModelOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the Endpoint resource from which to undeploy a Model.
* Format:
* `projects/{project}/locations/{location}/endpoints/{endpoint}`
*/
// const endpoint = 'abc123'
/**
* Required. The ID of the DeployedModel to be undeployed from the Endpoint.
*/
// const deployedModelId = 'abc123'
/**
* If this field is provided, then the Endpoint's
* traffic_split google.cloud.aiplatform.v1beta1.Endpoint.traffic_split will be overwritten with it. If
* last DeployedModel is being undeployed from the Endpoint, the
* Endpoint.traffic_split will always end up empty when this call returns.
* A DeployedModel will be successfully undeployed only if it doesn't have
* any traffic assigned to it when this method executes, or if this field
* unassigns any traffic to it.
*/
// const trafficSplit = 1234
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callUndeployModel() {
// Construct request
const request = {
endpoint,
deployedModelId,
};
// Run request
const [operation] = await aiplatformClient.undeployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callUndeployModel();
close()
close(): Promise<void>;
Terminate the gRPC channel and close the client.
The client will no longer be usable and all future behavior is undefined.
Type | Description |
Promise<void> | {Promise} A promise that resolves when the client is closed. |
contextPath(project, location, metadataStore, context)
contextPath(project: string, location: string, metadataStore: string, context: string): string;
Return a fully-qualified context resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
context |
string
|
Type | Description |
string | {string} Resource name string. |
createEndpoint(request, options)
createEndpoint(request?: protos.google.cloud.aiplatform.v1beta1.ICreateEndpointRequest, options?: CallOptions): Promise<[
LROperation<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.ICreateEndpointOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Creates an Endpoint.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.ICreateEndpointRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[ LROperation<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.ICreateEndpointOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined ]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to create the Endpoint in.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Required. The Endpoint to create.
*/
// const endpoint = {}
/**
* Immutable. The ID to use for endpoint, which will become the final
* component of the endpoint resource name.
* If not provided, Vertex AI will generate a value for this ID.
* This value should be 1-10 characters, and valid characters are /[0-9]/.
* When using HTTP/JSON, this field is populated based on a query string
* argument, such as `?endpoint_id=12345`. This is the fallback for fields
* that are not included in either the URI or the body.
*/
// const endpointId = 'abc123'
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callCreateEndpoint() {
// Construct request
const request = {
parent,
endpoint,
endpointId,
};
// Run request
const [operation] = await aiplatformClient.createEndpoint(request);
const [response] = await operation.promise();
console.log(response);
}
callCreateEndpoint();
createEndpoint(request, options, callback)
createEndpoint(request: protos.google.cloud.aiplatform.v1beta1.ICreateEndpointRequest, options: CallOptions, callback: Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.ICreateEndpointOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.ICreateEndpointRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.ICreateEndpointOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createEndpoint(request, callback)
createEndpoint(request: protos.google.cloud.aiplatform.v1beta1.ICreateEndpointRequest, callback: Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.ICreateEndpointOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.ICreateEndpointRequest
|
callback |
Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.ICreateEndpointOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
customJobPath(project, location, customJob)
customJobPath(project: string, location: string, customJob: string): string;
Return a fully-qualified customJob resource name string.
Name | Description |
project |
string
|
location |
string
|
customJob |
string
|
Type | Description |
string | {string} Resource name string. |
dataItemPath(project, location, dataset, dataItem)
dataItemPath(project: string, location: string, dataset: string, dataItem: string): string;
Return a fully-qualified dataItem resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
dataItem |
string
|
Type | Description |
string | {string} Resource name string. |
dataLabelingJobPath(project, location, dataLabelingJob)
dataLabelingJobPath(project: string, location: string, dataLabelingJob: string): string;
Return a fully-qualified dataLabelingJob resource name string.
Name | Description |
project |
string
|
location |
string
|
dataLabelingJob |
string
|
Type | Description |
string | {string} Resource name string. |
datasetPath(project, location, dataset)
datasetPath(project: string, location: string, dataset: string): string;
Return a fully-qualified dataset resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
Type | Description |
string | {string} Resource name string. |
deleteEndpoint(request, options)
deleteEndpoint(request?: protos.google.cloud.aiplatform.v1beta1.IDeleteEndpointRequest, options?: CallOptions): Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1beta1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Deletes an Endpoint.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IDeleteEndpointRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[ LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1beta1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined ]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the Endpoint resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/endpoints/{endpoint}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callDeleteEndpoint() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteEndpoint(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteEndpoint();
deleteEndpoint(request, options, callback)
deleteEndpoint(request: protos.google.cloud.aiplatform.v1beta1.IDeleteEndpointRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1beta1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IDeleteEndpointRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1beta1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteEndpoint(request, callback)
deleteEndpoint(request: protos.google.cloud.aiplatform.v1beta1.IDeleteEndpointRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1beta1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IDeleteEndpointRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1beta1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deployModel(request, options)
deployModel(request?: protos.google.cloud.aiplatform.v1beta1.IDeployModelRequest, options?: CallOptions): Promise<[
LROperation<protos.google.cloud.aiplatform.v1beta1.IDeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IDeployModelOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Deploys a Model into this Endpoint, creating a DeployedModel within it.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IDeployModelRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[ LROperation<protos.google.cloud.aiplatform.v1beta1.IDeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IDeployModelOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined ]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the Endpoint resource into which to deploy a Model.
* Format:
* `projects/{project}/locations/{location}/endpoints/{endpoint}`
*/
// const endpoint = 'abc123'
/**
* Required. The DeployedModel to be created within the Endpoint. Note that
* Endpoint.traffic_split google.cloud.aiplatform.v1beta1.Endpoint.traffic_split must be updated for the DeployedModel to start
* receiving traffic, either as part of this call, or via
* EndpointService.UpdateEndpoint google.cloud.aiplatform.v1beta1.EndpointService.UpdateEndpoint.
*/
// const deployedModel = {}
/**
* A map from a DeployedModel's ID to the percentage of this Endpoint's
* traffic that should be forwarded to that DeployedModel.
