Package cloud.google.com/go/automl/apiv1beta1/automlpb (v1.13.4)

Variables

ClassificationType_name, ClassificationType_value

var (
	ClassificationType_name = map[int32]string{
		0: "CLASSIFICATION_TYPE_UNSPECIFIED",
		1: "MULTICLASS",
		2: "MULTILABEL",
	}
	ClassificationType_value = map[string]int32{
		"CLASSIFICATION_TYPE_UNSPECIFIED": 0,
		"MULTICLASS":                      1,
		"MULTILABEL":                      2,
	}
)

Enum value maps for ClassificationType.

DocumentDimensions_DocumentDimensionUnit_name, DocumentDimensions_DocumentDimensionUnit_value

var (
	DocumentDimensions_DocumentDimensionUnit_name = map[int32]string{
		0: "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED",
		1: "INCH",
		2: "CENTIMETER",
		3: "POINT",
	}
	DocumentDimensions_DocumentDimensionUnit_value = map[string]int32{
		"DOCUMENT_DIMENSION_UNIT_UNSPECIFIED": 0,
		"INCH":                                1,
		"CENTIMETER":                          2,
		"POINT":                               3,
	}
)

Enum value maps for DocumentDimensions_DocumentDimensionUnit.

Document_Layout_TextSegmentType_name, Document_Layout_TextSegmentType_value

var (
	Document_Layout_TextSegmentType_name = map[int32]string{
		0: "TEXT_SEGMENT_TYPE_UNSPECIFIED",
		1: "TOKEN",
		2: "PARAGRAPH",
		3: "FORM_FIELD",
		4: "FORM_FIELD_NAME",
		5: "FORM_FIELD_CONTENTS",
		6: "TABLE",
		7: "TABLE_HEADER",
		8: "TABLE_ROW",
		9: "TABLE_CELL",
	}
	Document_Layout_TextSegmentType_value = map[string]int32{
		"TEXT_SEGMENT_TYPE_UNSPECIFIED": 0,
		"TOKEN":                         1,
		"PARAGRAPH":                     2,
		"FORM_FIELD":                    3,
		"FORM_FIELD_NAME":               4,
		"FORM_FIELD_CONTENTS":           5,
		"TABLE":                         6,
		"TABLE_HEADER":                  7,
		"TABLE_ROW":                     8,
		"TABLE_CELL":                    9,
	}
)

Enum value maps for Document_Layout_TextSegmentType.

TypeCode_name, TypeCode_value

var (
	TypeCode_name = map[int32]string{
		0:  "TYPE_CODE_UNSPECIFIED",
		3:  "FLOAT64",
		4:  "TIMESTAMP",
		6:  "STRING",
		8:  "ARRAY",
		9:  "STRUCT",
		10: "CATEGORY",
	}
	TypeCode_value = map[string]int32{
		"TYPE_CODE_UNSPECIFIED": 0,
		"FLOAT64":               3,
		"TIMESTAMP":             4,
		"STRING":                6,
		"ARRAY":                 8,
		"STRUCT":                9,
		"CATEGORY":              10,
	}
)

Enum value maps for TypeCode.

Model_DeploymentState_name, Model_DeploymentState_value

var (
	Model_DeploymentState_name = map[int32]string{
		0: "DEPLOYMENT_STATE_UNSPECIFIED",
		1: "DEPLOYED",
		2: "UNDEPLOYED",
	}
	Model_DeploymentState_value = map[string]int32{
		"DEPLOYMENT_STATE_UNSPECIFIED": 0,
		"DEPLOYED":                     1,
		"UNDEPLOYED":                   2,
	}
)

Enum value maps for Model_DeploymentState.

File_google_cloud_automl_v1beta1_annotation_payload_proto

var File_google_cloud_automl_v1beta1_annotation_payload_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_annotation_spec_proto

var File_google_cloud_automl_v1beta1_annotation_spec_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_classification_proto

var File_google_cloud_automl_v1beta1_classification_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_column_spec_proto

var File_google_cloud_automl_v1beta1_column_spec_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_data_items_proto

var File_google_cloud_automl_v1beta1_data_items_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_data_stats_proto

var File_google_cloud_automl_v1beta1_data_stats_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_data_types_proto

var File_google_cloud_automl_v1beta1_data_types_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_dataset_proto

var File_google_cloud_automl_v1beta1_dataset_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_detection_proto

var File_google_cloud_automl_v1beta1_detection_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_geometry_proto

var File_google_cloud_automl_v1beta1_geometry_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_image_proto

var File_google_cloud_automl_v1beta1_image_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_io_proto

var File_google_cloud_automl_v1beta1_io_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_model_evaluation_proto

var File_google_cloud_automl_v1beta1_model_evaluation_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_model_proto

var File_google_cloud_automl_v1beta1_model_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_operations_proto

var File_google_cloud_automl_v1beta1_operations_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_prediction_service_proto

var File_google_cloud_automl_v1beta1_prediction_service_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_ranges_proto

var File_google_cloud_automl_v1beta1_ranges_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_regression_proto

var File_google_cloud_automl_v1beta1_regression_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_service_proto

var File_google_cloud_automl_v1beta1_service_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_table_spec_proto

var File_google_cloud_automl_v1beta1_table_spec_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_tables_proto

var File_google_cloud_automl_v1beta1_tables_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_temporal_proto

var File_google_cloud_automl_v1beta1_temporal_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_text_extraction_proto

var File_google_cloud_automl_v1beta1_text_extraction_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_text_proto

var File_google_cloud_automl_v1beta1_text_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_text_segment_proto

var File_google_cloud_automl_v1beta1_text_segment_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_text_sentiment_proto

var File_google_cloud_automl_v1beta1_text_sentiment_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_translation_proto

var File_google_cloud_automl_v1beta1_translation_proto protoreflect.FileDescriptor

File_google_cloud_automl_v1beta1_video_proto

var File_google_cloud_automl_v1beta1_video_proto protoreflect.FileDescriptor

Functions

func RegisterAutoMlServer

func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)

func RegisterPredictionServiceServer

func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)

AnnotationPayload

type AnnotationPayload struct {

	// Output only . Additional information about the annotation
	// specific to the AutoML domain.
	//
	// Types that are assignable to Detail:
	//	*AnnotationPayload_Translation
	//	*AnnotationPayload_Classification
	//	*AnnotationPayload_ImageObjectDetection
	//	*AnnotationPayload_VideoClassification
	//	*AnnotationPayload_VideoObjectTracking
	//	*AnnotationPayload_TextExtraction
	//	*AnnotationPayload_TextSentiment
	//	*AnnotationPayload_Tables
	Detail isAnnotationPayload_Detail `protobuf_oneof:"detail"`
	// Output only . The resource ID of the annotation spec that
	// this annotation pertains to. The annotation spec comes from either an
	// ancestor dataset, or the dataset that was used to train the model in use.
	AnnotationSpecId string `protobuf:"bytes,1,opt,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
	// Output only. The value of
	// [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name]
	// when the model was trained. Because this field returns a value at model
	// training time, for different models trained using the same dataset, the
	// returned value could be different as model owner could update the
	// `display_name` between any two model training.
	DisplayName string `protobuf:"bytes,5,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// contains filtered or unexported fields
}

Contains annotation information that is relevant to AutoML.

func (*AnnotationPayload) Descriptor

func (*AnnotationPayload) Descriptor() ([]byte, []int)

Deprecated: Use AnnotationPayload.ProtoReflect.Descriptor instead.

func (*AnnotationPayload) GetAnnotationSpecId

func (x *AnnotationPayload) GetAnnotationSpecId() string

func (*AnnotationPayload) GetClassification

func (x *AnnotationPayload) GetClassification() *ClassificationAnnotation

func (*AnnotationPayload) GetDetail

func (m *AnnotationPayload) GetDetail() isAnnotationPayload_Detail

func (*AnnotationPayload) GetDisplayName

func (x *AnnotationPayload) GetDisplayName() string

func (*AnnotationPayload) GetImageObjectDetection

func (x *AnnotationPayload) GetImageObjectDetection() *ImageObjectDetectionAnnotation

func (*AnnotationPayload) GetTables

func (x *AnnotationPayload) GetTables() *TablesAnnotation

func (*AnnotationPayload) GetTextExtraction

func (x *AnnotationPayload) GetTextExtraction() *TextExtractionAnnotation

func (*AnnotationPayload) GetTextSentiment

func (x *AnnotationPayload) GetTextSentiment() *TextSentimentAnnotation

func (*AnnotationPayload) GetTranslation

func (x *AnnotationPayload) GetTranslation() *TranslationAnnotation

func (*AnnotationPayload) GetVideoClassification

func (x *AnnotationPayload) GetVideoClassification() *VideoClassificationAnnotation

func (*AnnotationPayload) GetVideoObjectTracking

func (x *AnnotationPayload) GetVideoObjectTracking() *VideoObjectTrackingAnnotation

func (*AnnotationPayload) ProtoMessage

func (*AnnotationPayload) ProtoMessage()

func (*AnnotationPayload) ProtoReflect

func (x *AnnotationPayload) ProtoReflect() protoreflect.Message

func (*AnnotationPayload) Reset

func (x *AnnotationPayload) Reset()

func (*AnnotationPayload) String

func (x *AnnotationPayload) String() string

AnnotationPayload_Classification

type AnnotationPayload_Classification struct {
	// Annotation details for content or image classification.
	Classification *ClassificationAnnotation `protobuf:"bytes,3,opt,name=classification,proto3,oneof"`
}

AnnotationPayload_ImageObjectDetection

type AnnotationPayload_ImageObjectDetection struct {
	// Annotation details for image object detection.
	ImageObjectDetection *ImageObjectDetectionAnnotation `protobuf:"bytes,4,opt,name=image_object_detection,json=imageObjectDetection,proto3,oneof"`
}

AnnotationPayload_Tables

type AnnotationPayload_Tables struct {
	// Annotation details for Tables.
	Tables *TablesAnnotation `protobuf:"bytes,10,opt,name=tables,proto3,oneof"`
}

AnnotationPayload_TextExtraction

type AnnotationPayload_TextExtraction struct {
	// Annotation details for text extraction.
	TextExtraction *TextExtractionAnnotation `protobuf:"bytes,6,opt,name=text_extraction,json=textExtraction,proto3,oneof"`
}

AnnotationPayload_TextSentiment

type AnnotationPayload_TextSentiment struct {
	// Annotation details for text sentiment.
	TextSentiment *TextSentimentAnnotation `protobuf:"bytes,7,opt,name=text_sentiment,json=textSentiment,proto3,oneof"`
}

AnnotationPayload_Translation

type AnnotationPayload_Translation struct {
	// Annotation details for translation.
	Translation *TranslationAnnotation `protobuf:"bytes,2,opt,name=translation,proto3,oneof"`
}

AnnotationPayload_VideoClassification

type AnnotationPayload_VideoClassification struct {
	// Annotation details for video classification.
	// Returned for Video Classification predictions.
	VideoClassification *VideoClassificationAnnotation `protobuf:"bytes,9,opt,name=video_classification,json=videoClassification,proto3,oneof"`
}

AnnotationPayload_VideoObjectTracking

type AnnotationPayload_VideoObjectTracking struct {
	// Annotation details for video object tracking.
	VideoObjectTracking *VideoObjectTrackingAnnotation `protobuf:"bytes,8,opt,name=video_object_tracking,json=videoObjectTracking,proto3,oneof"`
}

AnnotationSpec

type AnnotationSpec struct {

	// Output only. Resource name of the annotation spec.
	// Form:
	//
	// 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}'
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The name of the annotation spec to show in the interface. The name can be
	// up to 32 characters long and must match the regexp `[a-zA-Z0-9_]+`.
	DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// Output only. The number of examples in the parent dataset
	// labeled by the annotation spec.
	ExampleCount int32 `protobuf:"varint,9,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
	// contains filtered or unexported fields
}

A definition of an annotation spec.

func (*AnnotationSpec) Descriptor

func (*AnnotationSpec) Descriptor() ([]byte, []int)

Deprecated: Use AnnotationSpec.ProtoReflect.Descriptor instead.

