Variables
ClassificationType_name, ClassificationType_value
var (
ClassificationType_name = map[int32]string{
0: "CLASSIFICATION_TYPE_UNSPECIFIED",
1: "MULTICLASS",
2: "MULTILABEL",
}
ClassificationType_value = map[string]int32{
"CLASSIFICATION_TYPE_UNSPECIFIED": 0,
"MULTICLASS": 1,
"MULTILABEL": 2,
}
)
Enum value maps for ClassificationType.
DocumentDimensions_DocumentDimensionUnit_name, DocumentDimensions_DocumentDimensionUnit_value
var (
DocumentDimensions_DocumentDimensionUnit_name = map[int32]string{
0: "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED",
1: "INCH",
2: "CENTIMETER",
3: "POINT",
}
DocumentDimensions_DocumentDimensionUnit_value = map[string]int32{
"DOCUMENT_DIMENSION_UNIT_UNSPECIFIED": 0,
"INCH": 1,
"CENTIMETER": 2,
"POINT": 3,
}
)
Enum value maps for DocumentDimensions_DocumentDimensionUnit.
Document_Layout_TextSegmentType_name, Document_Layout_TextSegmentType_value
var (
Document_Layout_TextSegmentType_name = map[int32]string{
0: "TEXT_SEGMENT_TYPE_UNSPECIFIED",
1: "TOKEN",
2: "PARAGRAPH",
3: "FORM_FIELD",
4: "FORM_FIELD_NAME",
5: "FORM_FIELD_CONTENTS",
6: "TABLE",
7: "TABLE_HEADER",
8: "TABLE_ROW",
9: "TABLE_CELL",
}
Document_Layout_TextSegmentType_value = map[string]int32{
"TEXT_SEGMENT_TYPE_UNSPECIFIED": 0,
"TOKEN": 1,
"PARAGRAPH": 2,
"FORM_FIELD": 3,
"FORM_FIELD_NAME": 4,
"FORM_FIELD_CONTENTS": 5,
"TABLE": 6,
"TABLE_HEADER": 7,
"TABLE_ROW": 8,
"TABLE_CELL": 9,
}
)
Enum value maps for Document_Layout_TextSegmentType.
TypeCode_name, TypeCode_value
var (
TypeCode_name = map[int32]string{
0: "TYPE_CODE_UNSPECIFIED",
3: "FLOAT64",
4: "TIMESTAMP",
6: "STRING",
8: "ARRAY",
9: "STRUCT",
10: "CATEGORY",
}
TypeCode_value = map[string]int32{
"TYPE_CODE_UNSPECIFIED": 0,
"FLOAT64": 3,
"TIMESTAMP": 4,
"STRING": 6,
"ARRAY": 8,
"STRUCT": 9,
"CATEGORY": 10,
}
)
Enum value maps for TypeCode.
Model_DeploymentState_name, Model_DeploymentState_value
var (
Model_DeploymentState_name = map[int32]string{
0: "DEPLOYMENT_STATE_UNSPECIFIED",
1: "DEPLOYED",
2: "UNDEPLOYED",
}
Model_DeploymentState_value = map[string]int32{
"DEPLOYMENT_STATE_UNSPECIFIED": 0,
"DEPLOYED": 1,
"UNDEPLOYED": 2,
}
)
Enum value maps for Model_DeploymentState.
File_google_cloud_automl_v1beta1_annotation_payload_proto
var File_google_cloud_automl_v1beta1_annotation_payload_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_annotation_spec_proto
var File_google_cloud_automl_v1beta1_annotation_spec_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_classification_proto
var File_google_cloud_automl_v1beta1_classification_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_column_spec_proto
var File_google_cloud_automl_v1beta1_column_spec_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_data_items_proto
var File_google_cloud_automl_v1beta1_data_items_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_data_stats_proto
var File_google_cloud_automl_v1beta1_data_stats_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_data_types_proto
var File_google_cloud_automl_v1beta1_data_types_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_dataset_proto
var File_google_cloud_automl_v1beta1_dataset_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_detection_proto
var File_google_cloud_automl_v1beta1_detection_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_geometry_proto
var File_google_cloud_automl_v1beta1_geometry_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_image_proto
var File_google_cloud_automl_v1beta1_image_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_io_proto
var File_google_cloud_automl_v1beta1_io_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_model_evaluation_proto
var File_google_cloud_automl_v1beta1_model_evaluation_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_model_proto
var File_google_cloud_automl_v1beta1_model_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_operations_proto
var File_google_cloud_automl_v1beta1_operations_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_prediction_service_proto
var File_google_cloud_automl_v1beta1_prediction_service_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_ranges_proto
var File_google_cloud_automl_v1beta1_ranges_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_regression_proto
var File_google_cloud_automl_v1beta1_regression_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_service_proto
var File_google_cloud_automl_v1beta1_service_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_table_spec_proto
var File_google_cloud_automl_v1beta1_table_spec_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_tables_proto
var File_google_cloud_automl_v1beta1_tables_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_temporal_proto
var File_google_cloud_automl_v1beta1_temporal_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_text_extraction_proto
var File_google_cloud_automl_v1beta1_text_extraction_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_text_proto
var File_google_cloud_automl_v1beta1_text_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_text_segment_proto
var File_google_cloud_automl_v1beta1_text_segment_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_text_sentiment_proto
var File_google_cloud_automl_v1beta1_text_sentiment_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_translation_proto
var File_google_cloud_automl_v1beta1_translation_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1beta1_video_proto
var File_google_cloud_automl_v1beta1_video_proto protoreflect.FileDescriptor
Functions
func RegisterAutoMlServer
func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)
func RegisterPredictionServiceServer
func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
AnnotationPayload
type AnnotationPayload struct {
// Output only . Additional information about the annotation
// specific to the AutoML domain.
//
// Types that are assignable to Detail:
// *AnnotationPayload_Translation
// *AnnotationPayload_Classification
// *AnnotationPayload_ImageObjectDetection
// *AnnotationPayload_VideoClassification
// *AnnotationPayload_VideoObjectTracking
// *AnnotationPayload_TextExtraction
// *AnnotationPayload_TextSentiment
// *AnnotationPayload_Tables
Detail isAnnotationPayload_Detail `protobuf_oneof:"detail"`
// Output only . The resource ID of the annotation spec that
// this annotation pertains to. The annotation spec comes from either an
// ancestor dataset, or the dataset that was used to train the model in use.
AnnotationSpecId string `protobuf:"bytes,1,opt,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
// Output only. The value of
// [display_name][google.cloud.automl.v1beta1.AnnotationSpec.display_name]
// when the model was trained. Because this field returns a value at model
// training time, for different models trained using the same dataset, the
// returned value could be different as model owner could update the
// `display_name` between any two model training.
DisplayName string `protobuf:"bytes,5,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
// contains filtered or unexported fields
}
Contains annotation information that is relevant to AutoML.
func (*AnnotationPayload) Descriptor
func (*AnnotationPayload) Descriptor() ([]byte, []int)
Deprecated: Use AnnotationPayload.ProtoReflect.Descriptor instead.
func (*AnnotationPayload) GetAnnotationSpecId
func (x *AnnotationPayload) GetAnnotationSpecId() string
func (*AnnotationPayload) GetClassification
func (x *AnnotationPayload) GetClassification() *ClassificationAnnotation
func (*AnnotationPayload) GetDetail
func (m *AnnotationPayload) GetDetail() isAnnotationPayload_Detail
func (*AnnotationPayload) GetDisplayName
func (x *AnnotationPayload) GetDisplayName() string
func (*AnnotationPayload) GetImageObjectDetection
func (x *AnnotationPayload) GetImageObjectDetection() *ImageObjectDetectionAnnotation
func (*AnnotationPayload) GetTables
func (x *AnnotationPayload) GetTables() *TablesAnnotation
func (*AnnotationPayload) GetTextExtraction
func (x *AnnotationPayload) GetTextExtraction() *TextExtractionAnnotation
func (*AnnotationPayload) GetTextSentiment
func (x *AnnotationPayload) GetTextSentiment() *TextSentimentAnnotation
func (*AnnotationPayload) GetTranslation
func (x *AnnotationPayload) GetTranslation() *TranslationAnnotation
func (*AnnotationPayload) GetVideoClassification
func (x *AnnotationPayload) GetVideoClassification() *VideoClassificationAnnotation
func (*AnnotationPayload) GetVideoObjectTracking
func (x *AnnotationPayload) GetVideoObjectTracking() *VideoObjectTrackingAnnotation
func (*AnnotationPayload) ProtoMessage
func (*AnnotationPayload) ProtoMessage()
func (*AnnotationPayload) ProtoReflect
func (x *AnnotationPayload) ProtoReflect() protoreflect.Message
func (*AnnotationPayload) Reset
func (x *AnnotationPayload) Reset()
func (*AnnotationPayload) String
func (x *AnnotationPayload) String() string
AnnotationPayload_Classification
type AnnotationPayload_Classification struct {
// Annotation details for content or image classification.
Classification *ClassificationAnnotation `protobuf:"bytes,3,opt,name=classification,proto3,oneof"`
}
AnnotationPayload_ImageObjectDetection
type AnnotationPayload_ImageObjectDetection struct {
// Annotation details for image object detection.
ImageObjectDetection *ImageObjectDetectionAnnotation `protobuf:"bytes,4,opt,name=image_object_detection,json=imageObjectDetection,proto3,oneof"`
}
AnnotationPayload_Tables
type AnnotationPayload_Tables struct {
// Annotation details for Tables.
Tables *TablesAnnotation `protobuf:"bytes,10,opt,name=tables,proto3,oneof"`
}
AnnotationPayload_TextExtraction
type AnnotationPayload_TextExtraction struct {
// Annotation details for text extraction.
TextExtraction *TextExtractionAnnotation `protobuf:"bytes,6,opt,name=text_extraction,json=textExtraction,proto3,oneof"`
}
AnnotationPayload_TextSentiment
type AnnotationPayload_TextSentiment struct {
// Annotation details for text sentiment.
TextSentiment *TextSentimentAnnotation `protobuf:"bytes,7,opt,name=text_sentiment,json=textSentiment,proto3,oneof"`
}
AnnotationPayload_Translation
type AnnotationPayload_Translation struct {
// Annotation details for translation.
Translation *TranslationAnnotation `protobuf:"bytes,2,opt,name=translation,proto3,oneof"`
}
AnnotationPayload_VideoClassification
type AnnotationPayload_VideoClassification struct {
// Annotation details for video classification.
// Returned for Video Classification predictions.
VideoClassification *VideoClassificationAnnotation `protobuf:"bytes,9,opt,name=video_classification,json=videoClassification,proto3,oneof"`
}
AnnotationPayload_VideoObjectTracking
type AnnotationPayload_VideoObjectTracking struct {
// Annotation details for video object tracking.
VideoObjectTracking *VideoObjectTrackingAnnotation `protobuf:"bytes,8,opt,name=video_object_tracking,json=videoObjectTracking,proto3,oneof"`
}
AnnotationSpec
type AnnotationSpec struct {
// Output only. Resource name of the annotation spec.
// Form:
//
// 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}'
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// Required. The name of the annotation spec to show in the interface. The name can be
// up to 32 characters long and must match the regexp `[a-zA-Z0-9_]+`.
DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
// Output only. The number of examples in the parent dataset
// labeled by the annotation spec.
ExampleCount int32 `protobuf:"varint,9,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
// contains filtered or unexported fields
}
A definition of an annotation spec.
func (*AnnotationSpec) Descriptor
func (*AnnotationSpec) Descriptor() ([]byte, []int)
Deprecated: Use AnnotationSpec.ProtoReflect.Descriptor instead.
func (*AnnotationSpec) GetDisplayName
func (x *AnnotationSpec) GetDisplayName() string
func (*AnnotationSpec) GetExampleCount
func (x *AnnotationSpec) GetExampleCount() int32
func (*AnnotationSpec) GetName
func (x *AnnotationSpec) GetName() string
func (*AnnotationSpec) ProtoMessage
func (*AnnotationSpec) ProtoMessage()
func (*AnnotationSpec) ProtoReflect
func (x *AnnotationSpec) ProtoReflect() protoreflect.Message
func (*AnnotationSpec) Reset
func (x *AnnotationSpec) Reset()
func (*AnnotationSpec) String
func (x *AnnotationSpec) String() string
ArrayStats
type ArrayStats struct {
// Stats of all the values of all arrays, as if they were a single long
// series of data. The type depends on the element type of the array.