* If this field is non-empty, then the Endpoint's
* traffic_split google.cloud.aiplatform.v1beta1.Endpoint.traffic_split will be overwritten with it.
* To refer to the ID of the just being deployed Model, a "0" should be used,
* and the actual ID of the new DeployedModel will be filled in its place by
* this method. The traffic percentage values must add up to 100.
* If this field is empty, then the Endpoint's
* traffic_split google.cloud.aiplatform.v1beta1.Endpoint.traffic_split is not updated.
*/
// const trafficSplit = 1234
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callDeployModel() {
// Construct request
const request = {
endpoint,
deployedModel,
};
// Run request
const [operation] = await aiplatformClient.deployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callDeployModel();
deployModel(request, options, callback)
deployModel(request: protos.google.cloud.aiplatform.v1beta1.IDeployModelRequest, options: CallOptions, callback: Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IDeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IDeployModelOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IDeployModelRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IDeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IDeployModelOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deployModel(request, callback)
deployModel(request: protos.google.cloud.aiplatform.v1beta1.IDeployModelRequest, callback: Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IDeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IDeployModelOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IDeployModelRequest
|
callback |
Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IDeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IDeployModelOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
endpointPath(project, location, endpoint)
endpointPath(project: string, location: string, endpoint: string): string;
Return a fully-qualified endpoint resource name string.
Name | Description |
project |
string
|
location |
string
|
endpoint |
string
|
Type | Description |
string | {string} Resource name string. |
entityTypePath(project, location, featurestore, entityType)
entityTypePath(project: string, location: string, featurestore: string, entityType: string): string;
Return a fully-qualified entityType resource name string.
Name | Description |
project |
string
|
location |
string
|
featurestore |
string
|
entityType |
string
|
Type | Description |
string | {string} Resource name string. |
executionPath(project, location, metadataStore, execution)
executionPath(project: string, location: string, metadataStore: string, execution: string): string;
Return a fully-qualified execution resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
execution |
string
|
Type | Description |
string | {string} Resource name string. |
featurePath(project, location, featurestore, entityType, feature)
featurePath(project: string, location: string, featurestore: string, entityType: string, feature: string): string;
Return a fully-qualified feature resource name string.
Name | Description |
project |
string
|
location |
string
|
featurestore |
string
|
entityType |
string
|
feature |
string
|
Type | Description |
string | {string} Resource name string. |
featurestorePath(project, location, featurestore)
featurestorePath(project: string, location: string, featurestore: string): string;
Return a fully-qualified featurestore resource name string.
Name | Description |
project |
string
|
location |
string
|
featurestore |
string
|
Type | Description |
string | {string} Resource name string. |
getEndpoint(request, options)
getEndpoint(request?: protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1beta1.IEndpoint,
protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest | undefined,
{} | undefined
]>;
Gets an Endpoint.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[ protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest | undefined, {} | undefined ]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [Endpoint]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the Endpoint resource.
* Format:
* `projects/{project}/locations/{location}/endpoints/{endpoint}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callGetEndpoint() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.getEndpoint(request);
console.log(response);
}
callGetEndpoint();
getEndpoint(request, options, callback)
getEndpoint(request: protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getEndpoint(request, callback)
getEndpoint(request: protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest, callback: Callback<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IGetEndpointRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getProjectId()
getProjectId(): Promise<string>;
Type | Description |
Promise<string> |
getProjectId(callback)
getProjectId(callback: Callback<string, undefined, undefined>): void;
Name | Description |
callback |
Callback<string, undefined, undefined>
|
Type | Description |
void |
hyperparameterTuningJobPath(project, location, hyperparameterTuningJob)
hyperparameterTuningJobPath(project: string, location: string, hyperparameterTuningJob: string): string;
Return a fully-qualified hyperparameterTuningJob resource name string.
Name | Description |
project |
string
|
location |
string
|
hyperparameterTuningJob |
string
|
Type | Description |
string | {string} Resource name string. |
indexEndpointPath(project, location, indexEndpoint)
indexEndpointPath(project: string, location: string, indexEndpoint: string): string;
Return a fully-qualified indexEndpoint resource name string.
Name | Description |
project |
string
|
location |
string
|
indexEndpoint |
string
|
Type | Description |
string | {string} Resource name string. |
indexPath(project, location, index)
indexPath(project: string, location: string, index: string): string;
Return a fully-qualified index resource name string.
Name | Description |
project |
string
|
location |
string
|
index |
string
|
Type | Description |
string | {string} Resource name string. |
initialize()
initialize(): Promise<{
[name: string]: Function;
}>;
Initialize the client. Performs asynchronous operations (such as authentication) and prepares the client. This function will be called automatically when any class method is called for the first time, but if you need to initialize it before calling an actual method, feel free to call initialize() directly.
You can await on this method if you want to make sure the client is initialized.
Type | Description |
Promise<{ [name: string]: Function; }> | {Promise} A promise that resolves to an authenticated service stub. |
listEndpoints(request, options)
listEndpoints(request?: protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1beta1.IEndpoint[],
protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest | null,
protos.google.cloud.aiplatform.v1beta1.IListEndpointsResponse
]>;
Lists Endpoints in a Location.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[ protos.google.cloud.aiplatform.v1beta1.IEndpoint[], protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest | null, protos.google.cloud.aiplatform.v1beta1.IListEndpointsResponse ]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of [Endpoint]. The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listEndpoints(request, options, callback)
listEndpoints(request: protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, protos.google.cloud.aiplatform.v1beta1.IListEndpointsResponse | null | undefined, protos.google.cloud.aiplatform.v1beta1.IEndpoint>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, protos.google.cloud.aiplatform.v1beta1.IListEndpointsResponse | null | undefined, protos.google.cloud.aiplatform.v1beta1.IEndpoint>
|
Type | Description |
void |
listEndpoints(request, callback)
listEndpoints(request: protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, protos.google.cloud.aiplatform.v1beta1.IListEndpointsResponse | null | undefined, protos.google.cloud.aiplatform.v1beta1.IEndpoint>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, protos.google.cloud.aiplatform.v1beta1.IListEndpointsResponse | null | undefined, protos.google.cloud.aiplatform.v1beta1.IEndpoint>
|
Type | Description |
void |
listEndpointsAsync(request, options)
listEndpointsAsync(request?: protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1beta1.IEndpoint>;
Equivalent to listEndpoints
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1beta1.IEndpoint> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing [Endpoint]. The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location from which to list the Endpoints.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Optional. An expression for filtering the results of the request. For field names
* both snake_case and camelCase are supported.