func (*AnnotationSpec) GetDisplayName

func (x *AnnotationSpec) GetDisplayName() string

func (*AnnotationSpec) GetExampleCount

func (x *AnnotationSpec) GetExampleCount() int32

func (*AnnotationSpec) GetName

func (x *AnnotationSpec) GetName() string

func (*AnnotationSpec) ProtoMessage

func (*AnnotationSpec) ProtoMessage()

func (*AnnotationSpec) ProtoReflect

func (x *AnnotationSpec) ProtoReflect() protoreflect.Message

func (*AnnotationSpec) Reset

func (x *AnnotationSpec) Reset()

func (*AnnotationSpec) String

func (x *AnnotationSpec) String() string

ArrayStats

type ArrayStats struct {

	// Stats of all the values of all arrays, as if they were a single long
	// series of data. The type depends on the element type of the array.
	MemberStats *DataStats `protobuf:"bytes,2,opt,name=member_stats,json=memberStats,proto3" json:"member_stats,omitempty"`
	// contains filtered or unexported fields
}

The data statistics of a series of ARRAY values.

func (*ArrayStats) Descriptor

func (*ArrayStats) Descriptor() ([]byte, []int)

Deprecated: Use ArrayStats.ProtoReflect.Descriptor instead.

func (*ArrayStats) GetMemberStats

func (x *ArrayStats) GetMemberStats() *DataStats

func (*ArrayStats) ProtoMessage

func (*ArrayStats) ProtoMessage()

func (*ArrayStats) ProtoReflect

func (x *ArrayStats) ProtoReflect() protoreflect.Message

func (*ArrayStats) Reset

func (x *ArrayStats) Reset()

func (*ArrayStats) String

func (x *ArrayStats) String() string

AutoMlClient

type AutoMlClient interface {
	// Creates a dataset.
	CreateDataset(ctx context.Context, in *CreateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
	// Gets a dataset.
	GetDataset(ctx context.Context, in *GetDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
	// Lists datasets in a project.
	ListDatasets(ctx context.Context, in *ListDatasetsRequest, opts ...grpc.CallOption) (*ListDatasetsResponse, error)
	// Updates a dataset.
	UpdateDataset(ctx context.Context, in *UpdateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
	// Deletes a dataset and all of its contents.
	// Returns empty response in the
	// [response][google.longrunning.Operation.response] field when it completes,
	// and `delete_details` in the
	// [metadata][google.longrunning.Operation.metadata] field.
	DeleteDataset(ctx context.Context, in *DeleteDatasetRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Imports data into a dataset.
	// For Tables this method can only be called on an empty Dataset.
	//
	// For Tables:
	// *   A
	// [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params]
	//     parameter must be explicitly set.
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ImportData(ctx context.Context, in *ImportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Exports dataset's data to the provided output location.
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportData(ctx context.Context, in *ExportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Gets an annotation spec.
	GetAnnotationSpec(ctx context.Context, in *GetAnnotationSpecRequest, opts ...grpc.CallOption) (*AnnotationSpec, error)
	// Gets a table spec.
	GetTableSpec(ctx context.Context, in *GetTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error)
	// Lists table specs in a dataset.
	ListTableSpecs(ctx context.Context, in *ListTableSpecsRequest, opts ...grpc.CallOption) (*ListTableSpecsResponse, error)
	// Updates a table spec.
	UpdateTableSpec(ctx context.Context, in *UpdateTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error)
	// Gets a column spec.
	GetColumnSpec(ctx context.Context, in *GetColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error)
	// Lists column specs in a table spec.
	ListColumnSpecs(ctx context.Context, in *ListColumnSpecsRequest, opts ...grpc.CallOption) (*ListColumnSpecsResponse, error)
	// Updates a column spec.
	UpdateColumnSpec(ctx context.Context, in *UpdateColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error)
	// Creates a model.
	// Returns a Model in the [response][google.longrunning.Operation.response]
	// field when it completes.
	// When you create a model, several model evaluations are created for it:
	// a global evaluation, and one evaluation for each annotation spec.
	CreateModel(ctx context.Context, in *CreateModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Gets a model.
	GetModel(ctx context.Context, in *GetModelRequest, opts ...grpc.CallOption) (*Model, error)
	// Lists models.
	ListModels(ctx context.Context, in *ListModelsRequest, opts ...grpc.CallOption) (*ListModelsResponse, error)
	// Deletes a model.
	// Returns `google.protobuf.Empty` in the
	// [response][google.longrunning.Operation.response] field when it completes,
	// and `delete_details` in the
	// [metadata][google.longrunning.Operation.metadata] field.
	DeleteModel(ctx context.Context, in *DeleteModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Deploys a model. If a model is already deployed, deploying it with the
	// same parameters has no effect. Deploying with different parametrs
	// (as e.g. changing
	//
	// [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number])
	//  will reset the deployment state without pausing the model's availability.
	//
	// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
	// deployment automatically.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	DeployModel(ctx context.Context, in *DeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Undeploys a model. If the model is not deployed this method has no effect.
	//
	// Only applicable for Text Classification, Image Object Detection and Tables;
	// all other domains manage deployment automatically.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	UndeployModel(ctx context.Context, in *UndeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Exports a trained, "export-able", model to a user specified Google Cloud
	// Storage location. A model is considered export-able if and only if it has
	// an export format defined for it in
	//
	// [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig].
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportModel(ctx context.Context, in *ExportModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Exports examples on which the model was evaluated (i.e. which were in the
	// TEST set of the dataset the model was created from), together with their
	// ground truth annotations and the annotations created (predicted) by the
	// model.
	// The examples, ground truth and predictions are exported in the state
	// they were at the moment the model was evaluated.
	//
	// This export is available only for 30 days since the model evaluation is
	// created.
	//
	// Currently only available for Tables.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportEvaluatedExamples(ctx context.Context, in *ExportEvaluatedExamplesRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
	// Gets a model evaluation.
	GetModelEvaluation(ctx context.Context, in *GetModelEvaluationRequest, opts ...grpc.CallOption) (*ModelEvaluation, error)
	// Lists model evaluations.
	ListModelEvaluations(ctx context.Context, in *ListModelEvaluationsRequest, opts ...grpc.CallOption) (*ListModelEvaluationsResponse, error)
}

AutoMlClient is the client API for AutoMl service.

For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.

func NewAutoMlClient

func NewAutoMlClient(cc grpc.ClientConnInterface) AutoMlClient

AutoMlServer

type AutoMlServer interface {
	// Creates a dataset.
	CreateDataset(context.Context, *CreateDatasetRequest) (*Dataset, error)
	// Gets a dataset.
	GetDataset(context.Context, *GetDatasetRequest) (*Dataset, error)
	// Lists datasets in a project.
	ListDatasets(context.Context, *ListDatasetsRequest) (*ListDatasetsResponse, error)
	// Updates a dataset.
	UpdateDataset(context.Context, *UpdateDatasetRequest) (*Dataset, error)
	// Deletes a dataset and all of its contents.
	// Returns empty response in the
	// [response][google.longrunning.Operation.response] field when it completes,
	// and `delete_details` in the
	// [metadata][google.longrunning.Operation.metadata] field.
	DeleteDataset(context.Context, *DeleteDatasetRequest) (*longrunningpb.Operation, error)
	// Imports data into a dataset.
	// For Tables this method can only be called on an empty Dataset.
	//
	// For Tables:
	// *   A
	// [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params]
	//     parameter must be explicitly set.
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ImportData(context.Context, *ImportDataRequest) (*longrunningpb.Operation, error)
	// Exports dataset's data to the provided output location.
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportData(context.Context, *ExportDataRequest) (*longrunningpb.Operation, error)
	// Gets an annotation spec.
	GetAnnotationSpec(context.Context, *GetAnnotationSpecRequest) (*AnnotationSpec, error)
	// Gets a table spec.
	GetTableSpec(context.Context, *GetTableSpecRequest) (*TableSpec, error)
	// Lists table specs in a dataset.
	ListTableSpecs(context.Context, *ListTableSpecsRequest) (*ListTableSpecsResponse, error)
	// Updates a table spec.
	UpdateTableSpec(context.Context, *UpdateTableSpecRequest) (*TableSpec, error)
	// Gets a column spec.
	GetColumnSpec(context.Context, *GetColumnSpecRequest) (*ColumnSpec, error)
	// Lists column specs in a table spec.
	ListColumnSpecs(context.Context, *ListColumnSpecsRequest) (*ListColumnSpecsResponse, error)
	// Updates a column spec.
	UpdateColumnSpec(context.Context, *UpdateColumnSpecRequest) (*ColumnSpec, error)
	// Creates a model.
	// Returns a Model in the [response][google.longrunning.Operation.response]
	// field when it completes.
	// When you create a model, several model evaluations are created for it:
	// a global evaluation, and one evaluation for each annotation spec.
	CreateModel(context.Context, *CreateModelRequest) (*longrunningpb.Operation, error)
	// Gets a model.
	GetModel(context.Context, *GetModelRequest) (*Model, error)
	// Lists models.
	ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error)
	// Deletes a model.
	// Returns `google.protobuf.Empty` in the
	// [response][google.longrunning.Operation.response] field when it completes,
	// and `delete_details` in the
	// [metadata][google.longrunning.Operation.metadata] field.
	DeleteModel(context.Context, *DeleteModelRequest) (*longrunningpb.Operation, error)
	// Deploys a model. If a model is already deployed, deploying it with the
	// same parameters has no effect. Deploying with different parametrs
	// (as e.g. changing
	//
	// [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number])
	//  will reset the deployment state without pausing the model's availability.
	//
	// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
	// deployment automatically.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	DeployModel(context.Context, *DeployModelRequest) (*longrunningpb.Operation, error)
	// Undeploys a model. If the model is not deployed this method has no effect.
	//
	// Only applicable for Text Classification, Image Object Detection and Tables;
	// all other domains manage deployment automatically.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	UndeployModel(context.Context, *UndeployModelRequest) (*longrunningpb.Operation, error)
	// Exports a trained, "export-able", model to a user specified Google Cloud
	// Storage location. A model is considered export-able if and only if it has
	// an export format defined for it in
	//
	// [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig].
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportModel(context.Context, *ExportModelRequest) (*longrunningpb.Operation, error)
	// Exports examples on which the model was evaluated (i.e. which were in the
	// TEST set of the dataset the model was created from), together with their
	// ground truth annotations and the annotations created (predicted) by the
	// model.
	// The examples, ground truth and predictions are exported in the state
	// they were at the moment the model was evaluated.
	//
	// This export is available only for 30 days since the model evaluation is
	// created.
	//
	// Currently only available for Tables.
	//
	// Returns an empty response in the
	// [response][google.longrunning.Operation.response] field when it completes.
	ExportEvaluatedExamples(context.Context, *ExportEvaluatedExamplesRequest) (*longrunningpb.Operation, error)
	// Gets a model evaluation.
	GetModelEvaluation(context.Context, *GetModelEvaluationRequest) (*ModelEvaluation, error)
	// Lists model evaluations.
	ListModelEvaluations(context.Context, *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error)
}

AutoMlServer is the server API for AutoMl service.

BatchPredictInputConfig

type BatchPredictInputConfig struct {

	// Required. The source of the input.
	//
	// Types that are assignable to Source:
	//	*BatchPredictInputConfig_GcsSource
	//	*BatchPredictInputConfig_BigquerySource
	Source isBatchPredictInputConfig_Source `protobuf_oneof:"source"`
	// contains filtered or unexported fields
}

Input configuration for BatchPredict Action.

The format of input depends on the ML problem of the model used for prediction. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise.

The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:

  • For Image Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png

  • For Image Object Detection: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png

  • For Video Classification: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf

  • For Video Object Tracking: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,240 gs://folder/video1.mp4,300,360 gs://folder/vid2.mov,0,inf

  • For Text Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 60,000 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf

  • For Text Sentiment: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 500 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf

  • For Text Extraction .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or as documents (for a single BatchPredict call only one of the these formats may be used). The in-line .JSONL file(s) contain per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in json representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. The document .JSONL file(s) contain, per line, a proto that wraps a Document proto with input_config set. Only PDF documents are supported now, and each document must be up to 2MB large. Any given .JSONL file must be 100MB or smaller, and no more than 20 files may be given. Sample in-line JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "An elaborate content", "mime_type": "text/plain" } } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }

  • For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or

[bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source].

GCS case:
  CSV file(s), each by itself 10GB or smaller and total size must be
  100GB or smaller, where first file must have a header containing
  column names. If the first row of a subsequent file is the same as
  the header, then it is also treated as a header. All other rows
  contain values for the corresponding columns.
  The column names must contain the model's

[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]

(order doesn't matter). The columns corresponding to the model's
input feature column specs must contain values compatible with the
column spec's data types. Prediction on all the rows, i.e. the CSV
lines, will be attempted. For FORECASTING

[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:

all columns having

[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]

type will be ignored.
First three sample rows of a CSV file:
  "First Name","Last Name","Dob","Addresses"

"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"

"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}

BigQuery case:
  An URI of a BigQuery table. The user data size of the BigQuery
  table must be 100GB or smaller.
  The column names must contain the model's

[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]

(order doesn't matter). The columns corresponding to the model's
input feature column specs must contain values compatible with the
column spec's data types. Prediction on all the rows of the table
will be attempted. For FORECASTING

[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:

all columns having

[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]

         type will be ignored.