MemberStats *DataStats `protobuf:"bytes,2,opt,name=member_stats,json=memberStats,proto3" json:"member_stats,omitempty"`
// contains filtered or unexported fields
}
The data statistics of a series of ARRAY values.
func (*ArrayStats) Descriptor
func (*ArrayStats) Descriptor() ([]byte, []int)
Deprecated: Use ArrayStats.ProtoReflect.Descriptor instead.
func (*ArrayStats) GetMemberStats
func (x *ArrayStats) GetMemberStats() *DataStats
func (*ArrayStats) ProtoMessage
func (*ArrayStats) ProtoMessage()
func (*ArrayStats) ProtoReflect
func (x *ArrayStats) ProtoReflect() protoreflect.Message
func (*ArrayStats) Reset
func (x *ArrayStats) Reset()
func (*ArrayStats) String
func (x *ArrayStats) String() string
AutoMlClient
type AutoMlClient interface {
// Creates a dataset.
CreateDataset(ctx context.Context, in *CreateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
// Gets a dataset.
GetDataset(ctx context.Context, in *GetDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
// Lists datasets in a project.
ListDatasets(ctx context.Context, in *ListDatasetsRequest, opts ...grpc.CallOption) (*ListDatasetsResponse, error)
// Updates a dataset.
UpdateDataset(ctx context.Context, in *UpdateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
// Deletes a dataset and all of its contents.
// Returns empty response in the
// [response][google.longrunning.Operation.response] field when it completes,
// and `delete_details` in the
// [metadata][google.longrunning.Operation.metadata] field.
DeleteDataset(ctx context.Context, in *DeleteDatasetRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Imports data into a dataset.
// For Tables this method can only be called on an empty Dataset.
//
// For Tables:
// * A
// [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params]
// parameter must be explicitly set.
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ImportData(ctx context.Context, in *ImportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Exports dataset's data to the provided output location.
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportData(ctx context.Context, in *ExportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Gets an annotation spec.
GetAnnotationSpec(ctx context.Context, in *GetAnnotationSpecRequest, opts ...grpc.CallOption) (*AnnotationSpec, error)
// Gets a table spec.
GetTableSpec(ctx context.Context, in *GetTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error)
// Lists table specs in a dataset.
ListTableSpecs(ctx context.Context, in *ListTableSpecsRequest, opts ...grpc.CallOption) (*ListTableSpecsResponse, error)
// Updates a table spec.
UpdateTableSpec(ctx context.Context, in *UpdateTableSpecRequest, opts ...grpc.CallOption) (*TableSpec, error)
// Gets a column spec.
GetColumnSpec(ctx context.Context, in *GetColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error)
// Lists column specs in a table spec.
ListColumnSpecs(ctx context.Context, in *ListColumnSpecsRequest, opts ...grpc.CallOption) (*ListColumnSpecsResponse, error)
// Updates a column spec.
UpdateColumnSpec(ctx context.Context, in *UpdateColumnSpecRequest, opts ...grpc.CallOption) (*ColumnSpec, error)
// Creates a model.
// Returns a Model in the [response][google.longrunning.Operation.response]
// field when it completes.
// When you create a model, several model evaluations are created for it:
// a global evaluation, and one evaluation for each annotation spec.
CreateModel(ctx context.Context, in *CreateModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Gets a model.
GetModel(ctx context.Context, in *GetModelRequest, opts ...grpc.CallOption) (*Model, error)
// Lists models.
ListModels(ctx context.Context, in *ListModelsRequest, opts ...grpc.CallOption) (*ListModelsResponse, error)
// Deletes a model.
// Returns `google.protobuf.Empty` in the
// [response][google.longrunning.Operation.response] field when it completes,
// and `delete_details` in the
// [metadata][google.longrunning.Operation.metadata] field.
DeleteModel(ctx context.Context, in *DeleteModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Deploys a model. If a model is already deployed, deploying it with the
// same parameters has no effect. Deploying with different parametrs
// (as e.g. changing
//
// [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number])
// will reset the deployment state without pausing the model's availability.
//
// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
// deployment automatically.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
DeployModel(ctx context.Context, in *DeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Undeploys a model. If the model is not deployed this method has no effect.
//
// Only applicable for Text Classification, Image Object Detection and Tables;
// all other domains manage deployment automatically.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
UndeployModel(ctx context.Context, in *UndeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Exports a trained, "export-able", model to a user specified Google Cloud
// Storage location. A model is considered export-able if and only if it has
// an export format defined for it in
//
// [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig].
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportModel(ctx context.Context, in *ExportModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Exports examples on which the model was evaluated (i.e. which were in the
// TEST set of the dataset the model was created from), together with their
// ground truth annotations and the annotations created (predicted) by the
// model.
// The examples, ground truth and predictions are exported in the state
// they were at the moment the model was evaluated.
//
// This export is available only for 30 days since the model evaluation is
// created.
//
// Currently only available for Tables.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportEvaluatedExamples(ctx context.Context, in *ExportEvaluatedExamplesRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Gets a model evaluation.
GetModelEvaluation(ctx context.Context, in *GetModelEvaluationRequest, opts ...grpc.CallOption) (*ModelEvaluation, error)
// Lists model evaluations.
ListModelEvaluations(ctx context.Context, in *ListModelEvaluationsRequest, opts ...grpc.CallOption) (*ListModelEvaluationsResponse, error)
}
AutoMlClient is the client API for AutoMl service.
For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
func NewAutoMlClient
func NewAutoMlClient(cc grpc.ClientConnInterface) AutoMlClient
AutoMlServer
type AutoMlServer interface {
// Creates a dataset.
CreateDataset(context.Context, *CreateDatasetRequest) (*Dataset, error)
// Gets a dataset.
GetDataset(context.Context, *GetDatasetRequest) (*Dataset, error)
// Lists datasets in a project.
ListDatasets(context.Context, *ListDatasetsRequest) (*ListDatasetsResponse, error)
// Updates a dataset.
UpdateDataset(context.Context, *UpdateDatasetRequest) (*Dataset, error)
// Deletes a dataset and all of its contents.
// Returns empty response in the
// [response][google.longrunning.Operation.response] field when it completes,
// and `delete_details` in the
// [metadata][google.longrunning.Operation.metadata] field.
DeleteDataset(context.Context, *DeleteDatasetRequest) (*longrunningpb.Operation, error)
// Imports data into a dataset.
// For Tables this method can only be called on an empty Dataset.
//
// For Tables:
// * A
// [schema_inference_version][google.cloud.automl.v1beta1.InputConfig.params]
// parameter must be explicitly set.
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ImportData(context.Context, *ImportDataRequest) (*longrunningpb.Operation, error)
// Exports dataset's data to the provided output location.
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportData(context.Context, *ExportDataRequest) (*longrunningpb.Operation, error)
// Gets an annotation spec.
GetAnnotationSpec(context.Context, *GetAnnotationSpecRequest) (*AnnotationSpec, error)
// Gets a table spec.
GetTableSpec(context.Context, *GetTableSpecRequest) (*TableSpec, error)
// Lists table specs in a dataset.
ListTableSpecs(context.Context, *ListTableSpecsRequest) (*ListTableSpecsResponse, error)
// Updates a table spec.
UpdateTableSpec(context.Context, *UpdateTableSpecRequest) (*TableSpec, error)
// Gets a column spec.
GetColumnSpec(context.Context, *GetColumnSpecRequest) (*ColumnSpec, error)
// Lists column specs in a table spec.
ListColumnSpecs(context.Context, *ListColumnSpecsRequest) (*ListColumnSpecsResponse, error)
// Updates a column spec.
UpdateColumnSpec(context.Context, *UpdateColumnSpecRequest) (*ColumnSpec, error)
// Creates a model.
// Returns a Model in the [response][google.longrunning.Operation.response]
// field when it completes.
// When you create a model, several model evaluations are created for it:
// a global evaluation, and one evaluation for each annotation spec.
CreateModel(context.Context, *CreateModelRequest) (*longrunningpb.Operation, error)
// Gets a model.
GetModel(context.Context, *GetModelRequest) (*Model, error)
// Lists models.
ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error)
// Deletes a model.
// Returns `google.protobuf.Empty` in the
// [response][google.longrunning.Operation.response] field when it completes,
// and `delete_details` in the
// [metadata][google.longrunning.Operation.metadata] field.
DeleteModel(context.Context, *DeleteModelRequest) (*longrunningpb.Operation, error)
// Deploys a model. If a model is already deployed, deploying it with the
// same parameters has no effect. Deploying with different parametrs
// (as e.g. changing
//
// [node_number][google.cloud.automl.v1beta1.ImageObjectDetectionModelDeploymentMetadata.node_number])
// will reset the deployment state without pausing the model's availability.
//
// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
// deployment automatically.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
DeployModel(context.Context, *DeployModelRequest) (*longrunningpb.Operation, error)
// Undeploys a model. If the model is not deployed this method has no effect.
//
// Only applicable for Text Classification, Image Object Detection and Tables;
// all other domains manage deployment automatically.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
UndeployModel(context.Context, *UndeployModelRequest) (*longrunningpb.Operation, error)
// Exports a trained, "export-able", model to a user specified Google Cloud
// Storage location. A model is considered export-able if and only if it has
// an export format defined for it in
//
// [ModelExportOutputConfig][google.cloud.automl.v1beta1.ModelExportOutputConfig].
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportModel(context.Context, *ExportModelRequest) (*longrunningpb.Operation, error)
// Exports examples on which the model was evaluated (i.e. which were in the
// TEST set of the dataset the model was created from), together with their
// ground truth annotations and the annotations created (predicted) by the
// model.
// The examples, ground truth and predictions are exported in the state
// they were at the moment the model was evaluated.
//
// This export is available only for 30 days since the model evaluation is
// created.
//
// Currently only available for Tables.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportEvaluatedExamples(context.Context, *ExportEvaluatedExamplesRequest) (*longrunningpb.Operation, error)
// Gets a model evaluation.
GetModelEvaluation(context.Context, *GetModelEvaluationRequest) (*ModelEvaluation, error)
// Lists model evaluations.
ListModelEvaluations(context.Context, *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error)
}
AutoMlServer is the server API for AutoMl service.
BatchPredictInputConfig
type BatchPredictInputConfig struct {
// Required. The source of the input.
//
// Types that are assignable to Source:
// *BatchPredictInputConfig_GcsSource
// *BatchPredictInputConfig_BigquerySource
Source isBatchPredictInputConfig_Source `protobuf_oneof:"source"`
// contains filtered or unexported fields
}
Input configuration for BatchPredict Action.
The format of input depends on the ML problem of the model used for prediction. As input source the [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] is expected, unless specified otherwise.
The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:
For Image Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png
For Image Object Detection: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png
For Video Classification: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf
For Video Object Tracking: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,240 gs://folder/video1.mp4,300,360 gs://folder/vid2.mov,0,inf
For Text Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 60,000 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf
For Text Sentiment: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 500 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf
For Text Extraction .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or as documents (for a single BatchPredict call only one of the these formats may be used). The in-line .JSONL file(s) contain per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in json representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. The document .JSONL file(s) contain, per line, a proto that wraps a Document proto with input_config set. Only PDF documents are supported now, and each document must be up to 2MB large. Any given .JSONL file must be 100MB or smaller, and no more than 20 files may be given. Sample in-line JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "An elaborate content", "mime_type": "text/plain" } } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }
For Tables: Either [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
[bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source].
GCS case:
CSV file(s), each by itself 10GB or smaller and total size must be
100GB or smaller, where first file must have a header containing
column names. If the first row of a subsequent file is the same as
the header, then it is also treated as a header. All other rows
contain values for the corresponding columns.
The column names must contain the model's
[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
(order doesn't matter). The columns corresponding to the model's
input feature column specs must contain values compatible with the
column spec's data types. Prediction on all the rows, i.e. the CSV
lines, will be attempted. For FORECASTING
[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
all columns having
[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
type will be ignored.
First three sample rows of a CSV file:
"First Name","Last Name","Dob","Addresses"
"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
BigQuery case:
An URI of a BigQuery table. The user data size of the BigQuery
table must be 100GB or smaller.
The column names must contain the model's
[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
(order doesn't matter). The columns corresponding to the model's
input feature column specs must contain values compatible with the
column spec's data types. Prediction on all the rows of the table
will be attempted. For FORECASTING
[prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
all columns having
[TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
type will be ignored.
Definitions:
GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi".
TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
double quotes ("")
TIME_SEGMENT_START = TIME_OFFSET
Expresses a beginning, inclusive, of a time segment
within an
example that has a time dimension (e.g. video).