* * `endpoint` supports = and !=. `endpoint` represents the Endpoint ID,
* i.e. the last segment of the Endpoint's resource name google.cloud.aiplatform.v1beta1.Endpoint.name.
* * `display_name` supports = and, !=
* * `labels` supports general map functions that is:
* * `labels.key=value` - key:value equality
* * `labels.key:* or labels:key - key existence
* * A key including a space must be quoted. `labels."a key"`.
* Some examples:
* * `endpoint=1`
* * `displayName="myDisplayName"`
* * `labels.myKey="myValue"`
*/
// const filter = 'abc123'
/**
* Optional. The standard list page size.
*/
// const pageSize = 1234
/**
* Optional. The standard list page token.
* Typically obtained via
* ListEndpointsResponse.next_page_token google.cloud.aiplatform.v1beta1.ListEndpointsResponse.next_page_token of the previous
* EndpointService.ListEndpoints google.cloud.aiplatform.v1beta1.EndpointService.ListEndpoints call.
*/
// const pageToken = 'abc123'
/**
* Optional. Mask specifying which fields to read.
*/
// const readMask = {}
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callListEndpoints() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await aiplatformClient.listEndpointsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListEndpoints();
listEndpointsStream(request, options)
listEndpointsStream(request?: protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IListEndpointsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing [Endpoint] on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
locationPath(project, location)
locationPath(project: string, location: string): string;
Return a fully-qualified location resource name string.
Name | Description |
project |
string
|
location |
string
|
Type | Description |
string | {string} Resource name string. |
matchAnnotationFromAnnotationName(annotationName)
matchAnnotationFromAnnotationName(annotationName: string): string | number;
Parse the annotation from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the annotation. |
matchAnnotationSpecFromAnnotationSpecName(annotationSpecName)
matchAnnotationSpecFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the annotation_spec from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the annotation_spec. |
matchArtifactFromArtifactName(artifactName)
matchArtifactFromArtifactName(artifactName: string): string | number;
Parse the artifact from Artifact resource.
Name | Description |
artifactName |
string
A fully-qualified path representing Artifact resource. |
Type | Description |
string | number | {string} A string representing the artifact. |
matchBatchPredictionJobFromBatchPredictionJobName(batchPredictionJobName)
matchBatchPredictionJobFromBatchPredictionJobName(batchPredictionJobName: string): string | number;
Parse the batch_prediction_job from BatchPredictionJob resource.
Name | Description |
batchPredictionJobName |
string
A fully-qualified path representing BatchPredictionJob resource. |
Type | Description |
string | number | {string} A string representing the batch_prediction_job. |
matchContextFromContextName(contextName)
matchContextFromContextName(contextName: string): string | number;
Parse the context from Context resource.
Name | Description |
contextName |
string
A fully-qualified path representing Context resource. |
Type | Description |
string | number | {string} A string representing the context. |
matchCustomJobFromCustomJobName(customJobName)
matchCustomJobFromCustomJobName(customJobName: string): string | number;
Parse the custom_job from CustomJob resource.
Name | Description |
customJobName |
string
A fully-qualified path representing CustomJob resource. |
Type | Description |
string | number | {string} A string representing the custom_job. |
matchDataItemFromAnnotationName(annotationName)
matchDataItemFromAnnotationName(annotationName: string): string | number;
Parse the data_item from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the data_item. |
matchDataItemFromDataItemName(dataItemName)
matchDataItemFromDataItemName(dataItemName: string): string | number;
Parse the data_item from DataItem resource.
Name | Description |
dataItemName |
string
A fully-qualified path representing DataItem resource. |
Type | Description |
string | number | {string} A string representing the data_item. |
matchDataLabelingJobFromDataLabelingJobName(dataLabelingJobName)
matchDataLabelingJobFromDataLabelingJobName(dataLabelingJobName: string): string | number;
Parse the data_labeling_job from DataLabelingJob resource.
Name | Description |
dataLabelingJobName |
string
A fully-qualified path representing DataLabelingJob resource. |
Type | Description |
string | number | {string} A string representing the data_labeling_job. |
matchDatasetFromAnnotationName(annotationName)
matchDatasetFromAnnotationName(annotationName: string): string | number;
Parse the dataset from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromAnnotationSpecName(annotationSpecName)
matchDatasetFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the dataset from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromDataItemName(dataItemName)
matchDatasetFromDataItemName(dataItemName: string): string | number;
Parse the dataset from DataItem resource.
Name | Description |
dataItemName |
string
A fully-qualified path representing DataItem resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromDatasetName(datasetName)
matchDatasetFromDatasetName(datasetName: string): string | number;
Parse the dataset from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchEndpointFromEndpointName(endpointName)
matchEndpointFromEndpointName(endpointName: string): string | number;
Parse the endpoint from Endpoint resource.
Name | Description |
endpointName |
string
A fully-qualified path representing Endpoint resource. |
Type | Description |
string | number | {string} A string representing the endpoint. |
matchEntityTypeFromEntityTypeName(entityTypeName)
matchEntityTypeFromEntityTypeName(entityTypeName: string): string | number;
Parse the entity_type from EntityType resource.
Name | Description |
entityTypeName |
string
A fully-qualified path representing EntityType resource. |
Type | Description |
string | number | {string} A string representing the entity_type. |
matchEntityTypeFromFeatureName(featureName)
matchEntityTypeFromFeatureName(featureName: string): string | number;
Parse the entity_type from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the entity_type. |
matchEvaluationFromModelEvaluationName(modelEvaluationName)
matchEvaluationFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the evaluation from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the evaluation. |
matchEvaluationFromModelEvaluationSliceName(modelEvaluationSliceName)
matchEvaluationFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the evaluation from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the evaluation. |
matchExecutionFromExecutionName(executionName)
matchExecutionFromExecutionName(executionName: string): string | number;
Parse the execution from Execution resource.