Definitions:
GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi".
TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
               double quotes ("")
TIME_SEGMENT_START = TIME_OFFSET
                     Expresses a beginning, inclusive, of a time segment
                     within an
                     example that has a time dimension (e.g. video).
TIME_SEGMENT_END = TIME_OFFSET
                   Expresses an end, exclusive, of a time segment within
                   an example that has a time dimension (e.g. video).
TIME_OFFSET = A number of seconds as measured from the start of an
              example (e.g. video). Fractions are allowed, up to a
              microsecond precision. "inf" is allowed and it means the end
              of the example.

Errors:
If any of the provided CSV files can't be parsed or if more than certain
percent of CSV rows cannot be processed then the operation fails and
prediction does not happen. Regardless of overall success or failure the
per-row failures, up to a certain count cap, will be listed in
Operation.metadata.partial_failures.

func (*BatchPredictInputConfig) Descriptor

func (*BatchPredictInputConfig) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictInputConfig.ProtoReflect.Descriptor instead.

func (*BatchPredictInputConfig) GetBigquerySource

func (x *BatchPredictInputConfig) GetBigquerySource() *BigQuerySource

func (*BatchPredictInputConfig) GetGcsSource

func (x *BatchPredictInputConfig) GetGcsSource() *GcsSource

func (*BatchPredictInputConfig) GetSource

func (m *BatchPredictInputConfig) GetSource() isBatchPredictInputConfig_Source

func (*BatchPredictInputConfig) ProtoMessage

func (*BatchPredictInputConfig) ProtoMessage()

func (*BatchPredictInputConfig) ProtoReflect

func (x *BatchPredictInputConfig) ProtoReflect() protoreflect.Message

func (*BatchPredictInputConfig) Reset

func (x *BatchPredictInputConfig) Reset()

func (*BatchPredictInputConfig) String

func (x *BatchPredictInputConfig) String() string

BatchPredictInputConfig_BigquerySource

type BatchPredictInputConfig_BigquerySource struct {
	// The BigQuery location for the input content.
	BigquerySource *BigQuerySource `protobuf:"bytes,2,opt,name=bigquery_source,json=bigquerySource,proto3,oneof"`
}

BatchPredictInputConfig_GcsSource

type BatchPredictInputConfig_GcsSource struct {
	// The Google Cloud Storage location for the input content.
	GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3,oneof"`
}

BatchPredictOperationMetadata

type BatchPredictOperationMetadata struct {

	// Output only. The input config that was given upon starting this
	// batch predict operation.
	InputConfig *BatchPredictInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
	// Output only. Information further describing this batch predict's output.
	OutputInfo *BatchPredictOperationMetadata_BatchPredictOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
	// contains filtered or unexported fields
}

Details of BatchPredict operation.

func (*BatchPredictOperationMetadata) Descriptor

func (*BatchPredictOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictOperationMetadata.ProtoReflect.Descriptor instead.

func (*BatchPredictOperationMetadata) GetInputConfig

func (*BatchPredictOperationMetadata) GetOutputInfo

func (*BatchPredictOperationMetadata) ProtoMessage

func (*BatchPredictOperationMetadata) ProtoMessage()

func (*BatchPredictOperationMetadata) ProtoReflect

func (*BatchPredictOperationMetadata) Reset

func (x *BatchPredictOperationMetadata) Reset()

func (*BatchPredictOperationMetadata) String

BatchPredictOperationMetadata_BatchPredictOutputInfo

type BatchPredictOperationMetadata_BatchPredictOutputInfo struct {

	// The output location into which prediction output is written.
	//
	// Types that are assignable to OutputLocation:
	//	*BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
	//	*BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset
	OutputLocation isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation `protobuf_oneof:"output_location"`
	// contains filtered or unexported fields
}

Further describes this batch predict's output. Supplements

[BatchPredictOutputConfig][google.cloud.automl.v1beta1.BatchPredictOutputConfig].

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor

Deprecated: Use BatchPredictOperationMetadata_BatchPredictOutputInfo.ProtoReflect.Descriptor instead.

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset

func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset() string

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation

func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation() isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset

func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) String

BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset

type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset struct {
	// The path of the BigQuery dataset created, in bq://projectId.bqDatasetId
	// format, into which the prediction output is written.
	BigqueryOutputDataset string `protobuf:"bytes,2,opt,name=bigquery_output_dataset,json=bigqueryOutputDataset,proto3,oneof"`
}

BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory

type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory struct {
	// The full path of the Google Cloud Storage directory created, into which
	// the prediction output is written.
	GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"`
}

BatchPredictOutputConfig

type BatchPredictOutputConfig struct {

	// Required. The destination of the output.
	//
	// Types that are assignable to Destination:
	//	*BatchPredictOutputConfig_GcsDestination
	//	*BatchPredictOutputConfig_BigqueryDestination
	Destination isBatchPredictOutputConfig_Destination `protobuf_oneof:"destination"`
	// contains filtered or unexported fields
}

Output configuration for BatchPredict Action.

As destination the

[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction-

  • For Image Classification: In the created directory files image_classification_1.jsonl, image_classification_2.jsonl,...,image_classification_N.jsonl will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

       containing only `code` and `message`fields.

*  For Image Object Detection:
       In the created directory files `image_object_detection_1.jsonl`,
       `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl`
       will be created, where N may be 1, and depends on the
       total number of the successfully predicted images and annotations.
       Each .JSONL file will contain, per line, a JSON representation of a
       proto that wraps image's "ID" : "<id_value>" followed by a list of
       zero or more AnnotationPayload protos (called annotations), which
       have image_object_detection detail populated. A single image will
       be listed only once with all its annotations, and its annotations
       will never be split across files.
       If prediction for any image failed (partially or completely), then
       additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
       files will be created (N depends on total number of failed
       predictions). These files will have a JSON representation of a proto
       that wraps the same "ID" : "<id_value>" but here followed by
       exactly one

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

       containing only `code` and `message`fields.
*  For Video Classification:
       In the created directory a video_classification.csv file, and a .JSON
       file per each video classification requested in the input (i.e. each
       line in given CSV(s)), will be created.

       The format of video_classification.csv is:

GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS

       where:
       GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
           the prediction input lines (i.e. video_classification.csv has
           precisely the same number of lines as the prediction input had.)
       JSON_FILE_NAME = Name of .JSON file in the output directory, which
           contains prediction responses for the video time segment.
       STATUS = "OK" if prediction completed successfully, or an error code
           with message otherwise. If STATUS is not "OK" then the .JSON file
           for that line may not exist or be empty.

       Each .JSON file, assuming STATUS is "OK", will contain a list of
       AnnotationPayload protos in JSON format, which are the predictions
       for the video time segment the file is assigned to in the
       video_classification.csv. All AnnotationPayload protos will have
       video_classification field set, and will be sorted by
       video_classification.type field (note that the returned types are
       governed by `classifaction_types` parameter in
       [PredictService.BatchPredictRequest.params][]).

*  For Video Object Tracking:
       In the created directory a video_object_tracking.csv file will be
       created, and multiple files video_object_trackinng_1.json,
       video_object_trackinng_2.json,..., video_object_trackinng_N.json,
       where N is the number of requests in the input (i.e. the number of
       lines in given CSV(s)).

       The format of video_object_tracking.csv is:

GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS

       where:
       GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
           the prediction input lines (i.e. video_object_tracking.csv has
           precisely the same number of lines as the prediction input had.)
       JSON_FILE_NAME = Name of .JSON file in the output directory, which
           contains prediction responses for the video time segment.
       STATUS = "OK" if prediction completed successfully, or an error
           code with message otherwise. If STATUS is not "OK" then the .JSON
           file for that line may not exist or be empty.

       Each .JSON file, assuming STATUS is "OK", will contain a list of
       AnnotationPayload protos in JSON format, which are the predictions
       for each frame of the video time segment the file is assigned to in
       video_object_tracking.csv. All AnnotationPayload protos will have
       video_object_tracking field set.
*  For Text Classification:
       In the created directory files `text_classification_1.jsonl`,
       `text_classification_2.jsonl`,...,`text_classification_N.jsonl`
       will be created, where N may be 1, and depends on the
       total number of inputs and annotations found.

       Each .JSONL file will contain, per line, a JSON representation of a
       proto that wraps input text snippet or input text file and a list of
       zero or more AnnotationPayload protos (called annotations), which
       have classification detail populated. A single text snippet or file
       will be listed only once with all its annotations, and its
       annotations will never be split across files.

       If prediction for any text snippet or file failed (partially or
       completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
       `errors_N.jsonl` files will be created (N depends on total number of
       failed predictions). These files will have a JSON representation of a
       proto that wraps input text snippet or input text file followed by
       exactly one

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

       containing only `code` and `message`.

*  For Text Sentiment:
       In the created directory files `text_sentiment_1.jsonl`,
       `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl`
       will be created, where N may be 1, and depends on the
       total number of inputs and annotations found.

       Each .JSONL file will contain, per line, a JSON representation of a
       proto that wraps input text snippet or input text file and a list of
       zero or more AnnotationPayload protos (called annotations), which
       have text_sentiment detail populated. A single text snippet or file
       will be listed only once with all its annotations, and its
       annotations will never be split across files.

       If prediction for any text snippet or file failed (partially or
       completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
       `errors_N.jsonl` files will be created (N depends on total number of
       failed predictions). These files will have a JSON representation of a
       proto that wraps input text snippet or input text file followed by
       exactly one

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

      containing only `code` and `message`.

*  For Text Extraction:
      In the created directory files `text_extraction_1.jsonl`,
      `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl`
      will be created, where N may be 1, and depends on the
      total number of inputs and annotations found.
      The contents of these .JSONL file(s) depend on whether the input
      used inline text, or documents.
      If input was inline, then each .JSONL file will contain, per line,
        a JSON representation of a proto that wraps given in request text
        snippet's "id" (if specified), followed by input text snippet,
        and a list of zero or more
        AnnotationPayload protos (called annotations), which have
        text_extraction detail populated. A single text snippet will be
        listed only once with all its annotations, and its annotations will
        never be split across files.
      If input used documents, then each .JSONL file will contain, per
        line, a JSON representation of a proto that wraps given in request
        document proto, followed by its OCR-ed representation in the form
        of a text snippet, finally followed by a list of zero or more
        AnnotationPayload protos (called annotations), which have
        text_extraction detail populated and refer, via their indices, to
        the OCR-ed text snippet. A single document (and its text snippet)
        will be listed only once with all its annotations, and its
        annotations will never be split across files.
      If prediction for any text snippet failed (partially or completely),
      then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
      `errors_N.jsonl` files will be created (N depends on total number of
      failed predictions). These files will have a JSON representation of a
      proto that wraps either the "id" : "<id_value>" (in case of inline)
      or the document proto (in case of document) but here followed by
      exactly one

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

       containing only `code` and `message`.