TIME_SEGMENT_END = TIME_OFFSET
Expresses an end, exclusive, of a time segment within
an example that has a time dimension (e.g. video).
TIME_OFFSET = A number of seconds as measured from the start of an
example (e.g. video). Fractions are allowed, up to a
microsecond precision. "inf" is allowed and it means the end
of the example.
Errors:
If any of the provided CSV files can't be parsed or if more than certain
percent of CSV rows cannot be processed then the operation fails and
prediction does not happen. Regardless of overall success or failure the
per-row failures, up to a certain count cap, will be listed in
Operation.metadata.partial_failures.
func (*BatchPredictInputConfig) Descriptor
func (*BatchPredictInputConfig) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictInputConfig.ProtoReflect.Descriptor instead.
func (*BatchPredictInputConfig) GetBigquerySource
func (x *BatchPredictInputConfig) GetBigquerySource() *BigQuerySource
func (*BatchPredictInputConfig) GetGcsSource
func (x *BatchPredictInputConfig) GetGcsSource() *GcsSource
func (*BatchPredictInputConfig) GetSource
func (m *BatchPredictInputConfig) GetSource() isBatchPredictInputConfig_Source
func (*BatchPredictInputConfig) ProtoMessage
func (*BatchPredictInputConfig) ProtoMessage()
func (*BatchPredictInputConfig) ProtoReflect
func (x *BatchPredictInputConfig) ProtoReflect() protoreflect.Message
func (*BatchPredictInputConfig) Reset
func (x *BatchPredictInputConfig) Reset()
func (*BatchPredictInputConfig) String
func (x *BatchPredictInputConfig) String() string
BatchPredictInputConfig_BigquerySource
type BatchPredictInputConfig_BigquerySource struct {
// The BigQuery location for the input content.
BigquerySource *BigQuerySource `protobuf:"bytes,2,opt,name=bigquery_source,json=bigquerySource,proto3,oneof"`
}
BatchPredictInputConfig_GcsSource
type BatchPredictInputConfig_GcsSource struct {
// The Google Cloud Storage location for the input content.
GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3,oneof"`
}
BatchPredictOperationMetadata
type BatchPredictOperationMetadata struct {
// Output only. The input config that was given upon starting this
// batch predict operation.
InputConfig *BatchPredictInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
// Output only. Information further describing this batch predict's output.
OutputInfo *BatchPredictOperationMetadata_BatchPredictOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
// contains filtered or unexported fields
}
Details of BatchPredict operation.
func (*BatchPredictOperationMetadata) Descriptor
func (*BatchPredictOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOperationMetadata.ProtoReflect.Descriptor instead.
func (*BatchPredictOperationMetadata) GetInputConfig
func (x *BatchPredictOperationMetadata) GetInputConfig() *BatchPredictInputConfig
func (*BatchPredictOperationMetadata) GetOutputInfo
func (x *BatchPredictOperationMetadata) GetOutputInfo() *BatchPredictOperationMetadata_BatchPredictOutputInfo
func (*BatchPredictOperationMetadata) ProtoMessage
func (*BatchPredictOperationMetadata) ProtoMessage()
func (*BatchPredictOperationMetadata) ProtoReflect
func (x *BatchPredictOperationMetadata) ProtoReflect() protoreflect.Message
func (*BatchPredictOperationMetadata) Reset
func (x *BatchPredictOperationMetadata) Reset()
func (*BatchPredictOperationMetadata) String
func (x *BatchPredictOperationMetadata) String() string
BatchPredictOperationMetadata_BatchPredictOutputInfo
type BatchPredictOperationMetadata_BatchPredictOutputInfo struct {
// The output location into which prediction output is written.
//
// Types that are assignable to OutputLocation:
// *BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
// *BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset
OutputLocation isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation `protobuf_oneof:"output_location"`
// contains filtered or unexported fields
}
Further describes this batch predict's output. Supplements
[BatchPredictOutputConfig][google.cloud.automl.v1beta1.BatchPredictOutputConfig].
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOperationMetadata_BatchPredictOutputInfo.ProtoReflect.Descriptor instead.
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetBigqueryOutputDataset() string
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory() string
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation() isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect() protoreflect.Message
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) String
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) String() string
BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset
type BatchPredictOperationMetadata_BatchPredictOutputInfo_BigqueryOutputDataset struct {
// The path of the BigQuery dataset created, in bq://projectId.bqDatasetId
// format, into which the prediction output is written.
BigqueryOutputDataset string `protobuf:"bytes,2,opt,name=bigquery_output_dataset,json=bigqueryOutputDataset,proto3,oneof"`
}
BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory struct {
// The full path of the Google Cloud Storage directory created, into which
// the prediction output is written.
GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"`
}
BatchPredictOutputConfig
type BatchPredictOutputConfig struct {
// Required. The destination of the output.
//
// Types that are assignable to Destination:
// *BatchPredictOutputConfig_GcsDestination
// *BatchPredictOutputConfig_BigqueryDestination
Destination isBatchPredictOutputConfig_Destination `protobuf_oneof:"destination"`
// contains filtered or unexported fields
}
Output configuration for BatchPredict Action.
As destination the
[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination] must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction-
- For Image Classification:
In the created directory files
image_classification_1.jsonl
,image_classification_2.jsonl
,...,image_classification_N.jsonl
will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additionalerrors_1.jsonl
,errors_2.jsonl
,...,errors_N.jsonl
files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`fields.
* For Image Object Detection:
In the created directory files `image_object_detection_1.jsonl`,
`image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl`
will be created, where N may be 1, and depends on the
total number of the successfully predicted images and annotations.
Each .JSONL file will contain, per line, a JSON representation of a
proto that wraps image's "ID" : "<id_value>" followed by a list of
zero or more AnnotationPayload protos (called annotations), which
have image_object_detection detail populated. A single image will
be listed only once with all its annotations, and its annotations
will never be split across files.
If prediction for any image failed (partially or completely), then
additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
files will be created (N depends on total number of failed
predictions). These files will have a JSON representation of a proto
that wraps the same "ID" : "<id_value>" but here followed by
exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`fields.
* For Video Classification:
In the created directory a video_classification.csv file, and a .JSON
file per each video classification requested in the input (i.e. each
line in given CSV(s)), will be created.
The format of video_classification.csv is:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
where:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
the prediction input lines (i.e. video_classification.csv has
precisely the same number of lines as the prediction input had.)
JSON_FILE_NAME = Name of .JSON file in the output directory, which
contains prediction responses for the video time segment.
STATUS = "OK" if prediction completed successfully, or an error code
with message otherwise. If STATUS is not "OK" then the .JSON file
for that line may not exist or be empty.
Each .JSON file, assuming STATUS is "OK", will contain a list of
AnnotationPayload protos in JSON format, which are the predictions
for the video time segment the file is assigned to in the
video_classification.csv. All AnnotationPayload protos will have
video_classification field set, and will be sorted by
video_classification.type field (note that the returned types are
governed by `classifaction_types` parameter in
[PredictService.BatchPredictRequest.params][]).
* For Video Object Tracking:
In the created directory a video_object_tracking.csv file will be
created, and multiple files video_object_trackinng_1.json,
video_object_trackinng_2.json,..., video_object_trackinng_N.json,
where N is the number of requests in the input (i.e. the number of
lines in given CSV(s)).
The format of video_object_tracking.csv is:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
where:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
the prediction input lines (i.e. video_object_tracking.csv has
precisely the same number of lines as the prediction input had.)
JSON_FILE_NAME = Name of .JSON file in the output directory, which
contains prediction responses for the video time segment.
STATUS = "OK" if prediction completed successfully, or an error
code with message otherwise. If STATUS is not "OK" then the .JSON
file for that line may not exist or be empty.
Each .JSON file, assuming STATUS is "OK", will contain a list of
AnnotationPayload protos in JSON format, which are the predictions
for each frame of the video time segment the file is assigned to in
video_object_tracking.csv. All AnnotationPayload protos will have
video_object_tracking field set.
* For Text Classification:
In the created directory files `text_classification_1.jsonl`,
`text_classification_2.jsonl`,...,`text_classification_N.jsonl`
will be created, where N may be 1, and depends on the
total number of inputs and annotations found.
Each .JSONL file will contain, per line, a JSON representation of a
proto that wraps input text snippet or input text file and a list of
zero or more AnnotationPayload protos (called annotations), which
have classification detail populated. A single text snippet or file
will be listed only once with all its annotations, and its
annotations will never be split across files.
If prediction for any text snippet or file failed (partially or
completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
`errors_N.jsonl` files will be created (N depends on total number of
failed predictions). These files will have a JSON representation of a
proto that wraps input text snippet or input text file followed by
exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`.
* For Text Sentiment:
In the created directory files `text_sentiment_1.jsonl`,
`text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl`
will be created, where N may be 1, and depends on the
total number of inputs and annotations found.
Each .JSONL file will contain, per line, a JSON representation of a
proto that wraps input text snippet or input text file and a list of
zero or more AnnotationPayload protos (called annotations), which
have text_sentiment detail populated. A single text snippet or file
will be listed only once with all its annotations, and its
annotations will never be split across files.
If prediction for any text snippet or file failed (partially or
completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
`errors_N.jsonl` files will be created (N depends on total number of
failed predictions). These files will have a JSON representation of a
proto that wraps input text snippet or input text file followed by
exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`.
* For Text Extraction:
In the created directory files `text_extraction_1.jsonl`,
`text_extraction_2.jsonl`,...,`text_extraction_N.jsonl`
will be created, where N may be 1, and depends on the
total number of inputs and annotations found.
The contents of these .JSONL file(s) depend on whether the input
used inline text, or documents.
If input was inline, then each .JSONL file will contain, per line,
a JSON representation of a proto that wraps given in request text
snippet's "id" (if specified), followed by input text snippet,
and a list of zero or more
AnnotationPayload protos (called annotations), which have
text_extraction detail populated. A single text snippet will be
listed only once with all its annotations, and its annotations will
never be split across files.
If input used documents, then each .JSONL file will contain, per
line, a JSON representation of a proto that wraps given in request
document proto, followed by its OCR-ed representation in the form
of a text snippet, finally followed by a list of zero or more
AnnotationPayload protos (called annotations), which have
text_extraction detail populated and refer, via their indices, to
the OCR-ed text snippet. A single document (and its text snippet)
will be listed only once with all its annotations, and its
annotations will never be split across files.
If prediction for any text snippet failed (partially or completely),
then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
`errors_N.jsonl` files will be created (N depends on total number of
failed predictions). These files will have a JSON representation of a
proto that wraps either the "id" : "<id_value>" (in case of inline)
or the document proto (in case of document) but here followed by
exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only `code` and `message`.
* For Tables:
Output depends on whether
[gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
or
[bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination]
is set (either is allowed).
GCS case:
In the created directory files `tables_1.csv`, `tables_2.csv`,...,
`tables_N.csv` will be created, where N may be 1, and depends on
the total number of the successfully predicted rows.
For all CLASSIFICATION
[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
Each .csv file will contain a header, listing all columns'
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
given on input followed by M target column names in the format of
"<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target
value>_score" where M is the number of distinct target values,
i.e. number of distinct values in the target column of the table
used to train the model. Subsequent lines will contain the
respective values of successfully predicted rows, with the last,
i.e. the target, columns having the corresponding prediction
[scores][google.cloud.automl.v1beta1.TablesAnnotation.score].
For REGRESSION and FORECASTING
[prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
Each .csv file will contain a header, listing all columns'
[display_name-s][google.cloud.automl.v1beta1.display_name] given
on input followed by the predicted target column with name in the
format of
"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
Subsequent lines will contain the respective values of
successfully predicted rows, with the last, i.e. the target,
column having the predicted target value.
If prediction for any rows failed, then an additional
`errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be
created (N depends on total number of failed rows). These files
will have analogous format as `tables_*.csv`, but always with a
single target column having
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
represented as a JSON string, and containing only `code` and
`message`.
BigQuery case:
[bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
pointing to a BigQuery project must be set. In the given project a
new dataset will be created with name
`prediction_<model-display-name>_<timestamp-of-prediction-call>`
where <model-display-name> will be made
BigQuery-dataset-name compatible (e.g. most special characters will
become underscores), and timestamp will be in
YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
two tables will be created, `predictions`, and `errors`.
The `predictions` table's column names will be the input columns'
[display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
followed by the target column with name in the format of
"predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
The input feature columns will contain the respective values of
successfully predicted rows, with the target column having an
ARRAY of
[AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],
represented as STRUCT-s, containing
[TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].