Name | Description |
executionName |
string
A fully-qualified path representing Execution resource. |
Type | Description |
string | number | {string} A string representing the execution. |
matchExperimentFromTensorboardExperimentName(tensorboardExperimentName)
matchExperimentFromTensorboardExperimentName(tensorboardExperimentName: string): string | number;
Parse the experiment from TensorboardExperiment resource.
Name | Description |
tensorboardExperimentName |
string
A fully-qualified path representing TensorboardExperiment resource. |
Type | Description |
string | number | {string} A string representing the experiment. |
matchExperimentFromTensorboardRunName(tensorboardRunName)
matchExperimentFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the experiment from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the experiment. |
matchExperimentFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchExperimentFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the experiment from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the experiment. |
matchFeatureFromFeatureName(featureName)
matchFeatureFromFeatureName(featureName: string): string | number;
Parse the feature from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the feature. |
matchFeaturestoreFromEntityTypeName(entityTypeName)
matchFeaturestoreFromEntityTypeName(entityTypeName: string): string | number;
Parse the featurestore from EntityType resource.
Name | Description |
entityTypeName |
string
A fully-qualified path representing EntityType resource. |
Type | Description |
string | number | {string} A string representing the featurestore. |
matchFeaturestoreFromFeatureName(featureName)
matchFeaturestoreFromFeatureName(featureName: string): string | number;
Parse the featurestore from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the featurestore. |
matchFeaturestoreFromFeaturestoreName(featurestoreName)
matchFeaturestoreFromFeaturestoreName(featurestoreName: string): string | number;
Parse the featurestore from Featurestore resource.
Name | Description |
featurestoreName |
string
A fully-qualified path representing Featurestore resource. |
Type | Description |
string | number | {string} A string representing the featurestore. |
matchHyperparameterTuningJobFromHyperparameterTuningJobName(hyperparameterTuningJobName)
matchHyperparameterTuningJobFromHyperparameterTuningJobName(hyperparameterTuningJobName: string): string | number;
Parse the hyperparameter_tuning_job from HyperparameterTuningJob resource.
Name | Description |
hyperparameterTuningJobName |
string
A fully-qualified path representing HyperparameterTuningJob resource. |
Type | Description |
string | number | {string} A string representing the hyperparameter_tuning_job. |
matchIndexEndpointFromIndexEndpointName(indexEndpointName)
matchIndexEndpointFromIndexEndpointName(indexEndpointName: string): string | number;
Parse the index_endpoint from IndexEndpoint resource.
Name | Description |
indexEndpointName |
string
A fully-qualified path representing IndexEndpoint resource. |
Type | Description |
string | number | {string} A string representing the index_endpoint. |
matchIndexFromIndexName(indexName)
matchIndexFromIndexName(indexName: string): string | number;
Parse the index from Index resource.
Name | Description |
indexName |
string
A fully-qualified path representing Index resource. |
Type | Description |
string | number | {string} A string representing the index. |
matchLocationFromAnnotationName(annotationName)
matchLocationFromAnnotationName(annotationName: string): string | number;
Parse the location from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromAnnotationSpecName(annotationSpecName)
matchLocationFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the location from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromArtifactName(artifactName)
matchLocationFromArtifactName(artifactName: string): string | number;
Parse the location from Artifact resource.
Name | Description |
artifactName |
string
A fully-qualified path representing Artifact resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromBatchPredictionJobName(batchPredictionJobName)
matchLocationFromBatchPredictionJobName(batchPredictionJobName: string): string | number;
Parse the location from BatchPredictionJob resource.
Name | Description |
batchPredictionJobName |
string
A fully-qualified path representing BatchPredictionJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromContextName(contextName)
matchLocationFromContextName(contextName: string): string | number;
Parse the location from Context resource.
Name | Description |
contextName |
string
A fully-qualified path representing Context resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromCustomJobName(customJobName)
matchLocationFromCustomJobName(customJobName: string): string | number;
Parse the location from CustomJob resource.
Name | Description |
customJobName |
string
A fully-qualified path representing CustomJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromDataItemName(dataItemName)
matchLocationFromDataItemName(dataItemName: string): string | number;
Parse the location from DataItem resource.
Name | Description |
dataItemName |
string
A fully-qualified path representing DataItem resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromDataLabelingJobName(dataLabelingJobName)
matchLocationFromDataLabelingJobName(dataLabelingJobName: string): string | number;
Parse the location from DataLabelingJob resource.
Name | Description |
dataLabelingJobName |
string
A fully-qualified path representing DataLabelingJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromDatasetName(datasetName)
matchLocationFromDatasetName(datasetName: string): string | number;
Parse the location from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromEndpointName(endpointName)
matchLocationFromEndpointName(endpointName: string): string | number;
Parse the location from Endpoint resource.
Name | Description |
endpointName |
string
A fully-qualified path representing Endpoint resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromEntityTypeName(entityTypeName)
matchLocationFromEntityTypeName(entityTypeName: string): string | number;
Parse the location from EntityType resource.
Name | Description |
entityTypeName |
string
A fully-qualified path representing EntityType resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromExecutionName(executionName)
matchLocationFromExecutionName(executionName: string): string | number;
Parse the location from Execution resource.
Name | Description |
executionName |
string
A fully-qualified path representing Execution resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromFeatureName(featureName)
matchLocationFromFeatureName(featureName: string): string | number;
Parse the location from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromFeaturestoreName(featurestoreName)
matchLocationFromFeaturestoreName(featurestoreName: string): string | number;
Parse the location from Featurestore resource.
Name | Description |
featurestoreName |
string
A fully-qualified path representing Featurestore resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromHyperparameterTuningJobName(hyperparameterTuningJobName)
matchLocationFromHyperparameterTuningJobName(hyperparameterTuningJobName: string): string | number;
Parse the location from HyperparameterTuningJob resource.