*  For Tables:
       Output depends on whether

[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]

or

[bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination]

is set (either is allowed).
GCS case:
  In the created directory files `tables_1.csv`, `tables_2.csv`,...,
  `tables_N.csv` will be created, where N may be 1, and depends on
  the total number of the successfully predicted rows.
  For all CLASSIFICATION

[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:

Each .csv file will contain a header, listing all columns'

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]

given on input followed by M target column names in the format of

"<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target

  value>_score" where M is the number of distinct target values,
  i.e. number of distinct values in the target column of the table
  used to train the model. Subsequent lines will contain the
  respective values of successfully predicted rows, with the last,
  i.e. the target, columns having the corresponding prediction
  [scores][google.cloud.automl.v1beta1.TablesAnnotation.score].
For REGRESSION and FORECASTING

[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:

Each .csv file will contain a header, listing all columns'
[display_name-s][google.cloud.automl.v1beta1.display_name] given
on input followed by the predicted target column with name in the
format of

"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"

Subsequent lines will contain the respective values of
successfully predicted rows, with the last, i.e. the target,
column having the predicted target value.
If prediction for any rows failed, then an additional
`errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be
created (N depends on total number of failed rows). These files
will have analogous format as `tables_*.csv`, but always with a
single target column having

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

    represented as a JSON string, and containing only `code` and
    `message`.
BigQuery case:

[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]

pointing to a BigQuery project must be set. In the given project a
new dataset will be created with name
`prediction_<model-display-name>_<timestamp-of-prediction-call>`
where <model-display-name> will be made
BigQuery-dataset-name compatible (e.g. most special characters will
become underscores), and timestamp will be in
YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
two tables will be created, `predictions`, and `errors`.
The `predictions` table's column names will be the input columns'

[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]

followed by the target column with name in the format of

"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"

The input feature columns will contain the respective values of
successfully predicted rows, with the target column having an
ARRAY of

[AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],

represented as STRUCT-s, containing
[TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].
The `errors` table contains rows for which the prediction has
failed, it has analogous input columns while the target column name
is in the format of

"errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]

[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>",

and as a value has

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)

represented as a STRUCT, and containing only `code` and `message`.

func (*BatchPredictOutputConfig) Descriptor

func (*BatchPredictOutputConfig) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictOutputConfig.ProtoReflect.Descriptor instead.

func (*BatchPredictOutputConfig) GetBigqueryDestination

func (x *BatchPredictOutputConfig) GetBigqueryDestination() *BigQueryDestination

func (*BatchPredictOutputConfig) GetDestination

func (m *BatchPredictOutputConfig) GetDestination() isBatchPredictOutputConfig_Destination

func (*BatchPredictOutputConfig) GetGcsDestination

func (x *BatchPredictOutputConfig) GetGcsDestination() *GcsDestination

func (*BatchPredictOutputConfig) ProtoMessage

func (*BatchPredictOutputConfig) ProtoMessage()

func (*BatchPredictOutputConfig) ProtoReflect

func (x *BatchPredictOutputConfig) ProtoReflect() protoreflect.Message

func (*BatchPredictOutputConfig) Reset

func (x *BatchPredictOutputConfig) Reset()

func (*BatchPredictOutputConfig) String

func (x *BatchPredictOutputConfig) String() string

BatchPredictOutputConfig_BigqueryDestination

type BatchPredictOutputConfig_BigqueryDestination struct {
	// The BigQuery location where the output is to be written to.
	BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"`
}

BatchPredictOutputConfig_GcsDestination

type BatchPredictOutputConfig_GcsDestination struct {
	// The Google Cloud Storage location of the directory where the output is to
	// be written to.
	GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}

BatchPredictRequest

type BatchPredictRequest struct {
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`

	InputConfig *BatchPredictInputConfig `protobuf:"bytes,3,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`

	OutputConfig *BatchPredictOutputConfig `protobuf:"bytes,4,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`

	Params map[string]string "" /* 153 byte string literal not displayed */

}

Request message for [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].

func (*BatchPredictRequest) Descriptor

func (*BatchPredictRequest) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictRequest.ProtoReflect.Descriptor instead.

func (*BatchPredictRequest) GetInputConfig

func (x *BatchPredictRequest) GetInputConfig() *BatchPredictInputConfig

func (*BatchPredictRequest) GetName

func (x *BatchPredictRequest) GetName() string

func (*BatchPredictRequest) GetOutputConfig

func (x *BatchPredictRequest) GetOutputConfig() *BatchPredictOutputConfig

func (*BatchPredictRequest) GetParams

func (x *BatchPredictRequest) GetParams() map[string]string

func (*BatchPredictRequest) ProtoMessage

func (*BatchPredictRequest) ProtoMessage()

func (*BatchPredictRequest) ProtoReflect

func (x *BatchPredictRequest) ProtoReflect() protoreflect.Message

func (*BatchPredictRequest) Reset

func (x *BatchPredictRequest) Reset()

func (*BatchPredictRequest) String

func (x *BatchPredictRequest) String() string

BatchPredictResult

type BatchPredictResult struct {
	Metadata map[string]string "" /* 157 byte string literal not displayed */

}

Result of the Batch Predict. This message is returned in [response][google.longrunning.Operation.response] of the operation returned by the [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].

func (*BatchPredictResult) Descriptor

func (*BatchPredictResult) Descriptor() ([]byte, []int)

Deprecated: Use BatchPredictResult.ProtoReflect.Descriptor instead.

func (*BatchPredictResult) GetMetadata

func (x *BatchPredictResult) GetMetadata() map[string]string

func (*BatchPredictResult) ProtoMessage

func (*BatchPredictResult) ProtoMessage()

func (*BatchPredictResult) ProtoReflect

func (x *BatchPredictResult) ProtoReflect() protoreflect.Message

func (*BatchPredictResult) Reset

func (x *BatchPredictResult) Reset()

func (*BatchPredictResult) String

func (x *BatchPredictResult) String() string

BigQueryDestination

type BigQueryDestination struct {

	// Required. BigQuery URI to a project, up to 2000 characters long.
	// Accepted forms:
	// *  BigQuery path e.g. bq://projectId
	OutputUri string `protobuf:"bytes,1,opt,name=output_uri,json=outputUri,proto3" json:"output_uri,omitempty"`
	// contains filtered or unexported fields
}

The BigQuery location for the output content.

func (*BigQueryDestination) Descriptor

func (*BigQueryDestination) Descriptor() ([]byte, []int)

Deprecated: Use BigQueryDestination.ProtoReflect.Descriptor instead.

func (*BigQueryDestination) GetOutputUri

func (x *BigQueryDestination) GetOutputUri() string

func (*BigQueryDestination) ProtoMessage

func (*BigQueryDestination) ProtoMessage()

func (*BigQueryDestination) ProtoReflect

func (x *BigQueryDestination) ProtoReflect() protoreflect.Message

func (*BigQueryDestination) Reset

func (x *BigQueryDestination) Reset()

func (*BigQueryDestination) String

func (x *BigQueryDestination) String() string

BigQuerySource

type BigQuerySource struct {

	// Required. BigQuery URI to a table, up to 2000 characters long.
	// Accepted forms:
	// *  BigQuery path e.g. bq://projectId.bqDatasetId.bqTableId
	InputUri string `protobuf:"bytes,1,opt,name=input_uri,json=inputUri,proto3" json:"input_uri,omitempty"`
	// contains filtered or unexported fields
}

The BigQuery location for the input content.

func (*BigQuerySource) Descriptor

func (*BigQuerySource) Descriptor() ([]byte, []int)

Deprecated: Use BigQuerySource.ProtoReflect.Descriptor instead.

func (*BigQuerySource) GetInputUri

func (x *BigQuerySource) GetInputUri() string

func (*BigQuerySource) ProtoMessage

func (*BigQuerySource) ProtoMessage()

func (*BigQuerySource) ProtoReflect

func (x *BigQuerySource) ProtoReflect() protoreflect.Message

func (*BigQuerySource) Reset

func (x *BigQuerySource) Reset()

func (*BigQuerySource) String

func (x *BigQuerySource) String() string

BoundingBoxMetricsEntry

type BoundingBoxMetricsEntry struct {
	IouThreshold float32 `protobuf:"fixed32,1,opt,name=iou_threshold,json=iouThreshold,proto3" json:"iou_threshold,omitempty"`

	MeanAveragePrecision float32 `protobuf:"fixed32,2,opt,name=mean_average_precision,json=meanAveragePrecision,proto3" json:"mean_average_precision,omitempty"`

	ConfidenceMetricsEntries []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry "" /* 135 byte string literal not displayed */

}

Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.

func (*BoundingBoxMetricsEntry) Descriptor

func (*BoundingBoxMetricsEntry) Descriptor() ([]byte, []int)

Deprecated: Use BoundingBoxMetricsEntry.ProtoReflect.Descriptor instead.

func (*BoundingBoxMetricsEntry) GetConfidenceMetricsEntries

func (x *BoundingBoxMetricsEntry) GetConfidenceMetricsEntries() []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry

func (*BoundingBoxMetricsEntry) GetIouThreshold

func (x *BoundingBoxMetricsEntry) GetIouThreshold() float32

func (*BoundingBoxMetricsEntry) GetMeanAveragePrecision

func (x *BoundingBoxMetricsEntry) GetMeanAveragePrecision() float32

func (*BoundingBoxMetricsEntry) ProtoMessage

func (*BoundingBoxMetricsEntry) ProtoMessage()

func (*BoundingBoxMetricsEntry) ProtoReflect

func (x *BoundingBoxMetricsEntry) ProtoReflect() protoreflect.Message

func (*BoundingBoxMetricsEntry) Reset

func (x *BoundingBoxMetricsEntry) Reset()

func (*BoundingBoxMetricsEntry) String

func (x *BoundingBoxMetricsEntry) String() string

BoundingBoxMetricsEntry_ConfidenceMetricsEntry

type BoundingBoxMetricsEntry_ConfidenceMetricsEntry struct {

	// Output only. The confidence threshold value used to compute the metrics.
	ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
	// Output only. Recall under the given confidence threshold.
	Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`
	// Output only. Precision under the given confidence threshold.
	Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"`
	// Output only. The harmonic mean of recall and precision.
	F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
	// contains filtered or unexported fields
}

Metrics for a single confidence threshold.

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor

Deprecated: Use BoundingBoxMetricsEntry_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold

func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold() float32

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset

func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String

BoundingPoly

type BoundingPoly struct {

	// Output only . The bounding polygon normalized vertices.
	NormalizedVertices []*NormalizedVertex `protobuf:"bytes,2,rep,name=normalized_vertices,json=normalizedVertices,proto3" json:"normalized_vertices,omitempty"`
	// contains filtered or unexported fields
}

A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.

func (*BoundingPoly) Descriptor

func (*BoundingPoly) Descriptor() ([]byte, []int)

Deprecated: Use BoundingPoly.ProtoReflect.Descriptor instead.

func (*BoundingPoly) GetNormalizedVertices

func (x *BoundingPoly) GetNormalizedVertices() []*NormalizedVertex

func (*BoundingPoly) ProtoMessage

func (*BoundingPoly) ProtoMessage()

func (*BoundingPoly) ProtoReflect

func (x *BoundingPoly) ProtoReflect() protoreflect.Message

func (*BoundingPoly) Reset

func (x *BoundingPoly) Reset()

func (*BoundingPoly) String

func (x *BoundingPoly) String() string

CategoryStats

type CategoryStats struct {

	// The statistics of the top 20 CATEGORY values, ordered by
	//
	// [count][google.cloud.automl.v1beta1.CategoryStats.SingleCategoryStats.count].
	TopCategoryStats []*CategoryStats_SingleCategoryStats `protobuf:"bytes,1,rep,name=top_category_stats,json=topCategoryStats,proto3" json:"top_category_stats,omitempty"`
	// contains filtered or unexported fields
}

The data statistics of a series of CATEGORY values.

func (*CategoryStats) Descriptor

func (*CategoryStats) Descriptor() ([]byte, []int)

Deprecated: Use CategoryStats.ProtoReflect.Descriptor instead.

func (*CategoryStats) GetTopCategoryStats

func (x *CategoryStats) GetTopCategoryStats() []*CategoryStats_SingleCategoryStats

func (*CategoryStats) ProtoMessage

func (*CategoryStats) ProtoMessage()

func (*CategoryStats) ProtoReflect

func (x *CategoryStats) ProtoReflect() protoreflect.Message

func (*CategoryStats) Reset

func (x *CategoryStats) Reset()

func (*CategoryStats) String

func (x *CategoryStats) String() string

CategoryStats_SingleCategoryStats

type CategoryStats_SingleCategoryStats struct {

	// The CATEGORY value.
	Value string `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"`
	// The number of occurrences of this value in the series.
	Count int64 `protobuf:"varint,2,opt,name=count,proto3" json:"count,omitempty"`
	// contains filtered or unexported fields
}

The statistics of a single CATEGORY value.

func (*CategoryStats_SingleCategoryStats) Descriptor

func (*CategoryStats_SingleCategoryStats) Descriptor() ([]byte, []int)

Deprecated: Use CategoryStats_SingleCategoryStats.ProtoReflect.Descriptor instead.

func (*CategoryStats_SingleCategoryStats) GetCount

func (*CategoryStats_SingleCategoryStats) GetValue

func (*CategoryStats_SingleCategoryStats) ProtoMessage

func (*CategoryStats_SingleCategoryStats) ProtoMessage()

func (*CategoryStats_SingleCategoryStats) ProtoReflect

func (*CategoryStats_SingleCategoryStats) Reset

func (*CategoryStats_SingleCategoryStats) String

ClassificationAnnotation

type ClassificationAnnotation struct {

	// Output only. A confidence estimate between 0.0 and 1.0. A higher value
	// means greater confidence that the annotation is positive. If a user
	// approves an annotation as negative or positive, the score value remains
	// unchanged. If a user creates an annotation, the score is 0 for negative or
	// 1 for positive.
	Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"`
	// contains filtered or unexported fields
}