The `errors` table contains rows for which the prediction has
failed, it has analogous input columns while the target column name
is in the format of
"errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
[display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>",
and as a value has
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
represented as a STRUCT, and containing only `code` and `message`.
func (*BatchPredictOutputConfig) Descriptor
func (*BatchPredictOutputConfig) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOutputConfig.ProtoReflect.Descriptor instead.
func (*BatchPredictOutputConfig) GetBigqueryDestination
func (x *BatchPredictOutputConfig) GetBigqueryDestination() *BigQueryDestination
func (*BatchPredictOutputConfig) GetDestination
func (m *BatchPredictOutputConfig) GetDestination() isBatchPredictOutputConfig_Destination
func (*BatchPredictOutputConfig) GetGcsDestination
func (x *BatchPredictOutputConfig) GetGcsDestination() *GcsDestination
func (*BatchPredictOutputConfig) ProtoMessage
func (*BatchPredictOutputConfig) ProtoMessage()
func (*BatchPredictOutputConfig) ProtoReflect
func (x *BatchPredictOutputConfig) ProtoReflect() protoreflect.Message
func (*BatchPredictOutputConfig) Reset
func (x *BatchPredictOutputConfig) Reset()
func (*BatchPredictOutputConfig) String
func (x *BatchPredictOutputConfig) String() string
BatchPredictOutputConfig_BigqueryDestination
type BatchPredictOutputConfig_BigqueryDestination struct {
// The BigQuery location where the output is to be written to.
BigqueryDestination *BigQueryDestination `protobuf:"bytes,2,opt,name=bigquery_destination,json=bigqueryDestination,proto3,oneof"`
}
BatchPredictOutputConfig_GcsDestination
type BatchPredictOutputConfig_GcsDestination struct {
// The Google Cloud Storage location of the directory where the output is to
// be written to.
GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}
BatchPredictRequest
type BatchPredictRequest struct {
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
InputConfig *BatchPredictInputConfig `protobuf:"bytes,3,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
OutputConfig *BatchPredictOutputConfig `protobuf:"bytes,4,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`
Params map[string]string "" /* 153 byte string literal not displayed */
}
Request message for [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
func (*BatchPredictRequest) Descriptor
func (*BatchPredictRequest) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictRequest.ProtoReflect.Descriptor instead.
func (*BatchPredictRequest) GetInputConfig
func (x *BatchPredictRequest) GetInputConfig() *BatchPredictInputConfig
func (*BatchPredictRequest) GetName
func (x *BatchPredictRequest) GetName() string
func (*BatchPredictRequest) GetOutputConfig
func (x *BatchPredictRequest) GetOutputConfig() *BatchPredictOutputConfig
func (*BatchPredictRequest) GetParams
func (x *BatchPredictRequest) GetParams() map[string]string
func (*BatchPredictRequest) ProtoMessage
func (*BatchPredictRequest) ProtoMessage()
func (*BatchPredictRequest) ProtoReflect
func (x *BatchPredictRequest) ProtoReflect() protoreflect.Message
func (*BatchPredictRequest) Reset
func (x *BatchPredictRequest) Reset()
func (*BatchPredictRequest) String
func (x *BatchPredictRequest) String() string
BatchPredictResult
type BatchPredictResult struct {
Metadata map[string]string "" /* 157 byte string literal not displayed */
}
Result of the Batch Predict. This message is returned in [response][google.longrunning.Operation.response] of the operation returned by the [PredictionService.BatchPredict][google.cloud.automl.v1beta1.PredictionService.BatchPredict].
func (*BatchPredictResult) Descriptor
func (*BatchPredictResult) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictResult.ProtoReflect.Descriptor instead.
func (*BatchPredictResult) GetMetadata
func (x *BatchPredictResult) GetMetadata() map[string]string
func (*BatchPredictResult) ProtoMessage
func (*BatchPredictResult) ProtoMessage()
func (*BatchPredictResult) ProtoReflect
func (x *BatchPredictResult) ProtoReflect() protoreflect.Message
func (*BatchPredictResult) Reset
func (x *BatchPredictResult) Reset()
func (*BatchPredictResult) String
func (x *BatchPredictResult) String() string
BigQueryDestination
type BigQueryDestination struct {
// Required. BigQuery URI to a project, up to 2000 characters long.
// Accepted forms:
// * BigQuery path e.g. bq://projectId
OutputUri string `protobuf:"bytes,1,opt,name=output_uri,json=outputUri,proto3" json:"output_uri,omitempty"`
// contains filtered or unexported fields
}
The BigQuery location for the output content.
func (*BigQueryDestination) Descriptor
func (*BigQueryDestination) Descriptor() ([]byte, []int)
Deprecated: Use BigQueryDestination.ProtoReflect.Descriptor instead.
func (*BigQueryDestination) GetOutputUri
func (x *BigQueryDestination) GetOutputUri() string
func (*BigQueryDestination) ProtoMessage
func (*BigQueryDestination) ProtoMessage()
func (*BigQueryDestination) ProtoReflect
func (x *BigQueryDestination) ProtoReflect() protoreflect.Message
func (*BigQueryDestination) Reset
func (x *BigQueryDestination) Reset()
func (*BigQueryDestination) String
func (x *BigQueryDestination) String() string
BigQuerySource
type BigQuerySource struct {
// Required. BigQuery URI to a table, up to 2000 characters long.
// Accepted forms:
// * BigQuery path e.g. bq://projectId.bqDatasetId.bqTableId
InputUri string `protobuf:"bytes,1,opt,name=input_uri,json=inputUri,proto3" json:"input_uri,omitempty"`
// contains filtered or unexported fields
}
The BigQuery location for the input content.
func (*BigQuerySource) Descriptor
func (*BigQuerySource) Descriptor() ([]byte, []int)
Deprecated: Use BigQuerySource.ProtoReflect.Descriptor instead.
func (*BigQuerySource) GetInputUri
func (x *BigQuerySource) GetInputUri() string
func (*BigQuerySource) ProtoMessage
func (*BigQuerySource) ProtoMessage()
func (*BigQuerySource) ProtoReflect
func (x *BigQuerySource) ProtoReflect() protoreflect.Message
func (*BigQuerySource) Reset
func (x *BigQuerySource) Reset()
func (*BigQuerySource) String
func (x *BigQuerySource) String() string
BoundingBoxMetricsEntry
type BoundingBoxMetricsEntry struct {
IouThreshold float32 `protobuf:"fixed32,1,opt,name=iou_threshold,json=iouThreshold,proto3" json:"iou_threshold,omitempty"`
MeanAveragePrecision float32 `protobuf:"fixed32,2,opt,name=mean_average_precision,json=meanAveragePrecision,proto3" json:"mean_average_precision,omitempty"`
ConfidenceMetricsEntries []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry "" /* 135 byte string literal not displayed */
}
Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.
func (*BoundingBoxMetricsEntry) Descriptor
func (*BoundingBoxMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use BoundingBoxMetricsEntry.ProtoReflect.Descriptor instead.
func (*BoundingBoxMetricsEntry) GetConfidenceMetricsEntries
func (x *BoundingBoxMetricsEntry) GetConfidenceMetricsEntries() []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry
func (*BoundingBoxMetricsEntry) GetIouThreshold
func (x *BoundingBoxMetricsEntry) GetIouThreshold() float32
func (*BoundingBoxMetricsEntry) GetMeanAveragePrecision
func (x *BoundingBoxMetricsEntry) GetMeanAveragePrecision() float32
func (*BoundingBoxMetricsEntry) ProtoMessage
func (*BoundingBoxMetricsEntry) ProtoMessage()
func (*BoundingBoxMetricsEntry) ProtoReflect
func (x *BoundingBoxMetricsEntry) ProtoReflect() protoreflect.Message
func (*BoundingBoxMetricsEntry) Reset
func (x *BoundingBoxMetricsEntry) Reset()
func (*BoundingBoxMetricsEntry) String
func (x *BoundingBoxMetricsEntry) String() string
BoundingBoxMetricsEntry_ConfidenceMetricsEntry
type BoundingBoxMetricsEntry_ConfidenceMetricsEntry struct {
// Output only. The confidence threshold value used to compute the metrics.
ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
// Output only. Recall under the given confidence threshold.
Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`
// Output only. Precision under the given confidence threshold.
Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"`
// Output only. The harmonic mean of recall and precision.
F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
// contains filtered or unexported fields
}
Metrics for a single confidence threshold.
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use BoundingBoxMetricsEntry_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String() string
BoundingPoly
type BoundingPoly struct {
// Output only . The bounding polygon normalized vertices.
NormalizedVertices []*NormalizedVertex `protobuf:"bytes,2,rep,name=normalized_vertices,json=normalizedVertices,proto3" json:"normalized_vertices,omitempty"`
// contains filtered or unexported fields
}
A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.
func (*BoundingPoly) Descriptor
func (*BoundingPoly) Descriptor() ([]byte, []int)
Deprecated: Use BoundingPoly.ProtoReflect.Descriptor instead.
func (*BoundingPoly) GetNormalizedVertices
func (x *BoundingPoly) GetNormalizedVertices() []*NormalizedVertex
func (*BoundingPoly) ProtoMessage
func (*BoundingPoly) ProtoMessage()
func (*BoundingPoly) ProtoReflect
func (x *BoundingPoly) ProtoReflect() protoreflect.Message
func (*BoundingPoly) Reset
func (x *BoundingPoly) Reset()
func (*BoundingPoly) String
func (x *BoundingPoly) String() string
CategoryStats
type CategoryStats struct {
// The statistics of the top 20 CATEGORY values, ordered by
//
// [count][google.cloud.automl.v1beta1.CategoryStats.SingleCategoryStats.count].
TopCategoryStats []*CategoryStats_SingleCategoryStats `protobuf:"bytes,1,rep,name=top_category_stats,json=topCategoryStats,proto3" json:"top_category_stats,omitempty"`
// contains filtered or unexported fields
}
The data statistics of a series of CATEGORY values.
func (*CategoryStats) Descriptor
func (*CategoryStats) Descriptor() ([]byte, []int)
Deprecated: Use CategoryStats.ProtoReflect.Descriptor instead.
func (*CategoryStats) GetTopCategoryStats
func (x *CategoryStats) GetTopCategoryStats() []*CategoryStats_SingleCategoryStats
func (*CategoryStats) ProtoMessage
func (*CategoryStats) ProtoMessage()
func (*CategoryStats) ProtoReflect
func (x *CategoryStats) ProtoReflect() protoreflect.Message
func (*CategoryStats) Reset
func (x *CategoryStats) Reset()
func (*CategoryStats) String
func (x *CategoryStats) String() string
CategoryStats_SingleCategoryStats
type CategoryStats_SingleCategoryStats struct {
// The CATEGORY value.
Value string `protobuf:"bytes,1,opt,name=value,proto3" json:"value,omitempty"`
// The number of occurrences of this value in the series.
Count int64 `protobuf:"varint,2,opt,name=count,proto3" json:"count,omitempty"`
// contains filtered or unexported fields
}
The statistics of a single CATEGORY value.
func (*CategoryStats_SingleCategoryStats) Descriptor
func (*CategoryStats_SingleCategoryStats) Descriptor() ([]byte, []int)
Deprecated: Use CategoryStats_SingleCategoryStats.ProtoReflect.Descriptor instead.
func (*CategoryStats_SingleCategoryStats) GetCount
func (x *CategoryStats_SingleCategoryStats) GetCount() int64
func (*CategoryStats_SingleCategoryStats) GetValue
func (x *CategoryStats_SingleCategoryStats) GetValue() string
func (*CategoryStats_SingleCategoryStats) ProtoMessage
func (*CategoryStats_SingleCategoryStats) ProtoMessage()
func (*CategoryStats_SingleCategoryStats) ProtoReflect
func (x *CategoryStats_SingleCategoryStats) ProtoReflect() protoreflect.Message
func (*CategoryStats_SingleCategoryStats) Reset
func (x *CategoryStats_SingleCategoryStats) Reset()
func (*CategoryStats_SingleCategoryStats) String
func (x *CategoryStats_SingleCategoryStats) String() string
ClassificationAnnotation
type ClassificationAnnotation struct {
// Output only. A confidence estimate between 0.0 and 1.0. A higher value
// means greater confidence that the annotation is positive. If a user
// approves an annotation as negative or positive, the score value remains
// unchanged. If a user creates an annotation, the score is 0 for negative or
// 1 for positive.
Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"`
// contains filtered or unexported fields
}
Contains annotation details specific to classification.
func (*ClassificationAnnotation) Descriptor
func (*ClassificationAnnotation) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationAnnotation.ProtoReflect.Descriptor instead.
func (*ClassificationAnnotation) GetScore
func (x *ClassificationAnnotation) GetScore() float32
func (*ClassificationAnnotation) ProtoMessage
func (*ClassificationAnnotation) ProtoMessage()
func (*ClassificationAnnotation) ProtoReflect
func (x *ClassificationAnnotation) ProtoReflect() protoreflect.Message
func (*ClassificationAnnotation) Reset
func (x *ClassificationAnnotation) Reset()
func (*ClassificationAnnotation) String
func (x *ClassificationAnnotation) String() string
ClassificationEvaluationMetrics
type ClassificationEvaluationMetrics struct {
AuPrc float32 `protobuf:"fixed32,1,opt,name=au_prc,json=auPrc,proto3" json:"au_prc,omitempty"`
BaseAuPrc float32 `protobuf:"fixed32,2,opt,name=base_au_prc,json=baseAuPrc,proto3" json:"base_au_prc,omitempty"`
AuRoc float32 `protobuf:"fixed32,6,opt,name=au_roc,json=auRoc,proto3" json:"au_roc,omitempty"`
LogLoss float32 `protobuf:"fixed32,7,opt,name=log_loss,json=logLoss,proto3" json:"log_loss,omitempty"`
ConfidenceMetricsEntry []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry "" /* 129 byte string literal not displayed */
ConfusionMatrix *ClassificationEvaluationMetrics_ConfusionMatrix `protobuf:"bytes,4,opt,name=confusion_matrix,json=confusionMatrix,proto3" json:"confusion_matrix,omitempty"`
AnnotationSpecId []string `protobuf:"bytes,5,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
}
Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.
func (*ClassificationEvaluationMetrics) Descriptor
func (*ClassificationEvaluationMetrics) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics) GetAnnotationSpecId
func (x *ClassificationEvaluationMetrics) GetAnnotationSpecId() []string
func (*ClassificationEvaluationMetrics) GetAuPrc
func (x *ClassificationEvaluationMetrics) GetAuPrc() float32
func (*ClassificationEvaluationMetrics) GetAuRoc
func (x *ClassificationEvaluationMetrics) GetAuRoc() float32
func (*ClassificationEvaluationMetrics) GetBaseAuPrc
func (x *ClassificationEvaluationMetrics) GetBaseAuPrc() float32
Deprecated: Marked as deprecated in google/cloud/automl/v1beta1/classification.proto.
func (*ClassificationEvaluationMetrics) GetConfidenceMetricsEntry
func (x *ClassificationEvaluationMetrics) GetConfidenceMetricsEntry() []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry
func (*ClassificationEvaluationMetrics) GetConfusionMatrix
func (x *ClassificationEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
func (*ClassificationEvaluationMetrics) GetLogLoss
func (x *ClassificationEvaluationMetrics) GetLogLoss() float32
func (*ClassificationEvaluationMetrics) ProtoMessage
func (*ClassificationEvaluationMetrics) ProtoMessage()
func (*ClassificationEvaluationMetrics) ProtoReflect
func (x *ClassificationEvaluationMetrics) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics) Reset
func (x *ClassificationEvaluationMetrics) Reset()
func (*ClassificationEvaluationMetrics) String
func (x *ClassificationEvaluationMetrics) String() string
ClassificationEvaluationMetrics_ConfidenceMetricsEntry
type ClassificationEvaluationMetrics_ConfidenceMetricsEntry struct {
ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
PositionThreshold int32 `protobuf:"varint,14,opt,name=position_threshold,json=positionThreshold,proto3" json:"position_threshold,omitempty"`
Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`
Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"`
FalsePositiveRate float32 `protobuf:"fixed32,8,opt,name=false_positive_rate,json=falsePositiveRate,proto3" json:"false_positive_rate,omitempty"`
F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
RecallAt1 float32 `protobuf:"fixed32,5,opt,name=recall_at1,json=recallAt1,proto3" json:"recall_at1,omitempty"`
PrecisionAt1 float32 `protobuf:"fixed32,6,opt,name=precision_at1,json=precisionAt1,proto3" json:"precision_at1,omitempty"`
FalsePositiveRateAt1 float32 "" /* 127 byte string literal not displayed */
F1ScoreAt1 float32 `protobuf:"fixed32,7,opt,name=f1_score_at1,json=f1ScoreAt1,proto3" json:"f1_score_at1,omitempty"`
TruePositiveCount int64 `protobuf:"varint,10,opt,name=true_positive_count,json=truePositiveCount,proto3" json:"true_positive_count,omitempty"`
FalsePositiveCount int64 `protobuf:"varint,11,opt,name=false_positive_count,json=falsePositiveCount,proto3" json:"false_positive_count,omitempty"`
FalseNegativeCount int64 `protobuf:"varint,12,opt,name=false_negative_count,json=falseNegativeCount,proto3" json:"false_negative_count,omitempty"`
TrueNegativeCount int64 `protobuf:"varint,13,opt,name=true_negative_count,json=trueNegativeCount,proto3" json:"true_negative_count,omitempty"`
}
Metrics for a single confidence threshold.
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold() int32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String() string
ClassificationEvaluationMetrics_ConfusionMatrix
type ClassificationEvaluationMetrics_ConfusionMatrix struct {
// Output only. IDs of the annotation specs used in the confusion matrix.
// For Tables CLASSIFICATION
//
// [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
// only list of [annotation_spec_display_name-s][] is populated.
AnnotationSpecId []string `protobuf:"bytes,1,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
// Output only. Display name of the annotation specs used in the confusion
// matrix, as they were at the moment of the evaluation. For Tables
// CLASSIFICATION
//
// [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
// distinct values of the target column at the moment of the model
// evaluation are populated here.
DisplayName []string `protobuf:"bytes,3,rep,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
// Output only. Rows in the confusion matrix. The number of rows is equal to
// the size of `annotation_spec_id`.
// `row[i].example_count[j]` is the number of examples that have ground
// truth of the `annotation_spec_id[i]` and are predicted as
// `annotation_spec_id[j]` by the model being evaluated.
Row []*ClassificationEvaluationMetrics_ConfusionMatrix_Row `protobuf:"bytes,2,rep,name=row,proto3" json:"row,omitempty"`
// contains filtered or unexported fields
}
Confusion matrix of the model running the classification.
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId() []string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName() []string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetRow
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetRow() []*ClassificationEvaluationMetrics_ConfusionMatrix_Row
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Reset
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) Reset()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) String
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) String() string
ClassificationEvaluationMetrics_ConfusionMatrix_Row
type ClassificationEvaluationMetrics_ConfusionMatrix_Row struct {
// Output only. Value of the specific cell in the confusion matrix.
// The number of values each row has (i.e. the length of the row) is equal
// to the length of the `annotation_spec_id` field or, if that one is not
// populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
ExampleCount []int32 `protobuf:"varint,1,rep,packed,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
// contains filtered or unexported fields
}
Output only. A row in the confusion matrix.
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix_Row.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount() []int32
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) String
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) String() string
ClassificationType
type ClassificationType int32
Type of the classification problem.
ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED, ClassificationType_MULTICLASS, ClassificationType_MULTILABEL
const (
// An un-set value of this enum.
ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED ClassificationType = 0
// At most one label is allowed per example.
ClassificationType_MULTICLASS ClassificationType = 1
// Multiple labels are allowed for one example.
ClassificationType_MULTILABEL ClassificationType = 2
)
func (ClassificationType) Descriptor
func (ClassificationType) Descriptor() protoreflect.EnumDescriptor
func (ClassificationType) Enum
func (x ClassificationType) Enum() *ClassificationType
func (ClassificationType) EnumDescriptor
func (ClassificationType) EnumDescriptor() ([]byte, []int)
Deprecated: Use ClassificationType.Descriptor instead.
func (ClassificationType) Number
func (x ClassificationType) Number() protoreflect.EnumNumber
func (ClassificationType) String
func (x ClassificationType) String() string
func (ClassificationType) Type
func (ClassificationType) Type() protoreflect.EnumType
ColumnSpec
type ColumnSpec struct {
// Output only. The resource name of the column specs.
// Form:
//
// `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/tableSpecs/{table_spec_id}/columnSpecs/{column_spec_id}`
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// The data type of elements stored in the column.
DataType *DataType `protobuf:"bytes,2,opt,name=data_type,json=dataType,proto3" json:"data_type,omitempty"`
// Output only. The name of the column to show in the interface. The name can
// be up to 100 characters long and can consist only of ASCII Latin letters
// A-Z and a-z, ASCII digits 0-9, underscores(_), and forward slashes(/), and
// must start with a letter or a digit.
DisplayName string `protobuf:"bytes,3,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
// Output only. Stats of the series of values in the column.
// This field may be stale, see the ancestor's
// Dataset.tables_dataset_metadata.stats_update_time field
// for the timestamp at which these stats were last updated.
DataStats *DataStats `protobuf:"bytes,4,opt,name=data_stats,json=dataStats,proto3" json:"data_stats,omitempty"`
// Deprecated.
TopCorrelatedColumns []*ColumnSpec_CorrelatedColumn `protobuf:"bytes,5,rep,name=top_correlated_columns,json=topCorrelatedColumns,proto3" json:"top_correlated_columns,omitempty"`
// Used to perform consistent read-modify-write updates. If not set, a blind
// "overwrite" update happens.
Etag string `protobuf:"bytes,6,opt,name=etag,proto3" json:"etag,omitempty"`
// contains filtered or unexported fields
}
A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were given on import . Used by:
- Tables
func (*ColumnSpec) Descriptor
func (*ColumnSpec) Descriptor() ([]byte, []int)
Deprecated: Use ColumnSpec.ProtoReflect.Descriptor instead.
func (*ColumnSpec) GetDataStats
func (x *ColumnSpec) GetDataStats() *DataStats
func (*ColumnSpec) GetDataType
func (x *ColumnSpec) GetDataType() *DataType
func (*ColumnSpec) GetDisplayName
func (x *ColumnSpec) GetDisplayName() string
func (*ColumnSpec) GetEtag
func (x *ColumnSpec) GetEtag() string
func (*ColumnSpec) GetName
func (x *ColumnSpec) GetName() string
func (*ColumnSpec) GetTopCorrelatedColumns
func (x *ColumnSpec) GetTopCorrelatedColumns() []*ColumnSpec_CorrelatedColumn
func (*ColumnSpec) ProtoMessage
func (*ColumnSpec) ProtoMessage()
func (*ColumnSpec) ProtoReflect
func (x *ColumnSpec) ProtoReflect() protoreflect.Message
func (*ColumnSpec) Reset
func (x *ColumnSpec) Reset()
func (*ColumnSpec) String
func (x *ColumnSpec) String() string
ColumnSpec_CorrelatedColumn
type ColumnSpec_CorrelatedColumn struct {
// The column_spec_id of the correlated column, which belongs to the same
// table as the in-context column.
ColumnSpecId string `protobuf:"bytes,1,opt,name=column_spec_id,json=columnSpecId,proto3" json:"column_spec_id,omitempty"`
// Correlation between this and the in-context column.
CorrelationStats *CorrelationStats `protobuf:"bytes,2,opt,name=correlation_stats,json=correlationStats,proto3" json:"correlation_stats,omitempty"`
// contains filtered or unexported fields
}
Identifies the table's column, and its correlation with the column this ColumnSpec describes.
func (*ColumnSpec_CorrelatedColumn) Descriptor
func (*ColumnSpec_CorrelatedColumn) Descriptor() ([]byte, []int)
Deprecated: Use ColumnSpec_CorrelatedColumn.ProtoReflect.Descriptor instead.
func (*ColumnSpec_CorrelatedColumn) GetColumnSpecId
func (x *ColumnSpec_CorrelatedColumn) GetColumnSpecId() string
func (*ColumnSpec_CorrelatedColumn) GetCorrelationStats
func (x *ColumnSpec_CorrelatedColumn) GetCorrelationStats() *CorrelationStats
func (*ColumnSpec_CorrelatedColumn) ProtoMessage
func (*ColumnSpec_CorrelatedColumn) ProtoMessage()
func (*ColumnSpec_CorrelatedColumn) ProtoReflect
func (x *ColumnSpec_CorrelatedColumn) ProtoReflect() protoreflect.Message
func (*ColumnSpec_CorrelatedColumn) Reset
func (x *ColumnSpec_CorrelatedColumn) Reset()
func (*ColumnSpec_CorrelatedColumn) String
func (x *ColumnSpec_CorrelatedColumn) String() string
CorrelationStats
type CorrelationStats struct {
// The correlation value using the Cramer's V measure.
CramersV float64 `protobuf:"fixed64,1,opt,name=cramers_v,json=cramersV,proto3" json:"cramers_v,omitempty"`
// contains filtered or unexported fields
}
A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.
func (*CorrelationStats) Descriptor
func (*CorrelationStats) Descriptor() ([]byte, []int)
Deprecated: Use CorrelationStats.ProtoReflect.Descriptor instead.
func (*CorrelationStats) GetCramersV
func (x *CorrelationStats) GetCramersV() float64
func (*CorrelationStats) ProtoMessage
func (*CorrelationStats) ProtoMessage()
func (*CorrelationStats) ProtoReflect
func (x *CorrelationStats) ProtoReflect() protoreflect.Message
func (*CorrelationStats) Reset
func (x *CorrelationStats) Reset()
func (*CorrelationStats) String
func (x *CorrelationStats) String() string
CreateDatasetRequest
type CreateDatasetRequest struct {
// Required. The resource name of the project to create the dataset for.
Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
// Required. The dataset to create.
Dataset *Dataset `protobuf:"bytes,2,opt,name=dataset,proto3" json:"dataset,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.CreateDataset][google.cloud.automl.v1beta1.AutoMl.CreateDataset].
func (*CreateDatasetRequest) Descriptor
func (*CreateDatasetRequest) Descriptor() ([]byte, []int)
Deprecated: Use CreateDatasetRequest.ProtoReflect.Descriptor instead.
func (*CreateDatasetRequest) GetDataset
func (x *CreateDatasetRequest) GetDataset() *Dataset
func (*CreateDatasetRequest) GetParent
func (x *CreateDatasetRequest) GetParent() string
func (*CreateDatasetRequest) ProtoMessage
func (*CreateDatasetRequest) ProtoMessage()
func (*CreateDatasetRequest) ProtoReflect
func (x *CreateDatasetRequest) ProtoReflect() protoreflect.Message
func (*CreateDatasetRequest) Reset
func (x *CreateDatasetRequest) Reset()
func (*CreateDatasetRequest) String
func (x *CreateDatasetRequest) String() string
CreateModelOperationMetadata
type CreateModelOperationMetadata struct {
// contains filtered or unexported fields
}
Details of CreateModel operation.
func (*CreateModelOperationMetadata) Descriptor
func (*CreateModelOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use CreateModelOperationMetadata.ProtoReflect.Descriptor instead.
func (*CreateModelOperationMetadata) ProtoMessage
func (*CreateModelOperationMetadata) ProtoMessage()
func (*CreateModelOperationMetadata) ProtoReflect
func (x *CreateModelOperationMetadata) ProtoReflect() protoreflect.Message
func (*CreateModelOperationMetadata) Reset
func (x *CreateModelOperationMetadata) Reset()
func (*CreateModelOperationMetadata) String
func (x *CreateModelOperationMetadata) String() string
CreateModelRequest
type CreateModelRequest struct {
// Required. Resource name of the parent project where the model is being created.
Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
// Required. The model to create.
Model *Model `protobuf:"bytes,4,opt,name=model,proto3" json:"model,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.CreateModel][google.cloud.automl.v1beta1.AutoMl.CreateModel].
func (*CreateModelRequest) Descriptor
func (*CreateModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use CreateModelRequest.ProtoReflect.Descriptor instead.
func (*CreateModelRequest) GetModel
func (x *CreateModelRequest) GetModel() *Model
func (*CreateModelRequest) GetParent
func (x *CreateModelRequest) GetParent() string
func (*CreateModelRequest) ProtoMessage
func (*CreateModelRequest) ProtoMessage()
func (*CreateModelRequest) ProtoReflect
func (x *CreateModelRequest) ProtoReflect() protoreflect.Message
func (*CreateModelRequest) Reset
func (x *CreateModelRequest) Reset()
func (*CreateModelRequest) String
func (x *CreateModelRequest) String() string
DataStats
type DataStats struct {
// The data statistics specific to a DataType.
//
// Types that are assignable to Stats:
// *DataStats_Float64Stats
// *DataStats_StringStats
// *DataStats_TimestampStats
// *DataStats_ArrayStats
// *DataStats_StructStats
// *DataStats_CategoryStats
Stats isDataStats_Stats `protobuf_oneof:"stats"`
// The number of distinct values.
DistinctValueCount int64 `protobuf:"varint,1,opt,name=distinct_value_count,json=distinctValueCount,proto3" json:"distinct_value_count,omitempty"`
// The number of values that are null.
NullValueCount int64 `protobuf:"varint,2,opt,name=null_value_count,json=nullValueCount,proto3" json:"null_value_count,omitempty"`
// The number of values that are valid.
ValidValueCount int64 `protobuf:"varint,9,opt,name=valid_value_count,json=validValueCount,proto3" json:"valid_value_count,omitempty"`
// contains filtered or unexported fields
}
The data statistics of a series of values that share the same DataType.
func (*DataStats) Descriptor
Deprecated: Use DataStats.ProtoReflect.Descriptor instead.
func (*DataStats) GetArrayStats
func (x *DataStats) GetArrayStats() *ArrayStats
func (*DataStats) GetCategoryStats
func (x *DataStats) GetCategoryStats() *CategoryStats
func (*DataStats) GetDistinctValueCount
func (*DataStats) GetFloat64Stats
func (x *DataStats) GetFloat64Stats() *Float64Stats
func (*DataStats) GetNullValueCount
func (*DataStats) GetStats
func (m *DataStats) GetStats() isDataStats_Stats
func (*DataStats) GetStringStats
func (x *DataStats) GetStringStats() *StringStats
func (*DataStats) GetStructStats
func (x *DataStats) GetStructStats() *StructStats
func (*DataStats) GetTimestampStats
func (x *DataStats) GetTimestampStats() *TimestampStats
func (*DataStats) GetValidValueCount
func (*DataStats) ProtoMessage
func (*DataStats) ProtoMessage()
func (*DataStats) ProtoReflect
func (x *DataStats) ProtoReflect() protoreflect.Message
func (*DataStats) Reset
func (x *DataStats) Reset()
func (*DataStats) String
DataStats_ArrayStats
type DataStats_ArrayStats struct {
// The statistics for ARRAY DataType.
ArrayStats *ArrayStats `protobuf:"bytes,6,opt,name=array_stats,json=arrayStats,proto3,oneof"`
}
DataStats_CategoryStats
type DataStats_CategoryStats struct {
// The statistics for CATEGORY DataType.
CategoryStats *CategoryStats `protobuf:"bytes,8,opt,name=category_stats,json=categoryStats,proto3,oneof"`
}
DataStats_Float64Stats
type DataStats_Float64Stats struct {
// The statistics for FLOAT64 DataType.
Float64Stats *Float64Stats `protobuf:"bytes,3,opt,name=float64_stats,json=float64Stats,proto3,oneof"`
}
DataStats_StringStats
type DataStats_StringStats struct {
// The statistics for STRING DataType.
StringStats *StringStats `protobuf:"bytes,4,opt,name=string_stats,json=stringStats,proto3,oneof"`
}
DataStats_StructStats
type DataStats_StructStats struct {
// The statistics for STRUCT DataType.
StructStats *StructStats `protobuf:"bytes,7,opt,name=struct_stats,json=structStats,proto3,oneof"`
}
DataStats_TimestampStats
type DataStats_TimestampStats struct {
// The statistics for TIMESTAMP DataType.
TimestampStats *TimestampStats `protobuf:"bytes,5,opt,name=timestamp_stats,json=timestampStats,proto3,oneof"`
}
DataType
type DataType struct {
Details isDataType_Details `protobuf_oneof:"details"`
TypeCode TypeCode "" /* 128 byte string literal not displayed */
Nullable bool `protobuf:"varint,4,opt,name=nullable,proto3" json:"nullable,omitempty"`
}
Indicated the type of data that can be stored in a structured data entity (e.g. a table).
func (*DataType) Descriptor
Deprecated: Use DataType.ProtoReflect.Descriptor instead.
func (*DataType) GetDetails
func (m *DataType) GetDetails() isDataType_Details
func (*DataType) GetListElementType
func (*DataType) GetNullable
func (*DataType) GetStructType
func (x *DataType) GetStructType() *StructType
func (*DataType) GetTimeFormat
func (*DataType) GetTypeCode
func (*DataType) ProtoMessage
func (*DataType) ProtoMessage()
func (*DataType) ProtoReflect
func (x *DataType) ProtoReflect() protoreflect.Message
func (*DataType) Reset
func (x *DataType) Reset()
func (*DataType) String
DataType_ListElementType
type DataType_ListElementType struct {
// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [ARRAY][google.cloud.automl.v1beta1.TypeCode.ARRAY],
// then `list_element_type` is the type of the elements.
ListElementType *DataType `protobuf:"bytes,2,opt,name=list_element_type,json=listElementType,proto3,oneof"`
}
DataType_StructType
type DataType_StructType struct {
// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [STRUCT][google.cloud.automl.v1beta1.TypeCode.STRUCT], then `struct_type`
// provides type information for the struct's fields.
StructType *StructType `protobuf:"bytes,3,opt,name=struct_type,json=structType,proto3,oneof"`
}
DataType_TimeFormat
type DataType_TimeFormat struct {
// If [type_code][google.cloud.automl.v1beta1.DataType.type_code] == [TIMESTAMP][google.cloud.automl.v1beta1.TypeCode.TIMESTAMP]
// then `time_format` provides the format in which that time field is
// expressed. The time_format must either be one of:
// * `UNIX_SECONDS`
// * `UNIX_MILLISECONDS`
// * `UNIX_MICROSECONDS`
// * `UNIX_NANOSECONDS`
// (for respectively number of seconds, milliseconds, microseconds and
// nanoseconds since start of the Unix epoch);
// or be written in `strftime` syntax. If time_format is not set, then the
// default format as described on the type_code is used.
TimeFormat string `protobuf:"bytes,5,opt,name=time_format,json=timeFormat,proto3,oneof"`
}
Dataset
type Dataset struct {
// Required.
// The dataset metadata that is specific to the problem type.
//
// Types that are assignable to DatasetMetadata:
// *Dataset_TranslationDatasetMetadata
// *Dataset_ImageClassificationDatasetMetadata
// *Dataset_TextClassificationDatasetMetadata
// *Dataset_ImageObjectDetectionDatasetMetadata
// *Dataset_VideoClassificationDatasetMetadata
// *Dataset_VideoObjectTrackingDatasetMetadata
// *Dataset_TextExtractionDatasetMetadata
// *Dataset_TextSentimentDatasetMetadata
// *Dataset_TablesDatasetMetadata
DatasetMetadata isDataset_DatasetMetadata `protobuf_oneof:"dataset_metadata"`
// Output only. The resource name of the dataset.
// Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// Required. The name of the dataset to show in the interface. The name can be
// up to 32 characters long and can consist only of ASCII Latin letters A-Z
// and a-z, underscores
// (_), and ASCII digits 0-9.
DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
// User-provided description of the dataset. The description can be up to
// 25000 characters long.
Description string `protobuf:"bytes,3,opt,name=description,proto3" json:"description,omitempty"`
// Output only. The number of examples in the dataset.
ExampleCount int32 `protobuf:"varint,21,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
// Output only. Timestamp when this dataset was created.
CreateTime *timestamppb.Timestamp `protobuf:"bytes,14,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"`
// Used to perform consistent read-modify-write updates. If not set, a blind
// "overwrite" update happens.
Etag string `protobuf:"bytes,17,opt,name=etag,proto3" json:"etag,omitempty"`
// contains filtered or unexported fields
}
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
func (*Dataset) Descriptor
Deprecated: Use Dataset.ProtoReflect.Descriptor instead.
func (*Dataset) GetCreateTime
func (x *Dataset) GetCreateTime() *timestamppb.Timestamp
func (*Dataset) GetDatasetMetadata
func (m *Dataset) GetDatasetMetadata() isDataset_DatasetMetadata
func (*Dataset) GetDescription
func (*Dataset) GetDisplayName
func (*Dataset) GetEtag
func (*Dataset) GetExampleCount
func (*Dataset) GetImageClassificationDatasetMetadata
func (x *Dataset) GetImageClassificationDatasetMetadata() *ImageClassificationDatasetMetadata
func (*Dataset) GetImageObjectDetectionDatasetMetadata
func (x *Dataset) GetImageObjectDetectionDatasetMetadata() *ImageObjectDetectionDatasetMetadata
func (*Dataset) GetName
func (*Dataset) GetTablesDatasetMetadata
func (x *Dataset) GetTablesDatasetMetadata() *TablesDatasetMetadata
func (*Dataset) GetTextClassificationDatasetMetadata
func (x *Dataset) GetTextClassificationDatasetMetadata() *TextClassificationDatasetMetadata
func (*Dataset) GetTextExtractionDatasetMetadata
func (x *Dataset) GetTextExtractionDatasetMetadata() *TextExtractionDatasetMetadata
func (*Dataset) GetTextSentimentDatasetMetadata
func (x *Dataset) GetTextSentimentDatasetMetadata() *TextSentimentDatasetMetadata
func (*Dataset) GetTranslationDatasetMetadata
func (x *Dataset) GetTranslationDatasetMetadata() *TranslationDatasetMetadata
func (*Dataset) GetVideoClassificationDatasetMetadata
func (x *Dataset) GetVideoClassificationDatasetMetadata() *VideoClassificationDatasetMetadata
func (*Dataset) GetVideoObjectTrackingDatasetMetadata
func (x *Dataset) GetVideoObjectTrackingDatasetMetadata() *VideoObjectTrackingDatasetMetadata
func (*Dataset) ProtoMessage
func (*Dataset) ProtoMessage()
func (*Dataset) ProtoReflect
func (x *Dataset) ProtoReflect() protoreflect.Message
func (*Dataset) Reset
func (x *Dataset) Reset()
func (*Dataset) String
Dataset_ImageClassificationDatasetMetadata
type Dataset_ImageClassificationDatasetMetadata struct {
// Metadata for a dataset used for image classification.
ImageClassificationDatasetMetadata *ImageClassificationDatasetMetadata `protobuf:"bytes,24,opt,name=image_classification_dataset_metadata,json=imageClassificationDatasetMetadata,proto3,oneof"`
}
Dataset_ImageObjectDetectionDatasetMetadata
type Dataset_ImageObjectDetectionDatasetMetadata struct {
// Metadata for a dataset used for image object detection.
ImageObjectDetectionDatasetMetadata *ImageObjectDetectionDatasetMetadata `protobuf:"bytes,26,opt,name=image_object_detection_dataset_metadata,json=imageObjectDetectionDatasetMetadata,proto3,oneof"`
}
Dataset_TablesDatasetMetadata
type Dataset_TablesDatasetMetadata struct {
// Metadata for a dataset used for Tables.
TablesDatasetMetadata *TablesDatasetMetadata `protobuf:"bytes,33,opt,name=tables_dataset_metadata,json=tablesDatasetMetadata,proto3,oneof"`
}
Dataset_TextClassificationDatasetMetadata
type Dataset_TextClassificationDatasetMetadata struct {
// Metadata for a dataset used for text classification.
TextClassificationDatasetMetadata *TextClassificationDatasetMetadata `protobuf:"bytes,25,opt,name=text_classification_dataset_metadata,json=textClassificationDatasetMetadata,proto3,oneof"`
}
Dataset_TextExtractionDatasetMetadata
type Dataset_TextExtractionDatasetMetadata struct {
// Metadata for a dataset used for text extraction.
TextExtractionDatasetMetadata *TextExtractionDatasetMetadata `protobuf:"bytes,28,opt,name=text_extraction_dataset_metadata,json=textExtractionDatasetMetadata,proto3,oneof"`
}
Dataset_TextSentimentDatasetMetadata
type Dataset_TextSentimentDatasetMetadata struct {
// Metadata for a dataset used for text sentiment.
TextSentimentDatasetMetadata *TextSentimentDatasetMetadata `protobuf:"bytes,30,opt,name=text_sentiment_dataset_metadata,json=textSentimentDatasetMetadata,proto3,oneof"`
}
Dataset_TranslationDatasetMetadata
type Dataset_TranslationDatasetMetadata struct {
// Metadata for a dataset used for translation.
TranslationDatasetMetadata *TranslationDatasetMetadata `protobuf:"bytes,23,opt,name=translation_dataset_metadata,json=translationDatasetMetadata,proto3,oneof"`
}
Dataset_VideoClassificationDatasetMetadata
type Dataset_VideoClassificationDatasetMetadata struct {
// Metadata for a dataset used for video classification.
VideoClassificationDatasetMetadata *VideoClassificationDatasetMetadata `protobuf:"bytes,31,opt,name=video_classification_dataset_metadata,json=videoClassificationDatasetMetadata,proto3,oneof"`
}
Dataset_VideoObjectTrackingDatasetMetadata
type Dataset_VideoObjectTrackingDatasetMetadata struct {
// Metadata for a dataset used for video object tracking.
VideoObjectTrackingDatasetMetadata *VideoObjectTrackingDatasetMetadata `protobuf:"bytes,29,opt,name=video_object_tracking_dataset_metadata,json=videoObjectTrackingDatasetMetadata,proto3,oneof"`
}
DeleteDatasetRequest
type DeleteDatasetRequest struct {
// Required. The resource name of the dataset to delete.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1beta1.AutoMl.DeleteDataset].
func (*DeleteDatasetRequest) Descriptor
func (*DeleteDatasetRequest) Descriptor() ([]byte, []int)
Deprecated: Use DeleteDatasetRequest.ProtoReflect.Descriptor instead.
func (*DeleteDatasetRequest) GetName
func (x *DeleteDatasetRequest) GetName() string
func (*DeleteDatasetRequest) ProtoMessage
func (*DeleteDatasetRequest) ProtoMessage()
func (*DeleteDatasetRequest) ProtoReflect
func (x *DeleteDatasetRequest) ProtoReflect() protoreflect.Message
func (*DeleteDatasetRequest) Reset
func (x *DeleteDatasetRequest) Reset()
func (*DeleteDatasetRequest) String
func (x *DeleteDatasetRequest) String() string
DeleteModelRequest
type DeleteModelRequest struct {
// Required. Resource name of the model being deleted.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.DeleteModel][google.cloud.automl.v1beta1.AutoMl.DeleteModel].
func (*DeleteModelRequest) Descriptor
func (*DeleteModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use DeleteModelRequest.ProtoReflect.Descriptor instead.
func (*DeleteModelRequest) GetName
func (x *DeleteModelRequest) GetName() string
func (*DeleteModelRequest) ProtoMessage
func (*DeleteModelRequest) ProtoMessage()
func (*DeleteModelRequest) ProtoReflect
func (x *DeleteModelRequest) ProtoReflect() protoreflect.Message
func (*DeleteModelRequest) Reset
func (x *DeleteModelRequest) Reset()
func (*DeleteModelRequest) String
func (x *DeleteModelRequest) String() string
DeleteOperationMetadata
type DeleteOperationMetadata struct {
// contains filtered or unexported fields
}
Details of operations that perform deletes of any entities.
func (*DeleteOperationMetadata) Descriptor
func (*DeleteOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use DeleteOperationMetadata.ProtoReflect.Descriptor instead.
func (*DeleteOperationMetadata) ProtoMessage
func (*DeleteOperationMetadata) ProtoMessage()
func (*DeleteOperationMetadata) ProtoReflect
func (x *DeleteOperationMetadata) ProtoReflect() protoreflect.Message
func (*DeleteOperationMetadata) Reset
func (x *DeleteOperationMetadata) Reset()
func (*DeleteOperationMetadata) String
func (x *DeleteOperationMetadata) String() string
DeployModelOperationMetadata
type DeployModelOperationMetadata struct {
// contains filtered or unexported fields
}
Details of DeployModel operation.
func (*DeployModelOperationMetadata) Descriptor
func (*DeployModelOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use DeployModelOperationMetadata.ProtoReflect.Descriptor instead.
func (*DeployModelOperationMetadata) ProtoMessage
func (*DeployModelOperationMetadata) ProtoMessage()
func (*DeployModelOperationMetadata) ProtoReflect
func (x *DeployModelOperationMetadata) ProtoReflect() protoreflect.Message
func (*DeployModelOperationMetadata) Reset
func (x *DeployModelOperationMetadata) Reset()
func (*DeployModelOperationMetadata) String
func (x *DeployModelOperationMetadata) String() string
DeployModelRequest
type DeployModelRequest struct {
// The per-domain specific deployment parameters.
//
// Types that are assignable to ModelDeploymentMetadata:
// *DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
// *DeployModelRequest_ImageClassificationModelDeploymentMetadata
ModelDeploymentMetadata isDeployModelRequest_ModelDeploymentMetadata `protobuf_oneof:"model_deployment_metadata"`
// Required. Resource name of the model to deploy.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.DeployModel][google.cloud.automl.v1beta1.AutoMl.DeployModel].
func (*DeployModelRequest) Descriptor
func (*DeployModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use DeployModelRequest.ProtoReflect.Descriptor instead.
func (*DeployModelRequest) GetImageClassificationModelDeploymentMetadata
func (x *DeployModelRequest) GetImageClassificationModelDeploymentMetadata() *ImageClassificationModelDeploymentMetadata
func (*DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata
func (x *DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata() *ImageObjectDetectionModelDeploymentMetadata
func (*DeployModelRequest) GetModelDeploymentMetadata
func (m *DeployModelRequest) GetModelDeploymentMetadata() isDeployModelRequest_ModelDeploymentMetadata
func (*DeployModelRequest) GetName
func (x *DeployModelRequest) GetName() string
func (*DeployModelRequest) ProtoMessage
func (*DeployModelRequest) ProtoMessage()
func (*DeployModelRequest) ProtoReflect
func (x *DeployModelRequest) ProtoReflect() protoreflect.Message
func (*DeployModelRequest) Reset
func (x *DeployModelRequest) Reset()
func (*DeployModelRequest) String
func (x *DeployModelRequest) String() string
DeployModelRequest_ImageClassificationModelDeploymentMetadata
type DeployModelRequest_ImageClassificationModelDeploymentMetadata struct {
ImageClassificationModelDeploymentMetadata *ImageClassificationModelDeploymentMetadata "" /* 135 byte string literal not displayed */
}
DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata struct {
ImageObjectDetectionModelDeploymentMetadata *ImageObjectDetectionModelDeploymentMetadata "" /* 138 byte string literal not displayed */
}
Document
type Document struct {
// An input config specifying the content of the document.
InputConfig *DocumentInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
// The plain text version of this document.
DocumentText *TextSnippet `protobuf:"bytes,2,opt,name=document_text,json=documentText,proto3" json:"document_text,omitempty"`
// Describes the layout of the document.
// Sorted by [page_number][].
Layout []*Document_Layout `protobuf:"bytes,3,rep,name=layout,proto3" json:"layout,omitempty"`
// The dimensions of the page in the document.
DocumentDimensions *DocumentDimensions `protobuf:"bytes,4,opt,name=document_dimensions,json=documentDimensions,proto3" json:"document_dimensions,omitempty"`
// Number of pages in the document.
PageCount int32 `protobuf:"varint,5,opt,name=page_count,json=pageCount,proto3" json:"page_count,omitempty"`
// contains filtered or unexported fields
}
A structured text document e.g. a PDF.
func (*Document) Descriptor
Deprecated: Use Document.ProtoReflect.Descriptor instead.
func (*Document) GetDocumentDimensions
func (x *Document) GetDocumentDimensions() *DocumentDimensions
func (*Document) GetDocumentText
func (x *Document) GetDocumentText() *TextSnippet
func (*Document) GetInputConfig
func (x *Document) GetInputConfig() *DocumentInputConfig
func (*Document) GetLayout
func (x *Document) GetLayout() []*Document_Layout
func (*Document) GetPageCount
func (*Document) ProtoMessage
func (*Document) ProtoMessage()
func (*Document) ProtoReflect
func (x *Document) ProtoReflect() protoreflect.Message
func (*Document) Reset
func (x *Document) Reset()
func (*Document) String
DocumentDimensions
type DocumentDimensions struct {
Unit DocumentDimensions_DocumentDimensionUnit "" /* 136 byte string literal not displayed */
Width float32 `protobuf:"fixed32,2,opt,name=width,proto3" json:"width,omitempty"`
Height float32 `protobuf:"fixed32,3,opt,name=height,proto3" json:"height,omitempty"`
}
Message that describes dimension of a document.
func (*DocumentDimensions) Descriptor
func (*DocumentDimensions) Descriptor() ([]byte, []int)
Deprecated: Use DocumentDimensions.ProtoReflect.Descriptor instead.
func (*DocumentDimensions) GetHeight
func (x *DocumentDimensions) GetHeight() float32
func (*DocumentDimensions) GetUnit
func (x *DocumentDimensions) GetUnit() DocumentDimensions_DocumentDimensionUnit
func (*DocumentDimensions) GetWidth
func (x *DocumentDimensions) GetWidth() float32
func (*DocumentDimensions) ProtoMessage
func (*DocumentDimensions) ProtoMessage()
func (*DocumentDimensions) ProtoReflect
func (x *DocumentDimensions) ProtoReflect() protoreflect.Message
func (*DocumentDimensions) Reset
func (x *DocumentDimensions) Reset()
func (*DocumentDimensions) String
func (x *DocumentDimensions) String() string
DocumentDimensions_DocumentDimensionUnit
type DocumentDimensions_DocumentDimensionUnit int32
Unit of the document dimension.
DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED, DocumentDimensions_INCH, DocumentDimensions_CENTIMETER, DocumentDimensions_POINT
const (
// Should not be used.
DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED DocumentDimensions_DocumentDimensionUnit = 0
// Document dimension is measured in inches.
DocumentDimensions_INCH DocumentDimensions_DocumentDimensionUnit = 1
// Document dimension is measured in centimeters.
DocumentDimensions_CENTIMETER DocumentDimensions_DocumentDimensionUnit = 2
// Document dimension is measured in points. 72 points = 1 inch.
DocumentDimensions_POINT DocumentDimensions_DocumentDimensionUnit = 3
)
func (DocumentDimensions_DocumentDimensionUnit) Descriptor
func (DocumentDimensions_DocumentDimensionUnit) Descriptor() protoreflect.EnumDescriptor
func (DocumentDimensions_DocumentDimensionUnit) Enum
func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor
func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor() ([]byte, []int)
Deprecated: Use DocumentDimensions_DocumentDimensionUnit.Descriptor instead.
func (DocumentDimensions_DocumentDimensionUnit) Number
func (x DocumentDimensions_DocumentDimensionUnit) Number() protoreflect.EnumNumber
func (DocumentDimensions_DocumentDimensionUnit) String
func (x DocumentDimensions_DocumentDimensionUnit) String() string
func (DocumentDimensions_DocumentDimensionUnit) Type
func (DocumentDimensions_DocumentDimensionUnit) Type() protoreflect.EnumType
DocumentInputConfig
type DocumentInputConfig struct {
// The Google Cloud Storage location of the document file. Only a single path
// should be given.
// Max supported size: 512MB.
// Supported extensions: .PDF.
GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3" json:"gcs_source,omitempty"`
// contains filtered or unexported fields
}
Input configuration of a [Document][google.cloud.automl.v1beta1.Document].
func (*DocumentInputConfig) Descriptor
func (*DocumentInputConfig) Descriptor() ([]byte, []int)
Deprecated: Use DocumentInputConfig.ProtoReflect.Descriptor instead.
func (*DocumentInputConfig) GetGcsSource
func (x *DocumentInputConfig) GetGcsSource() *GcsSource
func (*DocumentInputConfig) ProtoMessage
func (*DocumentInputConfig) ProtoMessage()
func (*DocumentInputConfig) ProtoReflect
func (x *DocumentInputConfig) ProtoReflect() protoreflect.Message
func (*DocumentInputConfig) Reset
func (x *DocumentInputConfig) Reset()
func (*DocumentInputConfig) String
func (x *DocumentInputConfig) String() string
Document_Layout
type Document_Layout struct {
TextSegment *TextSegment `protobuf:"bytes,1,opt,name=text_segment,json=textSegment,proto3" json:"text_segment,omitempty"`
PageNumber int32 `protobuf:"varint,2,opt,name=page_number,json=pageNumber,proto3" json:"page_number,omitempty"`
BoundingPoly *BoundingPoly `protobuf:"bytes,3,opt,name=bounding_poly,json=boundingPoly,proto3" json:"bounding_poly,omitempty"`
TextSegmentType Document_Layout_TextSegmentType "" /* 174 byte string literal not displayed */
}
Describes the layout information of a [text_segment][google.cloud.automl.v1beta1.Document.Layout.text_segment] in the document.
func (*Document_Layout) Descriptor
func (*Document_Layout) Descriptor() ([]byte, []int)
Deprecated: Use Document_Layout.ProtoReflect.Descriptor instead.
func (*Document_Layout) GetBoundingPoly
func (x *Document_Layout) GetBoundingPoly() *BoundingPoly
func (*Document_Layout) GetPageNumber
func (x *Document_Layout) GetPageNumber() int32
func (*Document_Layout) GetTextSegment
func (x *Document_Layout) GetTextSegment() *TextSegment
func (*Document_Layout) GetTextSegmentType
func (x *Document_Layout) GetTextSegmentType() Document_Layout_TextSegmentType
func (*Document_Layout) ProtoMessage
func (*Document_Layout) ProtoMessage()
func (*Document_Layout) ProtoReflect
func (x *Document_Layout) ProtoReflect() protoreflect.Message
func (*Document_Layout) Reset
func (x *Document_Layout) Reset()
func (*Document_Layout) String
func (x *Document_Layout) String() string
Document_Layout_TextSegmentType
type Document_Layout_TextSegmentType int32
The type of TextSegment in the context of the original document.
Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED, Document_Layout_TOKEN, Document_Layout_PARAGRAPH, Document_Layout_FORM_FIELD, Document_Layout_FORM_FIELD_NAME, Document_Layout_FORM_FIELD_CONTENTS, Document_Layout_TABLE, Document_Layout_TABLE_HEADER, Document_Layout_TABLE_ROW, Document_Layout_TABLE_CELL
const (
// Should not be used.
Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED Document_Layout_TextSegmentType = 0
// The text segment is a token. e.g. word.
Document_Layout_TOKEN Document_Layout_TextSegmentType = 1
// The text segment is a paragraph.
Document_Layout_PARAGRAPH Document_Layout_TextSegmentType = 2
// The text segment is a form field.
Document_Layout_FORM_FIELD Document_Layout_TextSegmentType = 3
// The text segment is the name part of a form field. It will be treated
// as child of another FORM_FIELD TextSegment if its span is subspan of
// another TextSegment with type FORM_FIELD.
Document_Layout_FORM_FIELD_NAME Document_Layout_TextSegmentType = 4
// The text segment is the text content part of a form field. It will be
// treated as child of another FORM_FIELD TextSegment if its span is
// subspan of another TextSegment with type FORM_FIELD.
Document_Layout_FORM_FIELD_CONTENTS Document_Layout_TextSegmentType = 5
// The text segment is a whole table, including headers, and all rows.
Document_Layout_TABLE Document_Layout_TextSegmentType = 6
// The text segment is a table's headers. It will be treated as child of
// another TABLE TextSegment if its span is subspan of another TextSegment
// with type TABLE.
Document_Layout_TABLE_HEADER Document_Layout_TextSegmentType = 7
// The text segment is a row in table. It will be treated as child of
// another TABLE TextSegment if its span is subspan of another TextSegment
// with type TABLE.
Document_Layout_TABLE_ROW Document_Layout_TextSegmentType = 8
// The text segment is a cell in table. It will be treated as child of
// another TABLE_ROW TextSegment if its span is subspan of another
// TextSegment with type TABLE_ROW.
Document_Layout_TABLE_CELL Document_Layout_TextSegmentType = 9
)
func (Document_Layout_TextSegmentType) Descriptor
func (Document_Layout_TextSegmentType) Descriptor() protoreflect.EnumDescriptor
func (Document_Layout_TextSegmentType) Enum
func (x Document_Layout_TextSegmentType) Enum() *Document_Layout_TextSegmentType
func (Document_Layout_TextSegmentType) EnumDescriptor
func (Document_Layout_TextSegmentType) EnumDescriptor() ([]byte, []int)
Deprecated: Use Document_Layout_TextSegmentType.Descriptor instead.
func (Document_Layout_TextSegmentType) Number
func (x Document_Layout_TextSegmentType) Number() protoreflect.EnumNumber
func (Document_Layout_TextSegmentType) String
func (x Document_Layout_TextSegmentType) String() string
func (Document_Layout_TextSegmentType) Type
func (Document_Layout_TextSegmentType) Type() protoreflect.EnumType
DoubleRange
type DoubleRange struct {
// Start of the range, inclusive.
Start float64 `protobuf:"fixed64,1,opt,name=start,proto3" json:"start,omitempty"`
// End of the range, exclusive.
End float64 `protobuf:"fixed64,2,opt,name=end,proto3" json:"end,omitempty"`
// contains filtered or unexported fields
}
A range between two double numbers.
func (*DoubleRange) Descriptor
func (*DoubleRange) Descriptor() ([]byte, []int)
Deprecated: Use DoubleRange.ProtoReflect.Descriptor instead.
func (*DoubleRange) GetEnd
func (x *DoubleRange) GetEnd() float64
func (*DoubleRange) GetStart
func (x *DoubleRange) GetStart() float64
func (*DoubleRange) ProtoMessage
func (*DoubleRange) ProtoMessage()
func (*DoubleRange) ProtoReflect
func (x *DoubleRange) ProtoReflect() protoreflect.Message
func (*DoubleRange) Reset
func (x *DoubleRange) Reset()
func (*DoubleRange) String
func (x *DoubleRange) String() string
ExamplePayload
type ExamplePayload struct {
// Required. Input only. The example data.
//
// Types that are assignable to Payload:
// *ExamplePayload_Image
// *ExamplePayload_TextSnippet
// *ExamplePayload_Document
// *ExamplePayload_Row
Payload isExamplePayload_Payload `protobuf_oneof:"payload"`
// contains filtered or unexported fields
}
Example data used for training or prediction.
func (*ExamplePayload) Descriptor
func (*ExamplePayload) Descriptor() ([]byte, []int)
Deprecated: Use ExamplePayload.ProtoReflect.Descriptor instead.
func (*ExamplePayload) GetDocument
func (x *ExamplePayload) GetDocument() *Document
func (*ExamplePayload) GetImage
func (x *ExamplePayload) GetImage() *Image
func (*ExamplePayload) GetPayload
func (m *ExamplePayload) GetPayload() isExamplePayload_Payload
func (*ExamplePayload) GetRow
func (x *ExamplePayload) GetRow() *Row
func (*ExamplePayload) GetTextSnippet
func (x *ExamplePayload) GetTextSnippet() *TextSnippet
func (*ExamplePayload) ProtoMessage
func (*ExamplePayload) ProtoMessage()
func (*ExamplePayload) ProtoReflect
func (x *ExamplePayload) ProtoReflect() protoreflect.Message
func (*ExamplePayload) Reset
func (x *ExamplePayload) Reset()
func (*ExamplePayload) String
func (x *ExamplePayload) String() string
ExamplePayload_Document
type ExamplePayload_Document struct {
// Example document.
Document *Document `protobuf:"bytes,4,opt,name=document,proto3,oneof"`
}
ExamplePayload_Image
type ExamplePayload_Image struct {
// Example image.
Image *Image `protobuf:"bytes,1,opt,name=image,proto3,oneof"`
}
ExamplePayload_Row
type ExamplePayload_Row struct {
// Example relational table row.
Row *Row `protobuf:"bytes,3,opt,name=row,proto3,oneof"`
}
ExamplePayload_TextSnippet
type ExamplePayload_TextSnippet struct {
// Example text.
TextSnippet *TextSnippet `protobuf:"bytes,2,opt,name=text_snippet,json=textSnippet,proto3,oneof"`
}
ExportDataOperationMetadata
type ExportDataOperationMetadata struct {
// Output only. Information further describing this export data's output.
OutputInfo *ExportDataOperationMetadata_ExportDataOutputInfo `protobuf:"bytes,1,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
// contains filtered or unexported fields
}
Details of ExportData operation.
func (*ExportDataOperationMetadata) Descriptor
func (*ExportDataOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ExportDataOperationMetadata.ProtoReflect.Descriptor instead.
func (*ExportDataOperationMetadata) GetOutputInfo
func (x *ExportDataOperationMetadata) GetOutputInfo() *ExportDataOperationMetadata_ExportDataOutputInfo
func (*ExportDataOperationMetadata) ProtoMessage
func (*ExportDataOperationMetadata) ProtoMessage()
func (*ExportDataOperationMetadata) ProtoReflect
func (x *ExportDataOperationMetadata) ProtoReflect() protoreflect.Message
func (*ExportDataOperationMetadata) Reset
func (x *ExportDataOperationMetadata) Reset()
func (*ExportDataOperationMetadata) String
func (x *ExportDataOperationMetadata) String()