Name | Description |
hyperparameterTuningJobName |
string
A fully-qualified path representing HyperparameterTuningJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromIndexEndpointName(indexEndpointName)
matchLocationFromIndexEndpointName(indexEndpointName: string): string | number;
Parse the location from IndexEndpoint resource.
Name | Description |
indexEndpointName |
string
A fully-qualified path representing IndexEndpoint resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromIndexName(indexName)
matchLocationFromIndexName(indexName: string): string | number;
Parse the location from Index resource.
Name | Description |
indexName |
string
A fully-qualified path representing Index resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromLocationName(locationName)
matchLocationFromLocationName(locationName: string): string | number;
Parse the location from Location resource.
Name | Description |
locationName |
string
A fully-qualified path representing Location resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromMetadataSchemaName(metadataSchemaName)
matchLocationFromMetadataSchemaName(metadataSchemaName: string): string | number;
Parse the location from MetadataSchema resource.
Name | Description |
metadataSchemaName |
string
A fully-qualified path representing MetadataSchema resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromMetadataStoreName(metadataStoreName)
matchLocationFromMetadataStoreName(metadataStoreName: string): string | number;
Parse the location from MetadataStore resource.
Name | Description |
metadataStoreName |
string
A fully-qualified path representing MetadataStore resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName)
matchLocationFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName: string): string | number;
Parse the location from ModelDeploymentMonitoringJob resource.
Name | Description |
modelDeploymentMonitoringJobName |
string
A fully-qualified path representing ModelDeploymentMonitoringJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelEvaluationName(modelEvaluationName)
matchLocationFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the location from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelEvaluationSliceName(modelEvaluationSliceName)
matchLocationFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the location from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelName(modelName)
matchLocationFromModelName(modelName: string): string | number;
Parse the location from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromPipelineJobName(pipelineJobName)
matchLocationFromPipelineJobName(pipelineJobName: string): string | number;
Parse the location from PipelineJob resource.
Name | Description |
pipelineJobName |
string
A fully-qualified path representing PipelineJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromSpecialistPoolName(specialistPoolName)
matchLocationFromSpecialistPoolName(specialistPoolName: string): string | number;
Parse the location from SpecialistPool resource.
Name | Description |
specialistPoolName |
string
A fully-qualified path representing SpecialistPool resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromStudyName(studyName)
matchLocationFromStudyName(studyName: string): string | number;
Parse the location from Study resource.
Name | Description |
studyName |
string
A fully-qualified path representing Study resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTensorboardExperimentName(tensorboardExperimentName)
matchLocationFromTensorboardExperimentName(tensorboardExperimentName: string): string | number;
Parse the location from TensorboardExperiment resource.
Name | Description |
tensorboardExperimentName |
string
A fully-qualified path representing TensorboardExperiment resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTensorboardName(tensorboardName)
matchLocationFromTensorboardName(tensorboardName: string): string | number;
Parse the location from Tensorboard resource.
Name | Description |
tensorboardName |
string
A fully-qualified path representing Tensorboard resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTensorboardRunName(tensorboardRunName)
matchLocationFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the location from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchLocationFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the location from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTrainingPipelineName(trainingPipelineName)
matchLocationFromTrainingPipelineName(trainingPipelineName: string): string | number;
Parse the location from TrainingPipeline resource.
Name | Description |
trainingPipelineName |
string
A fully-qualified path representing TrainingPipeline resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTrialName(trialName)
matchLocationFromTrialName(trialName: string): string | number;
Parse the location from Trial resource.
Name | Description |
trialName |
string
A fully-qualified path representing Trial resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchMetadataSchemaFromMetadataSchemaName(metadataSchemaName)
matchMetadataSchemaFromMetadataSchemaName(metadataSchemaName: string): string | number;
Parse the metadata_schema from MetadataSchema resource.
Name | Description |
metadataSchemaName |
string
A fully-qualified path representing MetadataSchema resource. |
Type | Description |
string | number | {string} A string representing the metadata_schema. |
matchMetadataStoreFromArtifactName(artifactName)
matchMetadataStoreFromArtifactName(artifactName: string): string | number;
Parse the metadata_store from Artifact resource.
Name | Description |
artifactName |
string
A fully-qualified path representing Artifact resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchMetadataStoreFromContextName(contextName)
matchMetadataStoreFromContextName(contextName: string): string | number;
Parse the metadata_store from Context resource.
Name | Description |
contextName |
string
A fully-qualified path representing Context resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchMetadataStoreFromExecutionName(executionName)
matchMetadataStoreFromExecutionName(executionName: string): string | number;
Parse the metadata_store from Execution resource.
Name | Description |
executionName |
string
A fully-qualified path representing Execution resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchMetadataStoreFromMetadataSchemaName(metadataSchemaName)
matchMetadataStoreFromMetadataSchemaName(metadataSchemaName: string): string | number;
Parse the metadata_store from MetadataSchema resource.
Name | Description |
metadataSchemaName |
string
A fully-qualified path representing MetadataSchema resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchMetadataStoreFromMetadataStoreName(metadataStoreName)
matchMetadataStoreFromMetadataStoreName(metadataStoreName: string): string | number;
Parse the metadata_store from MetadataStore resource.
Name | Description |
metadataStoreName |
string
A fully-qualified path representing MetadataStore resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchModelDeploymentMonitoringJobFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName)
matchModelDeploymentMonitoringJobFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName: string): string | number;
Parse the model_deployment_monitoring_job from ModelDeploymentMonitoringJob resource.
Name | Description |
modelDeploymentMonitoringJobName |
string
A fully-qualified path representing ModelDeploymentMonitoringJob resource. |
Type | Description |
string | number | {string} A string representing the model_deployment_monitoring_job. |
matchModelFromModelEvaluationName(modelEvaluationName)
matchModelFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the model from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the model. |
matchModelFromModelEvaluationSliceName(modelEvaluationSliceName)
matchModelFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the model from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the model. |
matchModelFromModelName(modelName)
matchModelFromModelName(modelName: string): string | number;
Parse the model from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the model. |
matchPipelineJobFromPipelineJobName(pipelineJobName)
matchPipelineJobFromPipelineJobName(pipelineJobName: string): string | number;
Parse the pipeline_job from PipelineJob resource.
