public final class EvaluationJobConfig extends GeneratedMessageV3 implements EvaluationJobConfigOrBuilder
Configures specific details of how a continuous evaluation job works. Provide
this configuration when you create an EvaluationJob.
Protobuf type google.cloud.datalabeling.v1beta1.EvaluationJobConfig
Static Fields
BIGQUERY_IMPORT_KEYS_FIELD_NUMBER
public static final int BIGQUERY_IMPORT_KEYS_FIELD_NUMBER
Field Value
BOUNDING_POLY_CONFIG_FIELD_NUMBER
public static final int BOUNDING_POLY_CONFIG_FIELD_NUMBER
Field Value
EVALUATION_CONFIG_FIELD_NUMBER
public static final int EVALUATION_CONFIG_FIELD_NUMBER
Field Value
EVALUATION_JOB_ALERT_CONFIG_FIELD_NUMBER
public static final int EVALUATION_JOB_ALERT_CONFIG_FIELD_NUMBER
Field Value
EXAMPLE_COUNT_FIELD_NUMBER
public static final int EXAMPLE_COUNT_FIELD_NUMBER
Field Value
EXAMPLE_SAMPLE_PERCENTAGE_FIELD_NUMBER
public static final int EXAMPLE_SAMPLE_PERCENTAGE_FIELD_NUMBER
Field Value
HUMAN_ANNOTATION_CONFIG_FIELD_NUMBER
public static final int HUMAN_ANNOTATION_CONFIG_FIELD_NUMBER
Field Value
IMAGE_CLASSIFICATION_CONFIG_FIELD_NUMBER
public static final int IMAGE_CLASSIFICATION_CONFIG_FIELD_NUMBER
Field Value
public static final int INPUT_CONFIG_FIELD_NUMBER
Field Value
TEXT_CLASSIFICATION_CONFIG_FIELD_NUMBER
public static final int TEXT_CLASSIFICATION_CONFIG_FIELD_NUMBER
Field Value
Static Methods
getDefaultInstance()
public static EvaluationJobConfig getDefaultInstance()
Returns
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns
newBuilder()
public static EvaluationJobConfig.Builder newBuilder()
Returns
newBuilder(EvaluationJobConfig prototype)
public static EvaluationJobConfig.Builder newBuilder(EvaluationJobConfig prototype)
Parameter
Returns
public static EvaluationJobConfig parseDelimitedFrom(InputStream input)
Parameter
Returns
Exceptions
public static EvaluationJobConfig parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(byte[] data)
public static EvaluationJobConfig parseFrom(byte[] data)
Parameter
Name | Description |
data | byte[]
|
Returns
Exceptions
parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
public static EvaluationJobConfig parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(ByteString data)
public static EvaluationJobConfig parseFrom(ByteString data)
Parameter
Returns
Exceptions
parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
public static EvaluationJobConfig parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static EvaluationJobConfig parseFrom(CodedInputStream input)
Parameter
Returns
Exceptions
public static EvaluationJobConfig parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
public static EvaluationJobConfig parseFrom(InputStream input)
Parameter
Returns
Exceptions
public static EvaluationJobConfig parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parseFrom(ByteBuffer data)
public static EvaluationJobConfig parseFrom(ByteBuffer data)
Parameter
Returns
Exceptions
parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
public static EvaluationJobConfig parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Exceptions
parser()
public static Parser<EvaluationJobConfig> parser()
Returns
Methods
containsBigqueryImportKeys(String key)
public boolean containsBigqueryImportKeys(String key)
Required. Prediction keys that tell Data Labeling Service where to find the
data for evaluation in your BigQuery table. When the service samples
prediction input and output from your model version and saves it to
BigQuery, the data gets stored as JSON strings in the BigQuery table. These
keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide
either this key or reference_json_key
.
reference_json_key
: the data reference key for prediction input. You
must provide either this key or data_json_key
.
label_json_key
: the label key for prediction output. Required.
label_score_json_key
: the score key for prediction output. Required.
bounding_box_json_key
: the bounding box key for prediction output.
Required if your model version perform image object detection.
Learn how to configure prediction
keys.
map<string, string> bigquery_import_keys = 9;
Parameter
Returns
equals(Object obj)
public boolean equals(Object obj)
Parameter
Returns
Overrides
getBigqueryImportKeys()
public Map<String,String> getBigqueryImportKeys()
Returns
getBigqueryImportKeysCount()
public int getBigqueryImportKeysCount()
Required. Prediction keys that tell Data Labeling Service where to find the
data for evaluation in your BigQuery table. When the service samples
prediction input and output from your model version and saves it to
BigQuery, the data gets stored as JSON strings in the BigQuery table. These
keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide
either this key or reference_json_key
.
reference_json_key
: the data reference key for prediction input. You
must provide either this key or data_json_key
.
label_json_key
: the label key for prediction output. Required.
label_score_json_key
: the score key for prediction output. Required.
bounding_box_json_key
: the bounding box key for prediction output.
Required if your model version perform image object detection.
Learn how to configure prediction
keys.
map<string, string> bigquery_import_keys = 9;
Returns
getBigqueryImportKeysMap()
public Map<String,String> getBigqueryImportKeysMap()
Required. Prediction keys that tell Data Labeling Service where to find the
data for evaluation in your BigQuery table. When the service samples
prediction input and output from your model version and saves it to
BigQuery, the data gets stored as JSON strings in the BigQuery table. These
keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide
either this key or reference_json_key
.
reference_json_key
: the data reference key for prediction input. You
must provide either this key or data_json_key
.
label_json_key
: the label key for prediction output. Required.
label_score_json_key
: the score key for prediction output. Required.
bounding_box_json_key
: the bounding box key for prediction output.
Required if your model version perform image object detection.
Learn how to configure prediction
keys.
map<string, string> bigquery_import_keys = 9;
Returns
getBigqueryImportKeysOrDefault(String key, String defaultValue)
public String getBigqueryImportKeysOrDefault(String key, String defaultValue)
Required. Prediction keys that tell Data Labeling Service where to find the
data for evaluation in your BigQuery table. When the service samples
prediction input and output from your model version and saves it to
BigQuery, the data gets stored as JSON strings in the BigQuery table. These
keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide
either this key or reference_json_key
.
reference_json_key
: the data reference key for prediction input. You
must provide either this key or data_json_key
.
label_json_key
: the label key for prediction output. Required.
label_score_json_key
: the score key for prediction output. Required.
bounding_box_json_key
: the bounding box key for prediction output.
Required if your model version perform image object detection.
Learn how to configure prediction
keys.
map<string, string> bigquery_import_keys = 9;
Parameters
Returns
getBigqueryImportKeysOrThrow(String key)
public String getBigqueryImportKeysOrThrow(String key)
Required. Prediction keys that tell Data Labeling Service where to find the
data for evaluation in your BigQuery table. When the service samples
prediction input and output from your model version and saves it to
BigQuery, the data gets stored as JSON strings in the BigQuery table. These
keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide
either this key or reference_json_key
.
reference_json_key
: the data reference key for prediction input. You
must provide either this key or data_json_key
.
label_json_key
: the label key for prediction output. Required.
label_score_json_key
: the score key for prediction output. Required.
bounding_box_json_key
: the bounding box key for prediction output.
Required if your model version perform image object detection.
Learn how to configure prediction
keys.
map<string, string> bigquery_import_keys = 9;
Parameter
Returns
getBoundingPolyConfig()
public BoundingPolyConfig getBoundingPolyConfig()
Specify this field if your model version performs image object detection
(bounding box detection).
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
Returns
getBoundingPolyConfigOrBuilder()
public BoundingPolyConfigOrBuilder getBoundingPolyConfigOrBuilder()
Specify this field if your model version performs image object detection
(bounding box detection).
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
Returns
getDefaultInstanceForType()
public EvaluationJobConfig getDefaultInstanceForType()
Returns
getEvaluationConfig()
public EvaluationConfig getEvaluationConfig()
Required. Details for calculating evaluation metrics and creating
Evaulations. If your model version performs image object
detection, you must specify the boundingBoxEvaluationOptions
field within
this configuration. Otherwise, provide an empty object for this
configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
Returns
getEvaluationConfigOrBuilder()
public EvaluationConfigOrBuilder getEvaluationConfigOrBuilder()
Required. Details for calculating evaluation metrics and creating
Evaulations. If your model version performs image object
detection, you must specify the boundingBoxEvaluationOptions
field within
this configuration. Otherwise, provide an empty object for this
configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
Returns
getEvaluationJobAlertConfig()
public EvaluationJobAlertConfig getEvaluationJobAlertConfig()
Optional. Configuration details for evaluation job alerts. Specify this
field if you want to receive email alerts if the evaluation job finds that
your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
Returns
getEvaluationJobAlertConfigOrBuilder()
public EvaluationJobAlertConfigOrBuilder getEvaluationJobAlertConfigOrBuilder()
Optional. Configuration details for evaluation job alerts. Specify this
field if you want to receive email alerts if the evaluation job finds that
your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
Returns
getExampleCount()
public int getExampleCount()
Required. The maximum number of predictions to sample and save to BigQuery
during each evaluation interval. This limit
overrides example_sample_percentage
: even if the service has not sampled
enough predictions to fulfill example_sample_perecentage
during an
interval, it stops sampling predictions when it meets this limit.
int32 example_count = 10;
Returns
Type | Description |
int | The exampleCount.
|
getExampleSamplePercentage()
public double getExampleSamplePercentage()
Required. Fraction of predictions to sample and save to BigQuery during
each evaluation interval. For example, 0.1 means
10% of predictions served by your model version get saved to BigQuery.
double example_sample_percentage = 11;
Returns
Type | Description |
double | The exampleSamplePercentage.
|
getHumanAnnotationConfig()
public HumanAnnotationConfig getHumanAnnotationConfig()
Optional. Details for human annotation of your data. If you set
labelMissingGroundTruth to
true
for this evaluation job, then you must specify this field. If you
plan to provide your own ground truth labels, then omit this field.
Note that you must create an Instruction resource before you can
specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
Returns
getHumanAnnotationConfigOrBuilder()
public HumanAnnotationConfigOrBuilder getHumanAnnotationConfigOrBuilder()
Optional. Details for human annotation of your data. If you set
labelMissingGroundTruth to
true
for this evaluation job, then you must specify this field. If you
plan to provide your own ground truth labels, then omit this field.
Note that you must create an Instruction resource before you can
specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
Returns
getHumanAnnotationRequestConfigCase()
public EvaluationJobConfig.HumanAnnotationRequestConfigCase getHumanAnnotationRequestConfigCase()
Returns
getImageClassificationConfig()
public ImageClassificationConfig getImageClassificationConfig()
Specify this field if your model version performs image classification or
general classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
Returns
getImageClassificationConfigOrBuilder()
public ImageClassificationConfigOrBuilder getImageClassificationConfigOrBuilder()
Specify this field if your model version performs image classification or
general classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
Returns
public InputConfig getInputConfig()
Rquired. Details for the sampled prediction input. Within this
configuration, there are requirements for several fields:
dataType
must be one of IMAGE
, TEXT
, or GENERAL_DATA
.
annotationType
must be one of IMAGE_CLASSIFICATION_ANNOTATION
,
TEXT_CLASSIFICATION_ANNOTATION
, GENERAL_CLASSIFICATION_ANNOTATION
,
or IMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).
- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
.
- You must specify
bigquerySource
(not gcsSource
).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
Returns
public InputConfigOrBuilder getInputConfigOrBuilder()
Rquired. Details for the sampled prediction input. Within this
configuration, there are requirements for several fields:
dataType
must be one of IMAGE
, TEXT
, or GENERAL_DATA
.
annotationType
must be one of IMAGE_CLASSIFICATION_ANNOTATION
,
TEXT_CLASSIFICATION_ANNOTATION
, GENERAL_CLASSIFICATION_ANNOTATION
,
or IMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).
- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
.