Contains annotation details specific to classification.

func (*ClassificationAnnotation) Descriptor

func (*ClassificationAnnotation) Descriptor() ([]byte, []int)

Deprecated: Use ClassificationAnnotation.ProtoReflect.Descriptor instead.

func (*ClassificationAnnotation) GetScore

func (x *ClassificationAnnotation) GetScore() float32

func (*ClassificationAnnotation) ProtoMessage

func (*ClassificationAnnotation) ProtoMessage()

func (*ClassificationAnnotation) ProtoReflect

func (x *ClassificationAnnotation) ProtoReflect() protoreflect.Message

func (*ClassificationAnnotation) Reset

func (x *ClassificationAnnotation) Reset()

func (*ClassificationAnnotation) String

func (x *ClassificationAnnotation) String() string

ClassificationEvaluationMetrics

type ClassificationEvaluationMetrics struct {
	AuPrc float32 `protobuf:"fixed32,1,opt,name=au_prc,json=auPrc,proto3" json:"au_prc,omitempty"`

	BaseAuPrc float32 `protobuf:"fixed32,2,opt,name=base_au_prc,json=baseAuPrc,proto3" json:"base_au_prc,omitempty"`

	AuRoc float32 `protobuf:"fixed32,6,opt,name=au_roc,json=auRoc,proto3" json:"au_roc,omitempty"`

	LogLoss float32 `protobuf:"fixed32,7,opt,name=log_loss,json=logLoss,proto3" json:"log_loss,omitempty"`

	ConfidenceMetricsEntry []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry "" /* 129 byte string literal not displayed */

	ConfusionMatrix *ClassificationEvaluationMetrics_ConfusionMatrix `protobuf:"bytes,4,opt,name=confusion_matrix,json=confusionMatrix,proto3" json:"confusion_matrix,omitempty"`

	AnnotationSpecId []string `protobuf:"bytes,5,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`

}

Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.

func (*ClassificationEvaluationMetrics) Descriptor

func (*ClassificationEvaluationMetrics) Descriptor() ([]byte, []int)

Deprecated: Use ClassificationEvaluationMetrics.ProtoReflect.Descriptor instead.

func (*ClassificationEvaluationMetrics) GetAnnotationSpecId

func (x *ClassificationEvaluationMetrics) GetAnnotationSpecId() []string

func (*ClassificationEvaluationMetrics) GetAuPrc

func (*ClassificationEvaluationMetrics) GetAuRoc

func (*ClassificationEvaluationMetrics) GetBaseAuPrc

func (x *ClassificationEvaluationMetrics) GetBaseAuPrc() float32

Deprecated: Marked as deprecated in google/cloud/automl/v1beta1/classification.proto.

func (*ClassificationEvaluationMetrics) GetConfidenceMetricsEntry

func (*ClassificationEvaluationMetrics) GetConfusionMatrix

func (*ClassificationEvaluationMetrics) GetLogLoss

func (x *ClassificationEvaluationMetrics) GetLogLoss() float32

func (*ClassificationEvaluationMetrics) ProtoMessage

func (*ClassificationEvaluationMetrics) ProtoMessage()

func (*ClassificationEvaluationMetrics) ProtoReflect

func (*ClassificationEvaluationMetrics) Reset

func (*ClassificationEvaluationMetrics) String

ClassificationEvaluationMetrics_ConfidenceMetricsEntry

type ClassificationEvaluationMetrics_ConfidenceMetricsEntry struct {
	ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`

	PositionThreshold int32 `protobuf:"varint,14,opt,name=position_threshold,json=positionThreshold,proto3" json:"position_threshold,omitempty"`

	Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`

	Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"`

	FalsePositiveRate float32 `protobuf:"fixed32,8,opt,name=false_positive_rate,json=falsePositiveRate,proto3" json:"false_positive_rate,omitempty"`

	F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`

	RecallAt1 float32 `protobuf:"fixed32,5,opt,name=recall_at1,json=recallAt1,proto3" json:"recall_at1,omitempty"`

	PrecisionAt1 float32 `protobuf:"fixed32,6,opt,name=precision_at1,json=precisionAt1,proto3" json:"precision_at1,omitempty"`

	FalsePositiveRateAt1 float32 "" /* 127 byte string literal not displayed */

	F1ScoreAt1 float32 `protobuf:"fixed32,7,opt,name=f1_score_at1,json=f1ScoreAt1,proto3" json:"f1_score_at1,omitempty"`

	TruePositiveCount int64 `protobuf:"varint,10,opt,name=true_positive_count,json=truePositiveCount,proto3" json:"true_positive_count,omitempty"`

	FalsePositiveCount int64 `protobuf:"varint,11,opt,name=false_positive_count,json=falsePositiveCount,proto3" json:"false_positive_count,omitempty"`

	FalseNegativeCount int64 `protobuf:"varint,12,opt,name=false_negative_count,json=falseNegativeCount,proto3" json:"false_negative_count,omitempty"`

	TrueNegativeCount int64 `protobuf:"varint,13,opt,name=true_negative_count,json=trueNegativeCount,proto3" json:"true_negative_count,omitempty"`

}

Metrics for a single confidence threshold.

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor

Deprecated: Use ClassificationEvaluationMetrics_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset

func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String

ClassificationEvaluationMetrics_ConfusionMatrix

type ClassificationEvaluationMetrics_ConfusionMatrix struct {

	// Output only. IDs of the annotation specs used in the confusion matrix.
	// For Tables CLASSIFICATION
	//
	// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
	// only list of [annotation_spec_display_name-s][] is populated.
	AnnotationSpecId []string `protobuf:"bytes,1,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
	// Output only. Display name of the annotation specs used in the confusion
	// matrix, as they were at the moment of the evaluation. For Tables
	// CLASSIFICATION
	//
	// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
	// distinct values of the target column at the moment of the model
	// evaluation are populated here.
	DisplayName []string `protobuf:"bytes,3,rep,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// Output only. Rows in the confusion matrix. The number of rows is equal to
	// the size of `annotation_spec_id`.
	// `row[i].example_count[j]` is the number of examples that have ground
	// truth of the `annotation_spec_id[i]` and are predicted as
	// `annotation_spec_id[j]` by the model being evaluated.
	Row []*ClassificationEvaluationMetrics_ConfusionMatrix_Row `protobuf:"bytes,2,rep,name=row,proto3" json:"row,omitempty"`
	// contains filtered or unexported fields
}

Confusion matrix of the model running the classification.

func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor

Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix.ProtoReflect.Descriptor instead.

func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId

func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId() []string

func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName

func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetRow

func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage

func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect

func (*ClassificationEvaluationMetrics_ConfusionMatrix) Reset

func (*ClassificationEvaluationMetrics_ConfusionMatrix) String

ClassificationEvaluationMetrics_ConfusionMatrix_Row

type ClassificationEvaluationMetrics_ConfusionMatrix_Row struct {

	// Output only. Value of the specific cell in the confusion matrix.
	// The number of values each row has (i.e. the length of the row) is equal
	// to the length of the `annotation_spec_id` field or, if that one is not
	// populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
	ExampleCount []int32 `protobuf:"varint,1,rep,packed,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
	// contains filtered or unexported fields
}

Output only. A row in the confusion matrix.

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor

Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix_Row.ProtoReflect.Descriptor instead.

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset

func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) String

ClassificationType

type ClassificationType int32

Type of the classification problem.

ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED, ClassificationType_MULTICLASS, ClassificationType_MULTILABEL

const (
	// An un-set value of this enum.
	ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED ClassificationType = 0
	// At most one label is allowed per example.
	ClassificationType_MULTICLASS ClassificationType = 1
	// Multiple labels are allowed for one example.
	ClassificationType_MULTILABEL ClassificationType = 2
)

func (ClassificationType) Descriptor

func (ClassificationType) Enum

func (ClassificationType) EnumDescriptor

func (ClassificationType) EnumDescriptor() ([]byte, []int)

Deprecated: Use ClassificationType.Descriptor instead.

func (ClassificationType) Number

func (ClassificationType) String

func (x ClassificationType) String() string

func (ClassificationType) Type

ColumnSpec

type ColumnSpec struct {

	// Output only. The resource name of the column specs.
	// Form:
	//
	// `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}/columnSpecs/{column_spec_id}`
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// The data type of elements stored in the column.
	DataType *DataType `protobuf:"bytes,2,opt,name=data_type,json=dataType,proto3" json:"data_type,omitempty"`
	// Output only. The name of the column to show in the interface. The name can
	// be up to 100 characters long and can consist only of ASCII Latin letters
	// A-Z and a-z, ASCII digits 0-9, underscores(_), and forward slashes(/), and
	// must start with a letter or a digit.
	DisplayName string `protobuf:"bytes,3,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// Output only. Stats of the series of values in the column.
	// This field may be stale, see the ancestor's
	// Dataset.tables_dataset_metadata.stats_update_time field
	// for the timestamp at which these stats were last updated.
	DataStats *DataStats `protobuf:"bytes,4,opt,name=data_stats,json=dataStats,proto3" json:"data_stats,omitempty"`
	// Deprecated.
	TopCorrelatedColumns []*ColumnSpec_CorrelatedColumn `protobuf:"bytes,5,rep,name=top_correlated_columns,json=topCorrelatedColumns,proto3" json:"top_correlated_columns,omitempty"`
	// Used to perform consistent read-modify-write updates. If not set, a blind
	// "overwrite" update happens.
	Etag string `protobuf:"bytes,6,opt,name=etag,proto3" json:"etag,omitempty"`
	// contains filtered or unexported fields
}

A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were given on import . Used by:

  • Tables

func (*ColumnSpec) Descriptor

func (*ColumnSpec) Descriptor() ([]byte, []int)

Deprecated: Use ColumnSpec.ProtoReflect.Descriptor instead.

func (*ColumnSpec) GetDataStats

func (x *ColumnSpec) GetDataStats() *DataStats

func (*ColumnSpec) GetDataType

func (x *ColumnSpec) GetDataType() *DataType

func (*ColumnSpec) GetDisplayName

func (x *ColumnSpec) GetDisplayName() string

func (*ColumnSpec) GetEtag

func (x *ColumnSpec) GetEtag() string

func (*ColumnSpec) GetName

func (x *ColumnSpec) GetName() string

func (*ColumnSpec) GetTopCorrelatedColumns

func (x *ColumnSpec) GetTopCorrelatedColumns() []*ColumnSpec_CorrelatedColumn

func (*ColumnSpec) ProtoMessage

func (*ColumnSpec) ProtoMessage()

func (*ColumnSpec) ProtoReflect

func (x *ColumnSpec) ProtoReflect() protoreflect.Message

func (*ColumnSpec) Reset

func (x *ColumnSpec) Reset()

func (*ColumnSpec) String

func (x *ColumnSpec) String() string

ColumnSpec_CorrelatedColumn

type ColumnSpec_CorrelatedColumn struct {

	// The column_spec_id of the correlated column, which belongs to the same
	// table as the in-context column.
	ColumnSpecId string `protobuf:"bytes,1,opt,name=column_spec_id,json=columnSpecId,proto3" json:"column_spec_id,omitempty"`
	// Correlation between this and the in-context column.
	CorrelationStats *CorrelationStats `protobuf:"bytes,2,opt,name=correlation_stats,json=correlationStats,proto3" json:"correlation_stats,omitempty"`
	// contains filtered or unexported fields
}

Identifies the table's column, and its correlation with the column this ColumnSpec describes.

func (*ColumnSpec_CorrelatedColumn) Descriptor

func (*ColumnSpec_CorrelatedColumn) Descriptor() ([]byte, []int)

Deprecated: Use ColumnSpec_CorrelatedColumn.ProtoReflect.Descriptor instead.

func (*ColumnSpec_CorrelatedColumn) GetColumnSpecId

func (x *ColumnSpec_CorrelatedColumn) GetColumnSpecId() string

func (*ColumnSpec_CorrelatedColumn) GetCorrelationStats

func (x *ColumnSpec_CorrelatedColumn) GetCorrelationStats() *CorrelationStats

func (*ColumnSpec_CorrelatedColumn) ProtoMessage

func (*ColumnSpec_CorrelatedColumn) ProtoMessage()

func (*ColumnSpec_CorrelatedColumn) ProtoReflect

func (*ColumnSpec_CorrelatedColumn) Reset

func (x *ColumnSpec_CorrelatedColumn) Reset()

func (*ColumnSpec_CorrelatedColumn) String

func (x *ColumnSpec_CorrelatedColumn) String() string

CorrelationStats

type CorrelationStats struct {

	// The correlation value using the Cramer's V measure.
	CramersV float64 `protobuf:"fixed64,1,opt,name=cramers_v,json=cramersV,proto3" json:"cramers_v,omitempty"`
	// contains filtered or unexported fields
}

A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.

func (*CorrelationStats) Descriptor

func (*CorrelationStats) Descriptor() ([]byte, []int)

Deprecated: Use CorrelationStats.ProtoReflect.Descriptor instead.

func (*CorrelationStats) GetCramersV

func (x *CorrelationStats) GetCramersV() float64

func (*CorrelationStats) ProtoMessage

func (*CorrelationStats) ProtoMessage()

func (*CorrelationStats) ProtoReflect

func (x *CorrelationStats) ProtoReflect() protoreflect.Message

func (*CorrelationStats) Reset

func (x *CorrelationStats) Reset()

func (*CorrelationStats) String

func (x *CorrelationStats) String() string

CreateDatasetRequest

type CreateDatasetRequest struct {

	// Required. The resource name of the project to create the dataset for.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// Required. The dataset to create.
	Dataset *Dataset `protobuf:"bytes,2,opt,name=dataset,proto3" json:"dataset,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.CreateDataset][google.cloud.automl.v1beta1.AutoMl.CreateDataset].

func (*CreateDatasetRequest) Descriptor

func (*CreateDatasetRequest) Descriptor() ([]byte, []int)

Deprecated: Use CreateDatasetRequest.ProtoReflect.Descriptor instead.

func (*CreateDatasetRequest) GetDataset

func (x *CreateDatasetRequest) GetDataset() *Dataset

func (*CreateDatasetRequest) GetParent

func (x *CreateDatasetRequest) GetParent() string

func (*CreateDatasetRequest) ProtoMessage

func (*CreateDatasetRequest) ProtoMessage()

func (*CreateDatasetRequest) ProtoReflect

func (x *CreateDatasetRequest) ProtoReflect() protoreflect.Message

func (*CreateDatasetRequest) Reset

func (x *CreateDatasetRequest) Reset()

func (*CreateDatasetRequest) String

func (x *CreateDatasetRequest) String() string

CreateModelOperationMetadata

type CreateModelOperationMetadata struct {
	// contains filtered or unexported fields
}

Details of CreateModel operation.

func (*CreateModelOperationMetadata) Descriptor

func (*CreateModelOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use CreateModelOperationMetadata.ProtoReflect.Descriptor instead.

func (*CreateModelOperationMetadata) ProtoMessage

func (*CreateModelOperationMetadata) ProtoMessage()

func (*CreateModelOperationMetadata) ProtoReflect

func (*CreateModelOperationMetadata) Reset

func (x *CreateModelOperationMetadata) Reset()

func (*CreateModelOperationMetadata) String

CreateModelRequest

type CreateModelRequest struct {

	// Required. Resource name of the parent project where the model is being created.
	Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
	// Required. The model to create.
	Model *Model `protobuf:"bytes,4,opt,name=model,proto3" json:"model,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.CreateModel][google.cloud.automl.v1beta1.AutoMl.CreateModel].

func (*CreateModelRequest) Descriptor

func (*CreateModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use CreateModelRequest.ProtoReflect.Descriptor instead.

func (*CreateModelRequest) GetModel

func (x *CreateModelRequest) GetModel() *Model

func (*CreateModelRequest) GetParent

func (x *CreateModelRequest) GetParent() string

func (*CreateModelRequest) ProtoMessage

func (*CreateModelRequest) ProtoMessage()

func (*CreateModelRequest) ProtoReflect

func (x *CreateModelRequest) ProtoReflect() protoreflect.Message

func (*CreateModelRequest) Reset

func (x *CreateModelRequest) Reset()

func (*CreateModelRequest) String

func (x *CreateModelRequest) String() string

DataStats

type DataStats struct {

	// The data statistics specific to a DataType.
	//
	// Types that are assignable to Stats:
	//	*DataStats_Float64Stats
	//	*DataStats_StringStats
	//	*DataStats_TimestampStats
	//	*DataStats_ArrayStats
	//	*DataStats_StructStats
	//	*DataStats_CategoryStats
	Stats isDataStats_Stats `protobuf_oneof:"stats"`
	// The number of distinct values.
	DistinctValueCount int64 `protobuf:"varint,1,opt,name=distinct_value_count,json=distinctValueCount,proto3" json:"distinct_value_count,omitempty"`
	// The number of values that are null.
	NullValueCount int64 `protobuf:"varint,2,opt,name=null_value_count,json=nullValueCount,proto3" json:"null_value_count,omitempty"`
	// The number of values that are valid.
	ValidValueCount int64 `protobuf:"varint,9,opt,name=valid_value_count,json=validValueCount,proto3" json:"valid_value_count,omitempty"`
	// contains filtered or unexported fields
}

The data statistics of a series of values that share the same DataType.

func (*DataStats) Descriptor

func (*DataStats) Descriptor() ([]byte, []int)

Deprecated: Use DataStats.ProtoReflect.Descriptor instead.

func (*DataStats) GetArrayStats

func (x *DataStats) GetArrayStats() *ArrayStats

func (*DataStats) GetCategoryStats

func (x *DataStats) GetCategoryStats() *CategoryStats

func (*DataStats) GetDistinctValueCount

func (x *DataStats) GetDistinctValueCount() int64

func (*DataStats) GetFloat64Stats

func (x *DataStats) GetFloat64Stats() *Float64Stats

func (*DataStats) GetNullValueCount

func (x *DataStats) GetNullValueCount() int64

func (*DataStats) GetStats

func (m *DataStats) GetStats() isDataStats_Stats

func (*DataStats) GetStringStats

func (x *DataStats) GetStringStats() *StringStats

func (*DataStats) GetStructStats

func (x *DataStats) GetStructStats() *StructStats

func (*DataStats) GetTimestampStats

func (x *DataStats) GetTimestampStats() *TimestampStats

func (*DataStats) GetValidValueCount

func (x *DataStats) GetValidValueCount() int64

func (*DataStats) ProtoMessage

func (*DataStats) ProtoMessage()

func (*DataStats) ProtoReflect

func (x *DataStats) ProtoReflect() protoreflect.Message

func (*DataStats) Reset

func (x *DataStats) Reset()

func (*DataStats) String

func (x *DataStats) String() string

DataStats_ArrayStats

type DataStats_ArrayStats struct {
	// The statistics for ARRAY DataType.
	ArrayStats *ArrayStats `protobuf:"bytes,6,opt,name=array_stats,json=arrayStats,proto3,oneof"`
}

DataStats_CategoryStats

type DataStats_CategoryStats struct {
	// The statistics for CATEGORY DataType.
	CategoryStats *CategoryStats `protobuf:"bytes,8,opt,name=category_stats,json=categoryStats,proto3,oneof"`
}

DataStats_Float64Stats

type DataStats_Float64Stats struct {
	// The statistics for FLOAT64 DataType.
	Float64Stats *Float64Stats `protobuf:"bytes,3,opt,name=float64_stats,json=float64Stats,proto3,oneof"`
}

DataStats_StringStats

type DataStats_StringStats struct {
	// The statistics for STRING DataType.
	StringStats *StringStats `protobuf:"bytes,4,opt,name=string_stats,json=stringStats,proto3,oneof"`
}

DataStats_StructStats

type DataStats_StructStats struct {
	// The statistics for STRUCT DataType.
	StructStats *StructStats `protobuf:"bytes,7,opt,name=struct_stats,json=structStats,proto3,oneof"`
}

DataStats_TimestampStats

type DataStats_TimestampStats struct {
	// The statistics for TIMESTAMP DataType.
	TimestampStats *TimestampStats `protobuf:"bytes,5,opt,name=timestamp_stats,json=timestampStats,proto3,oneof"`
}

DataType

type DataType struct {
	Details isDataType_Details `protobuf_oneof:"details"`

	TypeCode TypeCode "" /* 128 byte string literal not displayed */

	Nullable bool `protobuf:"varint,4,opt,name=nullable,proto3" json:"nullable,omitempty"`

}

Indicated the type of data that can be stored in a structured data entity (e.g. a table).

func (*DataType) Descriptor

func (*DataType) Descriptor() ([]byte, []int)

Deprecated: Use DataType.ProtoReflect.Descriptor instead.

func (*DataType) GetDetails

func (m *DataType) GetDetails() isDataType_Details

func (*DataType) GetListElementType

func (x *DataType) GetListElementType() *DataType

func (*DataType) GetNullable

func (x *DataType) GetNullable() bool

func (*DataType) GetStructType

func (x *DataType) GetStructType() *StructType

func (*DataType) GetTimeFormat

func (x *DataType) GetTimeFormat() string

func (*DataType) GetTypeCode

func (x *DataType) GetTypeCode() TypeCode

func (*DataType) ProtoMessage

func (*DataType) ProtoMessage()

func (*DataType) ProtoReflect

func (x *DataType) ProtoReflect() protoreflect.Message

func (*DataType) Reset

func (x *DataType) Reset()

func (*DataType) String

func (x *DataType) String() string

DataType_ListElementType

type DataType_ListElementType struct {
	// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [ARRAY][google.cloud.automl.v1beta1.TypeCode.ARRAY],
	// then `list_element_type` is the type of the elements.
	ListElementType *DataType `protobuf:"bytes,2,opt,name=list_element_type,json=listElementType,proto3,oneof"`
}

DataType_StructType

type DataType_StructType struct {
	// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT], then `struct_type`
	// provides type information for the struct's fields.
	StructType *StructType `protobuf:"bytes,3,opt,name=struct_type,json=structType,proto3,oneof"`
}

DataType_TimeFormat

type DataType_TimeFormat struct {
	// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [TIMESTAMP][google.cloud.automl.v1beta1.TypeCode.TIMESTAMP]
	// then `time_format` provides the format in which that time field is
	// expressed. The time_format must either be one of:
	// * `UNIX_SECONDS`
	// * `UNIX_MILLISECONDS`
	// * `UNIX_MICROSECONDS`
	// * `UNIX_NANOSECONDS`
	// (for respectively number of seconds, milliseconds, microseconds and
	// nanoseconds since start of the Unix epoch);
	// or be written in `strftime` syntax. If time_format is not set, then the
	// default format as described on the type_code is used.
	TimeFormat string `protobuf:"bytes,5,opt,name=time_format,json=timeFormat,proto3,oneof"`
}

Dataset

type Dataset struct {

	// Required.
	// The dataset metadata that is specific to the problem type.
	//
	// Types that are assignable to DatasetMetadata:
	//	*Dataset_TranslationDatasetMetadata
	//	*Dataset_ImageClassificationDatasetMetadata
	//	*Dataset_TextClassificationDatasetMetadata
	//	*Dataset_ImageObjectDetectionDatasetMetadata
	//	*Dataset_VideoClassificationDatasetMetadata
	//	*Dataset_VideoObjectTrackingDatasetMetadata
	//	*Dataset_TextExtractionDatasetMetadata
	//	*Dataset_TextSentimentDatasetMetadata
	//	*Dataset_TablesDatasetMetadata
	DatasetMetadata isDataset_DatasetMetadata `protobuf_oneof:"dataset_metadata"`
	// Output only. The resource name of the dataset.
	// Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// Required. The name of the dataset to show in the interface. The name can be
	// up to 32 characters long and can consist only of ASCII Latin letters A-Z
	// and a-z, underscores
	// (_), and ASCII digits 0-9.
	DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
	// User-provided description of the dataset. The description can be up to
	// 25000 characters long.
	Description string `protobuf:"bytes,3,opt,name=description,proto3" json:"description,omitempty"`
	// Output only. The number of examples in the dataset.
	ExampleCount int32 `protobuf:"varint,21,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
	// Output only. Timestamp when this dataset was created.
	CreateTime *timestamppb.Timestamp `protobuf:"bytes,14,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"`
	// Used to perform consistent read-modify-write updates. If not set, a blind
	// "overwrite" update happens.
	Etag string `protobuf:"bytes,17,opt,name=etag,proto3" json:"etag,omitempty"`
	// contains filtered or unexported fields
}

A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.

func (*Dataset) Descriptor

func (*Dataset) Descriptor() ([]byte, []int)

Deprecated: Use Dataset.ProtoReflect.Descriptor instead.

func (*Dataset) GetCreateTime

func (x *Dataset) GetCreateTime() *timestamppb.Timestamp

func (*Dataset) GetDatasetMetadata

func (m *Dataset) GetDatasetMetadata() isDataset_DatasetMetadata

func (*Dataset) GetDescription

func (x *Dataset) GetDescription() string

func (*Dataset) GetDisplayName

func (x *Dataset) GetDisplayName() string

func (*Dataset) GetEtag

func (x *Dataset) GetEtag() string

func (*Dataset) GetExampleCount

func (x *Dataset) GetExampleCount() int32

func (*Dataset) GetImageClassificationDatasetMetadata

func (x *Dataset) GetImageClassificationDatasetMetadata() *ImageClassificationDatasetMetadata

func (*Dataset) GetImageObjectDetectionDatasetMetadata

func (x *Dataset) GetImageObjectDetectionDatasetMetadata() *ImageObjectDetectionDatasetMetadata

func (*Dataset) GetName

func (x *Dataset) GetName() string

func (*Dataset) GetTablesDatasetMetadata

func (x *Dataset) GetTablesDatasetMetadata() *TablesDatasetMetadata

func (*Dataset) GetTextClassificationDatasetMetadata

func (x *Dataset) GetTextClassificationDatasetMetadata() *TextClassificationDatasetMetadata

func (*Dataset) GetTextExtractionDatasetMetadata

func (x *Dataset) GetTextExtractionDatasetMetadata() *TextExtractionDatasetMetadata

func (*Dataset) GetTextSentimentDatasetMetadata

func (x *Dataset) GetTextSentimentDatasetMetadata() *TextSentimentDatasetMetadata

func (*Dataset) GetTranslationDatasetMetadata

func (x *Dataset) GetTranslationDatasetMetadata() *TranslationDatasetMetadata

func (*Dataset) GetVideoClassificationDatasetMetadata

func (x *Dataset) GetVideoClassificationDatasetMetadata() *VideoClassificationDatasetMetadata

func (*Dataset) GetVideoObjectTrackingDatasetMetadata

func (x *Dataset) GetVideoObjectTrackingDatasetMetadata() *VideoObjectTrackingDatasetMetadata

func (*Dataset) ProtoMessage

func (*Dataset) ProtoMessage()

func (*Dataset) ProtoReflect

func (x *Dataset) ProtoReflect() protoreflect.Message

func (*Dataset) Reset

func (x *Dataset) Reset()

func (*Dataset) String

func (x *Dataset) String() string

Dataset_ImageClassificationDatasetMetadata

type Dataset_ImageClassificationDatasetMetadata struct {
	// Metadata for a dataset used for image classification.
	ImageClassificationDatasetMetadata *ImageClassificationDatasetMetadata `protobuf:"bytes,24,opt,name=image_classification_dataset_metadata,json=imageClassificationDatasetMetadata,proto3,oneof"`
}

Dataset_ImageObjectDetectionDatasetMetadata

type Dataset_ImageObjectDetectionDatasetMetadata struct {
	// Metadata for a dataset used for image object detection.
	ImageObjectDetectionDatasetMetadata *ImageObjectDetectionDatasetMetadata `protobuf:"bytes,26,opt,name=image_object_detection_dataset_metadata,json=imageObjectDetectionDatasetMetadata,proto3,oneof"`
}

Dataset_TablesDatasetMetadata

type Dataset_TablesDatasetMetadata struct {
	// Metadata for a dataset used for Tables.
	TablesDatasetMetadata *TablesDatasetMetadata `protobuf:"bytes,33,opt,name=tables_dataset_metadata,json=tablesDatasetMetadata,proto3,oneof"`
}

Dataset_TextClassificationDatasetMetadata

type Dataset_TextClassificationDatasetMetadata struct {
	// Metadata for a dataset used for text classification.
	TextClassificationDatasetMetadata *TextClassificationDatasetMetadata `protobuf:"bytes,25,opt,name=text_classification_dataset_metadata,json=textClassificationDatasetMetadata,proto3,oneof"`
}

Dataset_TextExtractionDatasetMetadata

type Dataset_TextExtractionDatasetMetadata struct {
	// Metadata for a dataset used for text extraction.
	TextExtractionDatasetMetadata *TextExtractionDatasetMetadata `protobuf:"bytes,28,opt,name=text_extraction_dataset_metadata,json=textExtractionDatasetMetadata,proto3,oneof"`
}

Dataset_TextSentimentDatasetMetadata

type Dataset_TextSentimentDatasetMetadata struct {
	// Metadata for a dataset used for text sentiment.
	TextSentimentDatasetMetadata *TextSentimentDatasetMetadata `protobuf:"bytes,30,opt,name=text_sentiment_dataset_metadata,json=textSentimentDatasetMetadata,proto3,oneof"`
}

Dataset_TranslationDatasetMetadata

type Dataset_TranslationDatasetMetadata struct {
	// Metadata for a dataset used for translation.
	TranslationDatasetMetadata *TranslationDatasetMetadata `protobuf:"bytes,23,opt,name=translation_dataset_metadata,json=translationDatasetMetadata,proto3,oneof"`
}

Dataset_VideoClassificationDatasetMetadata

type Dataset_VideoClassificationDatasetMetadata struct {
	// Metadata for a dataset used for video classification.
	VideoClassificationDatasetMetadata *VideoClassificationDatasetMetadata `protobuf:"bytes,31,opt,name=video_classification_dataset_metadata,json=videoClassificationDatasetMetadata,proto3,oneof"`
}

Dataset_VideoObjectTrackingDatasetMetadata

type Dataset_VideoObjectTrackingDatasetMetadata struct {
	// Metadata for a dataset used for video object tracking.
	VideoObjectTrackingDatasetMetadata *VideoObjectTrackingDatasetMetadata `protobuf:"bytes,29,opt,name=video_object_tracking_dataset_metadata,json=videoObjectTrackingDatasetMetadata,proto3,oneof"`
}

DeleteDatasetRequest

type DeleteDatasetRequest struct {

	// Required. The resource name of the dataset to delete.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1beta1.AutoMl.DeleteDataset].

func (*DeleteDatasetRequest) Descriptor

func (*DeleteDatasetRequest) Descriptor() ([]byte, []int)

Deprecated: Use DeleteDatasetRequest.ProtoReflect.Descriptor instead.

func (*DeleteDatasetRequest) GetName

func (x *DeleteDatasetRequest) GetName() string

func (*DeleteDatasetRequest) ProtoMessage

func (*DeleteDatasetRequest) ProtoMessage()

func (*DeleteDatasetRequest) ProtoReflect

func (x *DeleteDatasetRequest) ProtoReflect() protoreflect.Message

func (*DeleteDatasetRequest) Reset

func (x *DeleteDatasetRequest) Reset()

func (*DeleteDatasetRequest) String

func (x *DeleteDatasetRequest) String() string

DeleteModelRequest

type DeleteModelRequest struct {

	// Required. Resource name of the model being deleted.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.DeleteModel][google.cloud.automl.v1beta1.AutoMl.DeleteModel].

func (*DeleteModelRequest) Descriptor

func (*DeleteModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use DeleteModelRequest.ProtoReflect.Descriptor instead.

func (*DeleteModelRequest) GetName

func (x *DeleteModelRequest) GetName() string

func (*DeleteModelRequest) ProtoMessage

func (*DeleteModelRequest) ProtoMessage()

func (*DeleteModelRequest) ProtoReflect

func (x *DeleteModelRequest) ProtoReflect() protoreflect.Message

func (*DeleteModelRequest) Reset

func (x *DeleteModelRequest) Reset()

func (*DeleteModelRequest) String

func (x *DeleteModelRequest) String() string

DeleteOperationMetadata

type DeleteOperationMetadata struct {
	// contains filtered or unexported fields
}

Details of operations that perform deletes of any entities.

func (*DeleteOperationMetadata) Descriptor

func (*DeleteOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use DeleteOperationMetadata.ProtoReflect.Descriptor instead.

func (*DeleteOperationMetadata) ProtoMessage

func (*DeleteOperationMetadata) ProtoMessage()

func (*DeleteOperationMetadata) ProtoReflect

func (x *DeleteOperationMetadata) ProtoReflect() protoreflect.Message

func (*DeleteOperationMetadata) Reset

func (x *DeleteOperationMetadata) Reset()

func (*DeleteOperationMetadata) String

func (x *DeleteOperationMetadata) String() string

DeployModelOperationMetadata

type DeployModelOperationMetadata struct {
	// contains filtered or unexported fields
}

Details of DeployModel operation.

func (*DeployModelOperationMetadata) Descriptor

func (*DeployModelOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use DeployModelOperationMetadata.ProtoReflect.Descriptor instead.

func (*DeployModelOperationMetadata) ProtoMessage

func (*DeployModelOperationMetadata) ProtoMessage()

func (*DeployModelOperationMetadata) ProtoReflect

func (*DeployModelOperationMetadata) Reset

func (x *DeployModelOperationMetadata) Reset()

func (*DeployModelOperationMetadata) String

DeployModelRequest

type DeployModelRequest struct {

	// The per-domain specific deployment parameters.
	//
	// Types that are assignable to ModelDeploymentMetadata:
	//	*DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
	//	*DeployModelRequest_ImageClassificationModelDeploymentMetadata
	ModelDeploymentMetadata isDeployModelRequest_ModelDeploymentMetadata `protobuf_oneof:"model_deployment_metadata"`
	// Required. Resource name of the model to deploy.
	Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
	// contains filtered or unexported fields
}

Request message for [AutoMl.DeployModel][google.cloud.automl.v1beta1.AutoMl.DeployModel].

func (*DeployModelRequest) Descriptor

func (*DeployModelRequest) Descriptor() ([]byte, []int)

Deprecated: Use DeployModelRequest.ProtoReflect.Descriptor instead.

func (*DeployModelRequest) GetImageClassificationModelDeploymentMetadata

func (x *DeployModelRequest) GetImageClassificationModelDeploymentMetadata() *ImageClassificationModelDeploymentMetadata

func (*DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata

func (x *DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata() *ImageObjectDetectionModelDeploymentMetadata

func (*DeployModelRequest) GetModelDeploymentMetadata

func (m *DeployModelRequest) GetModelDeploymentMetadata() isDeployModelRequest_ModelDeploymentMetadata

func (*DeployModelRequest) GetName

func (x *DeployModelRequest) GetName() string

func (*DeployModelRequest) ProtoMessage

func (*DeployModelRequest) ProtoMessage()

func (*DeployModelRequest) ProtoReflect

func (x *DeployModelRequest) ProtoReflect() protoreflect.Message

func (*DeployModelRequest) Reset

func (x *DeployModelRequest) Reset()

func (*DeployModelRequest) String

func (x *DeployModelRequest) String() string

DeployModelRequest_ImageClassificationModelDeploymentMetadata

type DeployModelRequest_ImageClassificationModelDeploymentMetadata struct {
	ImageClassificationModelDeploymentMetadata *ImageClassificationModelDeploymentMetadata "" /* 135 byte string literal not displayed */
}

DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata

type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata struct {
	ImageObjectDetectionModelDeploymentMetadata *ImageObjectDetectionModelDeploymentMetadata "" /* 138 byte string literal not displayed */
}

Document

type Document struct {

	// An input config specifying the content of the document.
	InputConfig *DocumentInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
	// The plain text version of this document.
	DocumentText *TextSnippet `protobuf:"bytes,2,opt,name=document_text,json=documentText,proto3" json:"document_text,omitempty"`
	// Describes the layout of the document.
	// Sorted by [page_number][].
	Layout []*Document_Layout `protobuf:"bytes,3,rep,name=layout,proto3" json:"layout,omitempty"`
	// The dimensions of the page in the document.
	DocumentDimensions *DocumentDimensions `protobuf:"bytes,4,opt,name=document_dimensions,json=documentDimensions,proto3" json:"document_dimensions,omitempty"`
	// Number of pages in the document.
	PageCount int32 `protobuf:"varint,5,opt,name=page_count,json=pageCount,proto3" json:"page_count,omitempty"`
	// contains filtered or unexported fields
}

A structured text document e.g. a PDF.

func (*Document) Descriptor

func (*Document) Descriptor() ([]byte, []int)

Deprecated: Use Document.ProtoReflect.Descriptor instead.

func (*Document) GetDocumentDimensions

func (x *Document) GetDocumentDimensions() *DocumentDimensions

func (*Document) GetDocumentText

func (x *Document) GetDocumentText() *TextSnippet

func (*Document) GetInputConfig

func (x *Document) GetInputConfig() *DocumentInputConfig

func (*Document) GetLayout

func (x *Document) GetLayout() []*Document_Layout

func (*Document) GetPageCount

func (x *Document) GetPageCount() int32

func (*Document) ProtoMessage

func (*Document) ProtoMessage()

func (*Document) ProtoReflect

func (x *Document) ProtoReflect() protoreflect.Message

func (*Document) Reset

func (x *Document) Reset()

func (*Document) String

func (x *Document) String() string

DocumentDimensions

type DocumentDimensions struct {
	Unit DocumentDimensions_DocumentDimensionUnit "" /* 136 byte string literal not displayed */

	Width float32 `protobuf:"fixed32,2,opt,name=width,proto3" json:"width,omitempty"`

	Height float32 `protobuf:"fixed32,3,opt,name=height,proto3" json:"height,omitempty"`

}

Message that describes dimension of a document.

func (*DocumentDimensions) Descriptor

func (*DocumentDimensions) Descriptor() ([]byte, []int)

Deprecated: Use DocumentDimensions.ProtoReflect.Descriptor instead.

func (*DocumentDimensions) GetHeight

func (x *DocumentDimensions) GetHeight() float32

func (*DocumentDimensions) GetUnit

func (*DocumentDimensions) GetWidth

func (x *DocumentDimensions) GetWidth() float32

func (*DocumentDimensions) ProtoMessage

func (*DocumentDimensions) ProtoMessage()

func (*DocumentDimensions) ProtoReflect

func (x *DocumentDimensions) ProtoReflect() protoreflect.Message

func (*DocumentDimensions) Reset

func (x *DocumentDimensions) Reset()

func (*DocumentDimensions) String

func (x *DocumentDimensions) String() string

DocumentDimensions_DocumentDimensionUnit

type DocumentDimensions_DocumentDimensionUnit int32

Unit of the document dimension.

DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED, DocumentDimensions_INCH, DocumentDimensions_CENTIMETER, DocumentDimensions_POINT

const (
	// Should not be used.
	DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED DocumentDimensions_DocumentDimensionUnit = 0
	// Document dimension is measured in inches.
	DocumentDimensions_INCH DocumentDimensions_DocumentDimensionUnit = 1
	// Document dimension is measured in centimeters.
	DocumentDimensions_CENTIMETER DocumentDimensions_DocumentDimensionUnit = 2
	// Document dimension is measured in points. 72 points = 1 inch.
	DocumentDimensions_POINT DocumentDimensions_DocumentDimensionUnit = 3
)

func (DocumentDimensions_DocumentDimensionUnit) Descriptor

func (DocumentDimensions_DocumentDimensionUnit) Enum

func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor

func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor() ([]byte, []int)

Deprecated: Use DocumentDimensions_DocumentDimensionUnit.Descriptor instead.

func (DocumentDimensions_DocumentDimensionUnit) Number

func (DocumentDimensions_DocumentDimensionUnit) String

func (DocumentDimensions_DocumentDimensionUnit) Type

DocumentInputConfig

type DocumentInputConfig struct {

	// The Google Cloud Storage location of the document file. Only a single path
	// should be given.
	// Max supported size: 512MB.
	// Supported extensions: .PDF.
	GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3" json:"gcs_source,omitempty"`
	// contains filtered or unexported fields
}

Input configuration of a [Document][google.cloud.automl.v1beta1.Document].

func (*DocumentInputConfig) Descriptor

func (*DocumentInputConfig) Descriptor() ([]byte, []int)

Deprecated: Use DocumentInputConfig.ProtoReflect.Descriptor instead.

func (*DocumentInputConfig) GetGcsSource

func (x *DocumentInputConfig) GetGcsSource() *GcsSource

func (*DocumentInputConfig) ProtoMessage

func (*DocumentInputConfig) ProtoMessage()

func (*DocumentInputConfig) ProtoReflect

func (x *DocumentInputConfig) ProtoReflect() protoreflect.Message

func (*DocumentInputConfig) Reset

func (x *DocumentInputConfig) Reset()

func (*DocumentInputConfig) String

func (x *DocumentInputConfig) String() string

Document_Layout

type Document_Layout struct {
	TextSegment *TextSegment `protobuf:"bytes,1,opt,name=text_segment,json=textSegment,proto3" json:"text_segment,omitempty"`

	PageNumber int32 `protobuf:"varint,2,opt,name=page_number,json=pageNumber,proto3" json:"page_number,omitempty"`

	BoundingPoly *BoundingPoly `protobuf:"bytes,3,opt,name=bounding_poly,json=boundingPoly,proto3" json:"bounding_poly,omitempty"`

	TextSegmentType Document_Layout_TextSegmentType "" /* 174 byte string literal not displayed */

}

Describes the layout information of a [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the document.

func (*Document_Layout) Descriptor

func (*Document_Layout) Descriptor() ([]byte, []int)

Deprecated: Use Document_Layout.ProtoReflect.Descriptor instead.

func (*Document_Layout) GetBoundingPoly

func (x *Document_Layout) GetBoundingPoly() *BoundingPoly

func (*Document_Layout) GetPageNumber

func (x *Document_Layout) GetPageNumber() int32

func (*Document_Layout) GetTextSegment

func (x *Document_Layout) GetTextSegment() *TextSegment

func (*Document_Layout) GetTextSegmentType

func (x *Document_Layout) GetTextSegmentType() Document_Layout_TextSegmentType

func (*Document_Layout) ProtoMessage

func (*Document_Layout) ProtoMessage()

func (*Document_Layout) ProtoReflect

func (x *Document_Layout) ProtoReflect() protoreflect.Message

func (*Document_Layout) Reset

func (x *Document_Layout) Reset()

func (*Document_Layout) String

func (x *Document_Layout) String() string

Document_Layout_TextSegmentType

type Document_Layout_TextSegmentType int32

The type of TextSegment in the context of the original document.

Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED, Document_Layout_TOKEN, Document_Layout_PARAGRAPH, Document_Layout_FORM_FIELD, Document_Layout_FORM_FIELD_NAME, Document_Layout_FORM_FIELD_CONTENTS, Document_Layout_TABLE, Document_Layout_TABLE_HEADER, Document_Layout_TABLE_ROW, Document_Layout_TABLE_CELL

const (
	// Should not be used.
	Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED Document_Layout_TextSegmentType = 0
	// The text segment is a token. e.g. word.
	Document_Layout_TOKEN Document_Layout_TextSegmentType = 1
	// The text segment is a paragraph.
	Document_Layout_PARAGRAPH Document_Layout_TextSegmentType = 2
	// The text segment is a form field.
	Document_Layout_FORM_FIELD Document_Layout_TextSegmentType = 3
	// The text segment is the name part of a form field. It will be treated
	// as child of another FORM_FIELD TextSegment if its span is subspan of
	// another TextSegment with type FORM_FIELD.
	Document_Layout_FORM_FIELD_NAME Document_Layout_TextSegmentType = 4
	// The text segment is the text content part of a form field. It will be
	// treated as child of another FORM_FIELD TextSegment if its span is
	// subspan of another TextSegment with type FORM_FIELD.
	Document_Layout_FORM_FIELD_CONTENTS Document_Layout_TextSegmentType = 5
	// The text segment is a whole table, including headers, and all rows.
	Document_Layout_TABLE Document_Layout_TextSegmentType = 6
	// The text segment is a table's headers. It will be treated as child of
	// another TABLE TextSegment if its span is subspan of another TextSegment
	// with type TABLE.
	Document_Layout_TABLE_HEADER Document_Layout_TextSegmentType = 7
	// The text segment is a row in table. It will be treated as child of
	// another TABLE TextSegment if its span is subspan of another TextSegment
	// with type TABLE.
	Document_Layout_TABLE_ROW Document_Layout_TextSegmentType = 8
	// The text segment is a cell in table. It will be treated as child of
	// another TABLE_ROW TextSegment if its span is subspan of another
	// TextSegment with type TABLE_ROW.
	Document_Layout_TABLE_CELL Document_Layout_TextSegmentType = 9
)

func (Document_Layout_TextSegmentType) Descriptor

func (Document_Layout_TextSegmentType) Enum

func (Document_Layout_TextSegmentType) EnumDescriptor

func (Document_Layout_TextSegmentType) EnumDescriptor() ([]byte, []int)

Deprecated: Use Document_Layout_TextSegmentType.Descriptor instead.

func (Document_Layout_TextSegmentType) Number

func (Document_Layout_TextSegmentType) String

func (Document_Layout_TextSegmentType) Type

DoubleRange

type DoubleRange struct {

	// Start of the range, inclusive.
	Start float64 `protobuf:"fixed64,1,opt,name=start,proto3" json:"start,omitempty"`
	// End of the range, exclusive.
	End float64 `protobuf:"fixed64,2,opt,name=end,proto3" json:"end,omitempty"`
	// contains filtered or unexported fields
}

A range between two double numbers.

func (*DoubleRange) Descriptor

func (*DoubleRange) Descriptor() ([]byte, []int)

Deprecated: Use DoubleRange.ProtoReflect.Descriptor instead.

func (*DoubleRange) GetEnd

func (x *DoubleRange) GetEnd() float64

func (*DoubleRange) GetStart

func (x *DoubleRange) GetStart() float64

func (*DoubleRange) ProtoMessage

func (*DoubleRange) ProtoMessage()

func (*DoubleRange) ProtoReflect

func (x *DoubleRange) ProtoReflect() protoreflect.Message

func (*DoubleRange) Reset

func (x *DoubleRange) Reset()

func (*DoubleRange) String

func (x *DoubleRange) String() string

ExamplePayload

type ExamplePayload struct {

	// Required. Input only. The example data.
	//
	// Types that are assignable to Payload:
	//	*ExamplePayload_Image
	//	*ExamplePayload_TextSnippet
	//	*ExamplePayload_Document
	//	*ExamplePayload_Row
	Payload isExamplePayload_Payload `protobuf_oneof:"payload"`
	// contains filtered or unexported fields
}

Example data used for training or prediction.

func (*ExamplePayload) Descriptor

func (*ExamplePayload) Descriptor() ([]byte, []int)

Deprecated: Use ExamplePayload.ProtoReflect.Descriptor instead.

func (*ExamplePayload) GetDocument

func (x *ExamplePayload) GetDocument() *Document

func (*ExamplePayload) GetImage

func (x *ExamplePayload) GetImage() *Image

func (*ExamplePayload) GetPayload

func (m *ExamplePayload) GetPayload() isExamplePayload_Payload

func (*ExamplePayload) GetRow

func (x *ExamplePayload) GetRow() *Row

func (*ExamplePayload) GetTextSnippet

func (x *ExamplePayload) GetTextSnippet() *TextSnippet

func (*ExamplePayload) ProtoMessage

func (*ExamplePayload) ProtoMessage()

func (*ExamplePayload) ProtoReflect

func (x *ExamplePayload) ProtoReflect() protoreflect.Message

func (*ExamplePayload) Reset

func (x *ExamplePayload) Reset()

func (*ExamplePayload) String

func (x *ExamplePayload) String() string

ExamplePayload_Document

type ExamplePayload_Document struct {
	// Example document.
	Document *Document `protobuf:"bytes,4,opt,name=document,proto3,oneof"`
}

ExamplePayload_Image

type ExamplePayload_Image struct {
	// Example image.
	Image *Image `protobuf:"bytes,1,opt,name=image,proto3,oneof"`
}

ExamplePayload_Row

type ExamplePayload_Row struct {
	// Example relational table row.
	Row *Row `protobuf:"bytes,3,opt,name=row,proto3,oneof"`
}

ExamplePayload_TextSnippet

type ExamplePayload_TextSnippet struct {
	// Example text.
	TextSnippet *TextSnippet `protobuf:"bytes,2,opt,name=text_snippet,json=textSnippet,proto3,oneof"`
}

ExportDataOperationMetadata

type ExportDataOperationMetadata struct {

	// Output only. Information further describing this export data's output.
	OutputInfo *ExportDataOperationMetadata_ExportDataOutputInfo `protobuf:"bytes,1,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
	// contains filtered or unexported fields
}

Details of ExportData operation.

func (*ExportDataOperationMetadata) Descriptor

func (*ExportDataOperationMetadata) Descriptor() ([]byte, []int)

Deprecated: Use ExportDataOperationMetadata.ProtoReflect.Descriptor instead.

func (*ExportDataOperationMetadata) GetOutputInfo

func (*ExportDataOperationMetadata) ProtoMessage

func (*ExportDataOperationMetadata) ProtoMessage()

func (*ExportDataOperationMetadata) ProtoReflect

func (*ExportDataOperationMetadata) Reset

func (x *ExportDataOperationMetadata) Reset()

func (*ExportDataOperationMetadata) String

func (x *ExportDataOperationMetadata) String()