Name | Description |
pipelineJobName |
string
A fully-qualified path representing PipelineJob resource. |
Type | Description |
string | number | {string} A string representing the pipeline_job. |
matchProjectFromAnnotationName(annotationName)
matchProjectFromAnnotationName(annotationName: string): string | number;
Parse the project from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromAnnotationSpecName(annotationSpecName)
matchProjectFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the project from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromArtifactName(artifactName)
matchProjectFromArtifactName(artifactName: string): string | number;
Parse the project from Artifact resource.
Name | Description |
artifactName |
string
A fully-qualified path representing Artifact resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromBatchPredictionJobName(batchPredictionJobName)
matchProjectFromBatchPredictionJobName(batchPredictionJobName: string): string | number;
Parse the project from BatchPredictionJob resource.
Name | Description |
batchPredictionJobName |
string
A fully-qualified path representing BatchPredictionJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromContextName(contextName)
matchProjectFromContextName(contextName: string): string | number;
Parse the project from Context resource.
Name | Description |
contextName |
string
A fully-qualified path representing Context resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromCustomJobName(customJobName)
matchProjectFromCustomJobName(customJobName: string): string | number;
Parse the project from CustomJob resource.
Name | Description |
customJobName |
string
A fully-qualified path representing CustomJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromDataItemName(dataItemName)
matchProjectFromDataItemName(dataItemName: string): string | number;
Parse the project from DataItem resource.
Name | Description |
dataItemName |
string
A fully-qualified path representing DataItem resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromDataLabelingJobName(dataLabelingJobName)
matchProjectFromDataLabelingJobName(dataLabelingJobName: string): string | number;
Parse the project from DataLabelingJob resource.
Name | Description |
dataLabelingJobName |
string
A fully-qualified path representing DataLabelingJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromDatasetName(datasetName)
matchProjectFromDatasetName(datasetName: string): string | number;
Parse the project from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromEndpointName(endpointName)
matchProjectFromEndpointName(endpointName: string): string | number;
Parse the project from Endpoint resource.
Name | Description |
endpointName |
string
A fully-qualified path representing Endpoint resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromEntityTypeName(entityTypeName)
matchProjectFromEntityTypeName(entityTypeName: string): string | number;
Parse the project from EntityType resource.
Name | Description |
entityTypeName |
string
A fully-qualified path representing EntityType resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromExecutionName(executionName)
matchProjectFromExecutionName(executionName: string): string | number;
Parse the project from Execution resource.
Name | Description |
executionName |
string
A fully-qualified path representing Execution resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromFeatureName(featureName)
matchProjectFromFeatureName(featureName: string): string | number;
Parse the project from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromFeaturestoreName(featurestoreName)
matchProjectFromFeaturestoreName(featurestoreName: string): string | number;
Parse the project from Featurestore resource.
Name | Description |
featurestoreName |
string
A fully-qualified path representing Featurestore resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromHyperparameterTuningJobName(hyperparameterTuningJobName)
matchProjectFromHyperparameterTuningJobName(hyperparameterTuningJobName: string): string | number;
Parse the project from HyperparameterTuningJob resource.
Name | Description |
hyperparameterTuningJobName |
string
A fully-qualified path representing HyperparameterTuningJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromIndexEndpointName(indexEndpointName)
matchProjectFromIndexEndpointName(indexEndpointName: string): string | number;
Parse the project from IndexEndpoint resource.
Name | Description |
indexEndpointName |
string
A fully-qualified path representing IndexEndpoint resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromIndexName(indexName)
matchProjectFromIndexName(indexName: string): string | number;
Parse the project from Index resource.
Name | Description |
indexName |
string
A fully-qualified path representing Index resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromLocationName(locationName)
matchProjectFromLocationName(locationName: string): string | number;
Parse the project from Location resource.
Name | Description |
locationName |
string
A fully-qualified path representing Location resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromMetadataSchemaName(metadataSchemaName)
matchProjectFromMetadataSchemaName(metadataSchemaName: string): string | number;
Parse the project from MetadataSchema resource.
Name | Description |
metadataSchemaName |
string
A fully-qualified path representing MetadataSchema resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromMetadataStoreName(metadataStoreName)
matchProjectFromMetadataStoreName(metadataStoreName: string): string | number;
Parse the project from MetadataStore resource.
Name | Description |
metadataStoreName |
string
A fully-qualified path representing MetadataStore resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName)
matchProjectFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName: string): string | number;
Parse the project from ModelDeploymentMonitoringJob resource.
Name | Description |
modelDeploymentMonitoringJobName |
string
A fully-qualified path representing ModelDeploymentMonitoringJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelEvaluationName(modelEvaluationName)
matchProjectFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the project from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelEvaluationSliceName(modelEvaluationSliceName)
matchProjectFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the project from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelName(modelName)
matchProjectFromModelName(modelName: string): string | number;
Parse the project from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromPipelineJobName(pipelineJobName)
matchProjectFromPipelineJobName(pipelineJobName: string): string | number;
Parse the project from PipelineJob resource.
Name | Description |
pipelineJobName |
string
A fully-qualified path representing PipelineJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromSpecialistPoolName(specialistPoolName)
matchProjectFromSpecialistPoolName(specialistPoolName: string): string | number;
Parse the project from SpecialistPool resource.
Name | Description |
specialistPoolName |
string
A fully-qualified path representing SpecialistPool resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromStudyName(studyName)
matchProjectFromStudyName(studyName: string): string | number;
Parse the project from Study resource.
Name | Description |
studyName |
string
A fully-qualified path representing Study resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTensorboardExperimentName(tensorboardExperimentName)
matchProjectFromTensorboardExperimentName(tensorboardExperimentName: string): string | number;
Parse the project from TensorboardExperiment resource.