- You must specify
bigquerySource
(not gcsSource
).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
Returns
getParserForType()
public Parser<EvaluationJobConfig> getParserForType()
Returns
Overrides
getSerializedSize()
public int getSerializedSize()
Returns
Overrides
getTextClassificationConfig()
public TextClassificationConfig getTextClassificationConfig()
Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
Returns
getTextClassificationConfigOrBuilder()
public TextClassificationConfigOrBuilder getTextClassificationConfigOrBuilder()
Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
Returns
getUnknownFields()
public final UnknownFieldSet getUnknownFields()
Returns
Overrides
hasBoundingPolyConfig()
public boolean hasBoundingPolyConfig()
Specify this field if your model version performs image object detection
(bounding box detection).
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
.google.cloud.datalabeling.v1beta1.BoundingPolyConfig bounding_poly_config = 5;
Returns
Type | Description |
boolean | Whether the boundingPolyConfig field is set.
|
hasEvaluationConfig()
public boolean hasEvaluationConfig()
Required. Details for calculating evaluation metrics and creating
Evaulations. If your model version performs image object
detection, you must specify the boundingBoxEvaluationOptions
field within
this configuration. Otherwise, provide an empty object for this
configuration.
.google.cloud.datalabeling.v1beta1.EvaluationConfig evaluation_config = 2;
Returns
Type | Description |
boolean | Whether the evaluationConfig field is set.
|
hasEvaluationJobAlertConfig()
public boolean hasEvaluationJobAlertConfig()
Optional. Configuration details for evaluation job alerts. Specify this
field if you want to receive email alerts if the evaluation job finds that
your predictions have low mean average precision during a run.
.google.cloud.datalabeling.v1beta1.EvaluationJobAlertConfig evaluation_job_alert_config = 13;
Returns
Type | Description |
boolean | Whether the evaluationJobAlertConfig field is set.
|
hasHumanAnnotationConfig()
public boolean hasHumanAnnotationConfig()
Optional. Details for human annotation of your data. If you set
labelMissingGroundTruth to
true
for this evaluation job, then you must specify this field. If you
plan to provide your own ground truth labels, then omit this field.
Note that you must create an Instruction resource before you can
specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
.google.cloud.datalabeling.v1beta1.HumanAnnotationConfig human_annotation_config = 3;
Returns
Type | Description |
boolean | Whether the humanAnnotationConfig field is set.
|
hasImageClassificationConfig()
public boolean hasImageClassificationConfig()
Specify this field if your model version performs image classification or
general classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
.google.cloud.datalabeling.v1beta1.ImageClassificationConfig image_classification_config = 4;
Returns
Type | Description |
boolean | Whether the imageClassificationConfig field is set.
|
public boolean hasInputConfig()
Rquired. Details for the sampled prediction input. Within this
configuration, there are requirements for several fields:
dataType
must be one of IMAGE
, TEXT
, or GENERAL_DATA
.
annotationType
must be one of IMAGE_CLASSIFICATION_ANNOTATION
,
TEXT_CLASSIFICATION_ANNOTATION
, GENERAL_CLASSIFICATION_ANNOTATION
,
or IMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).
- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
.
- You must specify
bigquerySource
(not gcsSource
).
.google.cloud.datalabeling.v1beta1.InputConfig input_config = 1;
Returns
Type | Description |
boolean | Whether the inputConfig field is set.
|
hasTextClassificationConfig()
public boolean hasTextClassificationConfig()
Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
.google.cloud.datalabeling.v1beta1.TextClassificationConfig text_classification_config = 8;
Returns
Type | Description |
boolean | Whether the textClassificationConfig field is set.
|
hashCode()
Returns
Overrides
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
internalGetMapField(int number)
protected MapField internalGetMapField(int number)
Parameter
Returns
Overrides
isInitialized()
public final boolean isInitialized()
Returns
Overrides
newBuilderForType()
public EvaluationJobConfig.Builder newBuilderForType()
Returns
newBuilderForType(GeneratedMessageV3.BuilderParent parent)
protected EvaluationJobConfig.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
Returns
Overrides
newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
Returns
Overrides
toBuilder()
public EvaluationJobConfig.Builder toBuilder()
Returns
writeTo(CodedOutputStream output)
public void writeTo(CodedOutputStream output)
Parameter
Overrides
Exceptions