Name | Description |
tensorboardExperimentName |
string
A fully-qualified path representing TensorboardExperiment resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTensorboardName(tensorboardName)
matchProjectFromTensorboardName(tensorboardName: string): string | number;
Parse the project from Tensorboard resource.
Name | Description |
tensorboardName |
string
A fully-qualified path representing Tensorboard resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTensorboardRunName(tensorboardRunName)
matchProjectFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the project from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchProjectFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the project from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTrainingPipelineName(trainingPipelineName)
matchProjectFromTrainingPipelineName(trainingPipelineName: string): string | number;
Parse the project from TrainingPipeline resource.
Name | Description |
trainingPipelineName |
string
A fully-qualified path representing TrainingPipeline resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTrialName(trialName)
matchProjectFromTrialName(trialName: string): string | number;
Parse the project from Trial resource.
Name | Description |
trialName |
string
A fully-qualified path representing Trial resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchRunFromTensorboardRunName(tensorboardRunName)
matchRunFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the run from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the run. |
matchRunFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchRunFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the run from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the run. |
matchSliceFromModelEvaluationSliceName(modelEvaluationSliceName)
matchSliceFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the slice from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the slice. |
matchSpecialistPoolFromSpecialistPoolName(specialistPoolName)
matchSpecialistPoolFromSpecialistPoolName(specialistPoolName: string): string | number;
Parse the specialist_pool from SpecialistPool resource.
Name | Description |
specialistPoolName |
string
A fully-qualified path representing SpecialistPool resource. |
Type | Description |
string | number | {string} A string representing the specialist_pool. |
matchStudyFromStudyName(studyName)
matchStudyFromStudyName(studyName: string): string | number;
Parse the study from Study resource.
Name | Description |
studyName |
string
A fully-qualified path representing Study resource. |
Type | Description |
string | number | {string} A string representing the study. |
matchStudyFromTrialName(trialName)
matchStudyFromTrialName(trialName: string): string | number;
Parse the study from Trial resource.
Name | Description |
trialName |
string
A fully-qualified path representing Trial resource. |
Type | Description |
string | number | {string} A string representing the study. |
matchTensorboardFromTensorboardExperimentName(tensorboardExperimentName)
matchTensorboardFromTensorboardExperimentName(tensorboardExperimentName: string): string | number;
Parse the tensorboard from TensorboardExperiment resource.
Name | Description |
tensorboardExperimentName |
string
A fully-qualified path representing TensorboardExperiment resource. |
Type | Description |
string | number | {string} A string representing the tensorboard. |
matchTensorboardFromTensorboardName(tensorboardName)
matchTensorboardFromTensorboardName(tensorboardName: string): string | number;
Parse the tensorboard from Tensorboard resource.
Name | Description |
tensorboardName |
string
A fully-qualified path representing Tensorboard resource. |
Type | Description |
string | number | {string} A string representing the tensorboard. |
matchTensorboardFromTensorboardRunName(tensorboardRunName)
matchTensorboardFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the tensorboard from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the tensorboard. |
matchTensorboardFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchTensorboardFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the tensorboard from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the tensorboard. |
matchTimeSeriesFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchTimeSeriesFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the time_series from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the time_series. |
matchTrainingPipelineFromTrainingPipelineName(trainingPipelineName)
matchTrainingPipelineFromTrainingPipelineName(trainingPipelineName: string): string | number;
Parse the training_pipeline from TrainingPipeline resource.
Name | Description |
trainingPipelineName |
string
A fully-qualified path representing TrainingPipeline resource. |
Type | Description |
string | number | {string} A string representing the training_pipeline. |
matchTrialFromTrialName(trialName)
matchTrialFromTrialName(trialName: string): string | number;
Parse the trial from Trial resource.
Name | Description |
trialName |
string
A fully-qualified path representing Trial resource. |
Type | Description |
string | number | {string} A string representing the trial. |
metadataSchemaPath(project, location, metadataStore, metadataSchema)
metadataSchemaPath(project: string, location: string, metadataStore: string, metadataSchema: string): string;
Return a fully-qualified metadataSchema resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
metadataSchema |
string
|
Type | Description |
string | {string} Resource name string. |
metadataStorePath(project, location, metadataStore)
metadataStorePath(project: string, location: string, metadataStore: string): string;
Return a fully-qualified metadataStore resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
Type | Description |
string | {string} Resource name string. |
modelDeploymentMonitoringJobPath(project, location, modelDeploymentMonitoringJob)
modelDeploymentMonitoringJobPath(project: string, location: string, modelDeploymentMonitoringJob: string): string;
Return a fully-qualified modelDeploymentMonitoringJob resource name string.
Name | Description |
project |
string
|
location |
string
|
modelDeploymentMonitoringJob |
string
|
Type | Description |
string | {string} Resource name string. |
modelEvaluationPath(project, location, model, evaluation)
modelEvaluationPath(project: string, location: string, model: string, evaluation: string): string;
Return a fully-qualified modelEvaluation resource name string.
Name | Description |
project |
string
|
location |
string
|
model |
string
|
evaluation |
string
|
Type | Description |
string | {string} Resource name string. |
modelEvaluationSlicePath(project, location, model, evaluation, slice)
modelEvaluationSlicePath(project: string, location: string, model: string, evaluation: string, slice: string): string;
Return a fully-qualified modelEvaluationSlice resource name string.
Name | Description |
project |
string
|
location |
string
|
model |
string
|
evaluation |
string
|
slice |
string
|
Type | Description |
string | {string} Resource name string. |
modelPath(project, location, model)
modelPath(project: string, location: string, model: string): string;
Return a fully-qualified model resource name string.
Name | Description |
project |
string
|
location |
string
|
model |
string
|
Type | Description |
string | {string} Resource name string. |
pipelineJobPath(project, location, pipelineJob)
pipelineJobPath(project: string, location: string, pipelineJob: string): string;
Return a fully-qualified pipelineJob resource name string.
Name | Description |
project |
string
|
location |
string
|
pipelineJob |
string
|
Type | Description |
string | {string} Resource name string. |
specialistPoolPath(project, location, specialistPool)
specialistPoolPath(project: string, location: string, specialistPool: string): string;
Return a fully-qualified specialistPool resource name string.
Name | Description |
project |
string
|
location |
string
|
specialistPool |
string
|
Type | Description |
string | {string} Resource name string. |
studyPath(project, location, study)
studyPath(project: string, location: string, study: string): string;
Return a fully-qualified study resource name string.
Name | Description |
project |
string
|
location |
string
|
study |
string
|
Type | Description |
string | {string} Resource name string. |
tensorboardExperimentPath(project, location, tensorboard, experiment)
tensorboardExperimentPath(project: string, location: string, tensorboard: string, experiment: string): string;
Return a fully-qualified tensorboardExperiment resource name string.
Name | Description |
project |
string
|
location |
string
|
tensorboard |
string
|
experiment |
string
|
Type | Description |
string | {string} Resource name string. |
tensorboardPath(project, location, tensorboard)
tensorboardPath(project: string, location: string, tensorboard: string): string;
Return a fully-qualified tensorboard resource name string.
Name | Description |
project |
string
|
location |
string
|
tensorboard |
string
|
Type | Description |
string | {string} Resource name string. |
tensorboardRunPath(project, location, tensorboard, experiment, run)
tensorboardRunPath(project: string, location: string, tensorboard: string, experiment: string, run: string): string;
Return a fully-qualified tensorboardRun resource name string.
Name | Description |
project |
string
|
location |
string
|
tensorboard |
string
|
experiment |
string
|
run |
string
|
Type | Description |
string | {string} Resource name string. |
tensorboardTimeSeriesPath(project, location, tensorboard, experiment, run, timeSeries)
tensorboardTimeSeriesPath(project: string, location: string, tensorboard: string, experiment: string, run: string, timeSeries: string): string;
Return a fully-qualified tensorboardTimeSeries resource name string.
Name | Description |
project |
string
|
location |
string
|
tensorboard |
string
|
experiment |
string
|
run |
string
|
timeSeries |
string
|
Type | Description |
string | {string} Resource name string. |
trainingPipelinePath(project, location, trainingPipeline)
trainingPipelinePath(project: string, location: string, trainingPipeline: string): string;
Return a fully-qualified trainingPipeline resource name string.
Name | Description |
project |
string
|
location |
string
|
trainingPipeline |
string
|
Type | Description |
string | {string} Resource name string. |
trialPath(project, location, study, trial)
trialPath(project: string, location: string, study: string, trial: string): string;
Return a fully-qualified trial resource name string.
Name | Description |
project |
string
|
location |
string
|
study |
string
|
trial |
string
|
Type | Description |
string | {string} Resource name string. |
undeployModel(request, options)
undeployModel(request?: protos.google.cloud.aiplatform.v1beta1.IUndeployModelRequest, options?: CallOptions): Promise<[
LROperation<protos.google.cloud.aiplatform.v1beta1.IUndeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IUndeployModelOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Undeploys a Model from an Endpoint, removing a DeployedModel from it, and freeing all resources it's using.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IUndeployModelRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[ LROperation<protos.google.cloud.aiplatform.v1beta1.IUndeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IUndeployModelOperationMetadata>, protos.google.longrunning.IOperation | undefined, {} | undefined ]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the Endpoint resource from which to undeploy a Model.
* Format:
* `projects/{project}/locations/{location}/endpoints/{endpoint}`
*/
// const endpoint = 'abc123'
/**
* Required. The ID of the DeployedModel to be undeployed from the Endpoint.
*/
// const deployedModelId = 'abc123'
/**
* If this field is provided, then the Endpoint's
* traffic_split google.cloud.aiplatform.v1beta1.Endpoint.traffic_split will be overwritten with it. If
* last DeployedModel is being undeployed from the Endpoint, the
* Endpoint.traffic_split will always end up empty when this call returns.
* A DeployedModel will be successfully undeployed only if it doesn't have
* any traffic assigned to it when this method executes, or if this field
* unassigns any traffic to it.
*/
// const trafficSplit = 1234
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callUndeployModel() {
// Construct request
const request = {
endpoint,
deployedModelId,
};
// Run request
const [operation] = await aiplatformClient.undeployModel(request);
const [response] = await operation.promise();
console.log(response);
}
callUndeployModel();
undeployModel(request, options, callback)
undeployModel(request: protos.google.cloud.aiplatform.v1beta1.IUndeployModelRequest, options: CallOptions, callback: Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IUndeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IUndeployModelOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IUndeployModelRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IUndeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IUndeployModelOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
undeployModel(request, callback)
undeployModel(request: protos.google.cloud.aiplatform.v1beta1.IUndeployModelRequest, callback: Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IUndeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IUndeployModelOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IUndeployModelRequest
|
callback |
Callback<LROperation<protos.google.cloud.aiplatform.v1beta1.IUndeployModelResponse, protos.google.cloud.aiplatform.v1beta1.IUndeployModelOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateEndpoint(request, options)
updateEndpoint(request?: protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1beta1.IEndpoint,
protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest | undefined,
{} | undefined
]>;
Updates an Endpoint.
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[ protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest | undefined, {} | undefined ]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing [Endpoint]. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The Endpoint which replaces the resource on the server.
*/
// const endpoint = {}
/**
* Required. The update mask applies to the resource. See google.protobuf.FieldMask google.protobuf.FieldMask.
*/
// const updateMask = {}
// Imports the Aiplatform library
const {EndpointServiceClient} = require('@google-cloud/aiplatform').v1beta1;
// Instantiates a client
const aiplatformClient = new EndpointServiceClient();
async function callUpdateEndpoint() {
// Construct request
const request = {
endpoint,
updateMask,
};
// Run request
const response = await aiplatformClient.updateEndpoint(request);
console.log(response);
}
callUpdateEndpoint();
updateEndpoint(request, options, callback)
updateEndpoint(request: protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateEndpoint(request, callback)
updateEndpoint(request: protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest, callback: Callback<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1beta1.IEndpoint, protos.google.cloud.aiplatform.v1beta1.IUpdateEndpointRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |