Variables
ClassificationType_name, ClassificationType_value
var (
ClassificationType_name = map[int32]string{
0: "CLASSIFICATION_TYPE_UNSPECIFIED",
1: "MULTICLASS",
2: "MULTILABEL",
}
ClassificationType_value = map[string]int32{
"CLASSIFICATION_TYPE_UNSPECIFIED": 0,
"MULTICLASS": 1,
"MULTILABEL": 2,
}
)
Enum value maps for ClassificationType.
DocumentDimensions_DocumentDimensionUnit_name, DocumentDimensions_DocumentDimensionUnit_value
var (
DocumentDimensions_DocumentDimensionUnit_name = map[int32]string{
0: "DOCUMENT_DIMENSION_UNIT_UNSPECIFIED",
1: "INCH",
2: "CENTIMETER",
3: "POINT",
}
DocumentDimensions_DocumentDimensionUnit_value = map[string]int32{
"DOCUMENT_DIMENSION_UNIT_UNSPECIFIED": 0,
"INCH": 1,
"CENTIMETER": 2,
"POINT": 3,
}
)
Enum value maps for DocumentDimensions_DocumentDimensionUnit.
Document_Layout_TextSegmentType_name, Document_Layout_TextSegmentType_value
var (
Document_Layout_TextSegmentType_name = map[int32]string{
0: "TEXT_SEGMENT_TYPE_UNSPECIFIED",
1: "TOKEN",
2: "PARAGRAPH",
3: "FORM_FIELD",
4: "FORM_FIELD_NAME",
5: "FORM_FIELD_CONTENTS",
6: "TABLE",
7: "TABLE_HEADER",
8: "TABLE_ROW",
9: "TABLE_CELL",
}
Document_Layout_TextSegmentType_value = map[string]int32{
"TEXT_SEGMENT_TYPE_UNSPECIFIED": 0,
"TOKEN": 1,
"PARAGRAPH": 2,
"FORM_FIELD": 3,
"FORM_FIELD_NAME": 4,
"FORM_FIELD_CONTENTS": 5,
"TABLE": 6,
"TABLE_HEADER": 7,
"TABLE_ROW": 8,
"TABLE_CELL": 9,
}
)
Enum value maps for Document_Layout_TextSegmentType.
Model_DeploymentState_name, Model_DeploymentState_value
var (
Model_DeploymentState_name = map[int32]string{
0: "DEPLOYMENT_STATE_UNSPECIFIED",
1: "DEPLOYED",
2: "UNDEPLOYED",
}
Model_DeploymentState_value = map[string]int32{
"DEPLOYMENT_STATE_UNSPECIFIED": 0,
"DEPLOYED": 1,
"UNDEPLOYED": 2,
}
)
Enum value maps for Model_DeploymentState.
File_google_cloud_automl_v1_annotation_payload_proto
var File_google_cloud_automl_v1_annotation_payload_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_annotation_spec_proto
var File_google_cloud_automl_v1_annotation_spec_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_classification_proto
var File_google_cloud_automl_v1_classification_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_data_items_proto
var File_google_cloud_automl_v1_data_items_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_dataset_proto
var File_google_cloud_automl_v1_dataset_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_detection_proto
var File_google_cloud_automl_v1_detection_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_geometry_proto
var File_google_cloud_automl_v1_geometry_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_image_proto
var File_google_cloud_automl_v1_image_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_io_proto
var File_google_cloud_automl_v1_io_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_model_evaluation_proto
var File_google_cloud_automl_v1_model_evaluation_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_model_proto
var File_google_cloud_automl_v1_model_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_operations_proto
var File_google_cloud_automl_v1_operations_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_prediction_service_proto
var File_google_cloud_automl_v1_prediction_service_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_service_proto
var File_google_cloud_automl_v1_service_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_text_extraction_proto
var File_google_cloud_automl_v1_text_extraction_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_text_proto
var File_google_cloud_automl_v1_text_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_text_segment_proto
var File_google_cloud_automl_v1_text_segment_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_text_sentiment_proto
var File_google_cloud_automl_v1_text_sentiment_proto protoreflect.FileDescriptor
File_google_cloud_automl_v1_translation_proto
var File_google_cloud_automl_v1_translation_proto protoreflect.FileDescriptor
Functions
func RegisterAutoMlServer
func RegisterAutoMlServer(s *grpc.Server, srv AutoMlServer)
func RegisterPredictionServiceServer
func RegisterPredictionServiceServer(s *grpc.Server, srv PredictionServiceServer)
AnnotationPayload
type AnnotationPayload struct {
// Output only . Additional information about the annotation
// specific to the AutoML domain.
//
// Types that are assignable to Detail:
// *AnnotationPayload_Translation
// *AnnotationPayload_Classification
// *AnnotationPayload_ImageObjectDetection
// *AnnotationPayload_TextExtraction
// *AnnotationPayload_TextSentiment
Detail isAnnotationPayload_Detail `protobuf_oneof:"detail"`
// Output only . The resource ID of the annotation spec that
// this annotation pertains to. The annotation spec comes from either an
// ancestor dataset, or the dataset that was used to train the model in use.
AnnotationSpecId string `protobuf:"bytes,1,opt,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
// Output only. The value of
// [display_name][google.cloud.automl.v1.AnnotationSpec.display_name]
// when the model was trained. Because this field returns a value at model
// training time, for different models trained using the same dataset, the
// returned value could be different as model owner could update the
// `display_name` between any two model training.
DisplayName string `protobuf:"bytes,5,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
// contains filtered or unexported fields
}
Contains annotation information that is relevant to AutoML.
func (*AnnotationPayload) Descriptor
func (*AnnotationPayload) Descriptor() ([]byte, []int)
Deprecated: Use AnnotationPayload.ProtoReflect.Descriptor instead.
func (*AnnotationPayload) GetAnnotationSpecId
func (x *AnnotationPayload) GetAnnotationSpecId() string
func (*AnnotationPayload) GetClassification
func (x *AnnotationPayload) GetClassification() *ClassificationAnnotation
func (*AnnotationPayload) GetDetail
func (m *AnnotationPayload) GetDetail() isAnnotationPayload_Detail
func (*AnnotationPayload) GetDisplayName
func (x *AnnotationPayload) GetDisplayName() string
func (*AnnotationPayload) GetImageObjectDetection
func (x *AnnotationPayload) GetImageObjectDetection() *ImageObjectDetectionAnnotation
func (*AnnotationPayload) GetTextExtraction
func (x *AnnotationPayload) GetTextExtraction() *TextExtractionAnnotation
func (*AnnotationPayload) GetTextSentiment
func (x *AnnotationPayload) GetTextSentiment() *TextSentimentAnnotation
func (*AnnotationPayload) GetTranslation
func (x *AnnotationPayload) GetTranslation() *TranslationAnnotation
func (*AnnotationPayload) ProtoMessage
func (*AnnotationPayload) ProtoMessage()
func (*AnnotationPayload) ProtoReflect
func (x *AnnotationPayload) ProtoReflect() protoreflect.Message
func (*AnnotationPayload) Reset
func (x *AnnotationPayload) Reset()
func (*AnnotationPayload) String
func (x *AnnotationPayload) String() string
AnnotationPayload_Classification
type AnnotationPayload_Classification struct {
// Annotation details for content or image classification.
Classification *ClassificationAnnotation `protobuf:"bytes,3,opt,name=classification,proto3,oneof"`
}
AnnotationPayload_ImageObjectDetection
type AnnotationPayload_ImageObjectDetection struct {
// Annotation details for image object detection.
ImageObjectDetection *ImageObjectDetectionAnnotation `protobuf:"bytes,4,opt,name=image_object_detection,json=imageObjectDetection,proto3,oneof"`
}
AnnotationPayload_TextExtraction
type AnnotationPayload_TextExtraction struct {
// Annotation details for text extraction.
TextExtraction *TextExtractionAnnotation `protobuf:"bytes,6,opt,name=text_extraction,json=textExtraction,proto3,oneof"`
}
AnnotationPayload_TextSentiment
type AnnotationPayload_TextSentiment struct {
// Annotation details for text sentiment.
TextSentiment *TextSentimentAnnotation `protobuf:"bytes,7,opt,name=text_sentiment,json=textSentiment,proto3,oneof"`
}
AnnotationPayload_Translation
type AnnotationPayload_Translation struct {
// Annotation details for translation.
Translation *TranslationAnnotation `protobuf:"bytes,2,opt,name=translation,proto3,oneof"`
}
AnnotationSpec
type AnnotationSpec struct {
// Output only. Resource name of the annotation spec.
// Form:
// 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}'
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// Required. The name of the annotation spec to show in the interface. The name can be
// up to 32 characters long and must match the regexp `[a-zA-Z0-9_]+`.
DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
// Output only. The number of examples in the parent dataset
// labeled by the annotation spec.
ExampleCount int32 `protobuf:"varint,9,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
// contains filtered or unexported fields
}
A definition of an annotation spec.
func (*AnnotationSpec) Descriptor
func (*AnnotationSpec) Descriptor() ([]byte, []int)
Deprecated: Use AnnotationSpec.ProtoReflect.Descriptor instead.
func (*AnnotationSpec) GetDisplayName
func (x *AnnotationSpec) GetDisplayName() string
func (*AnnotationSpec) GetExampleCount
func (x *AnnotationSpec) GetExampleCount() int32
func (*AnnotationSpec) GetName
func (x *AnnotationSpec) GetName() string
func (*AnnotationSpec) ProtoMessage
func (*AnnotationSpec) ProtoMessage()
func (*AnnotationSpec) ProtoReflect
func (x *AnnotationSpec) ProtoReflect() protoreflect.Message
func (*AnnotationSpec) Reset
func (x *AnnotationSpec) Reset()
func (*AnnotationSpec) String
func (x *AnnotationSpec) String() string
AutoMlClient
type AutoMlClient interface {
// Creates a dataset.
CreateDataset(ctx context.Context, in *CreateDatasetRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Gets a dataset.
GetDataset(ctx context.Context, in *GetDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
// Lists datasets in a project.
ListDatasets(ctx context.Context, in *ListDatasetsRequest, opts ...grpc.CallOption) (*ListDatasetsResponse, error)
// Updates a dataset.
UpdateDataset(ctx context.Context, in *UpdateDatasetRequest, opts ...grpc.CallOption) (*Dataset, error)
// Deletes a dataset and all of its contents.
// Returns empty response in the
// [response][google.longrunning.Operation.response] field when it completes,
// and `delete_details` in the
// [metadata][google.longrunning.Operation.metadata] field.
DeleteDataset(ctx context.Context, in *DeleteDatasetRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Imports data into a dataset.
// For Tables this method can only be called on an empty Dataset.
//
// For Tables:
// * A
// [schema_inference_version][google.cloud.automl.v1.InputConfig.params]
// parameter must be explicitly set.
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ImportData(ctx context.Context, in *ImportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Exports dataset's data to the provided output location.
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportData(ctx context.Context, in *ExportDataRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Gets an annotation spec.
GetAnnotationSpec(ctx context.Context, in *GetAnnotationSpecRequest, opts ...grpc.CallOption) (*AnnotationSpec, error)
// Creates a model.
// Returns a Model in the [response][google.longrunning.Operation.response]
// field when it completes.
// When you create a model, several model evaluations are created for it:
// a global evaluation, and one evaluation for each annotation spec.
CreateModel(ctx context.Context, in *CreateModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Gets a model.
GetModel(ctx context.Context, in *GetModelRequest, opts ...grpc.CallOption) (*Model, error)
// Lists models.
ListModels(ctx context.Context, in *ListModelsRequest, opts ...grpc.CallOption) (*ListModelsResponse, error)
// Deletes a model.
// Returns `google.protobuf.Empty` in the
// [response][google.longrunning.Operation.response] field when it completes,
// and `delete_details` in the
// [metadata][google.longrunning.Operation.metadata] field.
DeleteModel(ctx context.Context, in *DeleteModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Updates a model.
UpdateModel(ctx context.Context, in *UpdateModelRequest, opts ...grpc.CallOption) (*Model, error)
// Deploys a model. If a model is already deployed, deploying it with the
// same parameters has no effect. Deploying with different parametrs
// (as e.g. changing
// [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
// will reset the deployment state without pausing the model's availability.
//
// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
// deployment automatically.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
DeployModel(ctx context.Context, in *DeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Undeploys a model. If the model is not deployed this method has no effect.
//
// Only applicable for Text Classification, Image Object Detection and Tables;
// all other domains manage deployment automatically.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
UndeployModel(ctx context.Context, in *UndeployModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Exports a trained, "export-able", model to a user specified Google Cloud
// Storage location. A model is considered export-able if and only if it has
// an export format defined for it in
// [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig].
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportModel(ctx context.Context, in *ExportModelRequest, opts ...grpc.CallOption) (*longrunningpb.Operation, error)
// Gets a model evaluation.
GetModelEvaluation(ctx context.Context, in *GetModelEvaluationRequest, opts ...grpc.CallOption) (*ModelEvaluation, error)
// Lists model evaluations.
ListModelEvaluations(ctx context.Context, in *ListModelEvaluationsRequest, opts ...grpc.CallOption) (*ListModelEvaluationsResponse, error)
}
AutoMlClient is the client API for AutoMl service.
For semantics around ctx use and closing/ending streaming RPCs, please refer to https://godoc.org/google.golang.org/grpc#ClientConn.NewStream.
func NewAutoMlClient
func NewAutoMlClient(cc grpc.ClientConnInterface) AutoMlClient
AutoMlServer
type AutoMlServer interface {
// Creates a dataset.
CreateDataset(context.Context, *CreateDatasetRequest) (*longrunningpb.Operation, error)
// Gets a dataset.
GetDataset(context.Context, *GetDatasetRequest) (*Dataset, error)
// Lists datasets in a project.
ListDatasets(context.Context, *ListDatasetsRequest) (*ListDatasetsResponse, error)
// Updates a dataset.
UpdateDataset(context.Context, *UpdateDatasetRequest) (*Dataset, error)
// Deletes a dataset and all of its contents.
// Returns empty response in the
// [response][google.longrunning.Operation.response] field when it completes,
// and `delete_details` in the
// [metadata][google.longrunning.Operation.metadata] field.
DeleteDataset(context.Context, *DeleteDatasetRequest) (*longrunningpb.Operation, error)
// Imports data into a dataset.
// For Tables this method can only be called on an empty Dataset.
//
// For Tables:
// * A
// [schema_inference_version][google.cloud.automl.v1.InputConfig.params]
// parameter must be explicitly set.
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ImportData(context.Context, *ImportDataRequest) (*longrunningpb.Operation, error)
// Exports dataset's data to the provided output location.
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportData(context.Context, *ExportDataRequest) (*longrunningpb.Operation, error)
// Gets an annotation spec.
GetAnnotationSpec(context.Context, *GetAnnotationSpecRequest) (*AnnotationSpec, error)
// Creates a model.
// Returns a Model in the [response][google.longrunning.Operation.response]
// field when it completes.
// When you create a model, several model evaluations are created for it:
// a global evaluation, and one evaluation for each annotation spec.
CreateModel(context.Context, *CreateModelRequest) (*longrunningpb.Operation, error)
// Gets a model.
GetModel(context.Context, *GetModelRequest) (*Model, error)
// Lists models.
ListModels(context.Context, *ListModelsRequest) (*ListModelsResponse, error)
// Deletes a model.
// Returns `google.protobuf.Empty` in the
// [response][google.longrunning.Operation.response] field when it completes,
// and `delete_details` in the
// [metadata][google.longrunning.Operation.metadata] field.
DeleteModel(context.Context, *DeleteModelRequest) (*longrunningpb.Operation, error)
// Updates a model.
UpdateModel(context.Context, *UpdateModelRequest) (*Model, error)
// Deploys a model. If a model is already deployed, deploying it with the
// same parameters has no effect. Deploying with different parametrs
// (as e.g. changing
// [node_number][google.cloud.automl.v1p1beta.ImageObjectDetectionModelDeploymentMetadata.node_number])
// will reset the deployment state without pausing the model's availability.
//
// Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage
// deployment automatically.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
DeployModel(context.Context, *DeployModelRequest) (*longrunningpb.Operation, error)
// Undeploys a model. If the model is not deployed this method has no effect.
//
// Only applicable for Text Classification, Image Object Detection and Tables;
// all other domains manage deployment automatically.
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
UndeployModel(context.Context, *UndeployModelRequest) (*longrunningpb.Operation, error)
// Exports a trained, "export-able", model to a user specified Google Cloud
// Storage location. A model is considered export-able if and only if it has
// an export format defined for it in
// [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig].
//
// Returns an empty response in the
// [response][google.longrunning.Operation.response] field when it completes.
ExportModel(context.Context, *ExportModelRequest) (*longrunningpb.Operation, error)
// Gets a model evaluation.
GetModelEvaluation(context.Context, *GetModelEvaluationRequest) (*ModelEvaluation, error)
// Lists model evaluations.
ListModelEvaluations(context.Context, *ListModelEvaluationsRequest) (*ListModelEvaluationsResponse, error)
}
AutoMlServer is the server API for AutoMl service.
BatchPredictInputConfig
type BatchPredictInputConfig struct {
// The source of the input.
//
// Types that are assignable to Source:
// *BatchPredictInputConfig_GcsSource
Source isBatchPredictInputConfig_Source `protobuf_oneof:"source"`
// contains filtered or unexported fields
}
Input configuration for BatchPredict Action.
The format of input depends on the ML problem of the model used for prediction. As input source the [gcs_source][google.cloud.automl.v1.InputConfig.gcs_source] is expected, unless specified otherwise.
The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:
AutoML Vision
Classification
One or more CSV files where each line is a single column:
GCS_FILE_PATH
The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict output.
Sample rows:
gs://folder/image1.jpeg
gs://folder/image2.gif
gs://folder/image3.png
Object Detection
One or more CSV files where each line is a single column:
GCS_FILE_PATH
The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict output.
Sample rows:
gs://folder/image1.jpeg
gs://folder/image2.gif
gs://folder/image3.png
</section>
AutoML Video Intelligence
Classification
One or more CSV files where each line is a single column:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
GCS_FILE_PATH
is the Google Cloud Storage location of video up to 50GB in
size and up to 3h in duration duration.
Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
TIME_SEGMENT_START
and TIME_SEGMENT_END
must be within the
length of the video, and the end time must be after the start time.
Sample rows:
gs://folder/video1.mp4,10,40
gs://folder/video1.mp4,20,60
gs://folder/vid2.mov,0,inf
Object Tracking
One or more CSV files where each line is a single column:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
GCS_FILE_PATH
is the Google Cloud Storage location of video up to 50GB in
size and up to 3h in duration duration.
Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
TIME_SEGMENT_START
and TIME_SEGMENT_END
must be within the
length of the video, and the end time must be after the start time.
Sample rows:
gs://folder/video1.mp4,10,40
gs://folder/video1.mp4,20,60
gs://folder/vid2.mov,0,inf
</section>
AutoML Natural Language
Classification
One or more CSV files where each line is a single column:
GCS_FILE_PATH
GCS_FILE_PATH
is the Google Cloud Storage location of a text file.
Supported file extensions: .TXT, .PDF, .TIF, .TIFF
Text files can be no larger than 10MB in size.
Sample rows:
gs://folder/text1.txt
gs://folder/text2.pdf
gs://folder/text3.tif
Sentiment Analysis
One or more CSV files where each line is a single column:
GCS_FILE_PATH
GCS_FILE_PATH
is the Google Cloud Storage location of a text file.
Supported file extensions: .TXT, .PDF, .TIF, .TIFF
Text files can be no larger than 128kB in size.
Sample rows:
gs://folder/text1.txt
gs://folder/text2.pdf
gs://folder/text3.tif
Entity Extraction
One or more JSONL (JSON Lines) files that either provide inline text or documents. You can only use one format, either inline text or documents, for a single call to [AutoMl.BatchPredict].
Each JSONL file contains a per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in JSON representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique.
Each document JSONL file contains, per line, a proto that wraps a Document
proto with input_config
set. Each document cannot exceed 2MB in size.
Supported document extensions: .PDF, .TIF, .TIFF
Each JSONL file must not exceed 100MB in size, and no more than 20 JSONL files may be passed.
Sample inline JSONL file (Shown with artificial line breaks. Actual line breaks are denoted by "\n".):
{
"id": "my_first_id",
"text_snippet": { "content": "dog car cat"},
"text_features": [
{
"text_segment": {"start_offset": 4, "end_offset": 6},
"structural_type": PARAGRAPH,
"bounding_poly": {
"normalized_vertices": [
{"x": 0.1, "y": 0.1},
{"x": 0.1, "y": 0.3},
{"x": 0.3, "y": 0.3},
{"x": 0.3, "y": 0.1},
]
},
}
],
}\n
{
"id": "2",
"text_snippet": {
"content": "Extended sample content",
"mime_type": "text/plain"
}
}
Sample document JSONL file (Shown with artificial line breaks. Actual line breaks are denoted by "\n".):
{
"document": {
"input_config": {
"gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ]
}
}
}
}\n
{
"document": {
"input_config": {
"gcs_source": { "input_uris": [ "gs://folder/document2.tif" ]
}
}
}
}
</section>
AutoML Tables
See Preparing your training data for more information.
You can use either [gcs_source][google.cloud.automl.v1.BatchPredictInputConfig.gcs_source] or [bigquery_source][BatchPredictInputConfig.bigquery_source].
For gcs_source:
CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns.
The column names must contain the model's [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs] [display_name-s][google.cloud.automl.v1.ColumnSpec.display_name] (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows, i.e. the CSV lines, will be attempted.
Sample rows from a CSV file:
"First Name","Last Name","Dob","Addresses" "John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]" "Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
For bigquery_source:
The URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller.
The column names must contain the model's [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs] [display_name-s][google.cloud.automl.v1.ColumnSpec.display_name] (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows of the table will be attempted.
</section>
Input field definitions:
GCS_FILE_PATH
: The path to a file on Google Cloud Storage. For example,
"gs://folder/video.avi".
TIME_SEGMENT_START
: (TIME_OFFSET
)
Expresses a beginning, inclusive, of a time segment
within an example that has a time dimension
(e.g. video).
TIME_SEGMENT_END
: (TIME_OFFSET
)
Expresses an end, exclusive, of a time segment within
n example that has a time dimension (e.g. video).
TIME_OFFSET
: A number of seconds as measured from the start of an
example (e.g. video). Fractions are allowed, up to a
microsecond precision. "inf" is allowed, and it means the end
of the example.
**Errors:**
If any of the provided CSV files can't be parsed or if more than certain
percent of CSV rows cannot be processed then the operation fails and
prediction does not happen. Regardless of overall success or failure the
per-row failures, up to a certain count cap, will be listed in
Operation.metadata.partial_failures.
func (*BatchPredictInputConfig) Descriptor
func (*BatchPredictInputConfig) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictInputConfig.ProtoReflect.Descriptor instead.
func (*BatchPredictInputConfig) GetGcsSource
func (x *BatchPredictInputConfig) GetGcsSource() *GcsSource
func (*BatchPredictInputConfig) GetSource
func (m *BatchPredictInputConfig) GetSource() isBatchPredictInputConfig_Source
func (*BatchPredictInputConfig) ProtoMessage
func (*BatchPredictInputConfig) ProtoMessage()
func (*BatchPredictInputConfig) ProtoReflect
func (x *BatchPredictInputConfig) ProtoReflect() protoreflect.Message
func (*BatchPredictInputConfig) Reset
func (x *BatchPredictInputConfig) Reset()
func (*BatchPredictInputConfig) String
func (x *BatchPredictInputConfig) String() string
BatchPredictInputConfig_GcsSource
type BatchPredictInputConfig_GcsSource struct {
// Required. The Google Cloud Storage location for the input content.
GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3,oneof"`
}
BatchPredictOperationMetadata
type BatchPredictOperationMetadata struct {
// Output only. The input config that was given upon starting this
// batch predict operation.
InputConfig *BatchPredictInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
// Output only. Information further describing this batch predict's output.
OutputInfo *BatchPredictOperationMetadata_BatchPredictOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
// contains filtered or unexported fields
}
Details of BatchPredict operation.
func (*BatchPredictOperationMetadata) Descriptor
func (*BatchPredictOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOperationMetadata.ProtoReflect.Descriptor instead.
func (*BatchPredictOperationMetadata) GetInputConfig
func (x *BatchPredictOperationMetadata) GetInputConfig() *BatchPredictInputConfig
func (*BatchPredictOperationMetadata) GetOutputInfo
func (x *BatchPredictOperationMetadata) GetOutputInfo() *BatchPredictOperationMetadata_BatchPredictOutputInfo
func (*BatchPredictOperationMetadata) ProtoMessage
func (*BatchPredictOperationMetadata) ProtoMessage()
func (*BatchPredictOperationMetadata) ProtoReflect
func (x *BatchPredictOperationMetadata) ProtoReflect() protoreflect.Message
func (*BatchPredictOperationMetadata) Reset
func (x *BatchPredictOperationMetadata) Reset()
func (*BatchPredictOperationMetadata) String
func (x *BatchPredictOperationMetadata) String() string
BatchPredictOperationMetadata_BatchPredictOutputInfo
type BatchPredictOperationMetadata_BatchPredictOutputInfo struct {
// The output location into which prediction output is written.
//
// Types that are assignable to OutputLocation:
// *BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
OutputLocation isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation `protobuf_oneof:"output_location"`
// contains filtered or unexported fields
}
Further describes this batch predict's output. Supplements [BatchPredictOutputConfig][google.cloud.automl.v1.BatchPredictOutputConfig].
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOperationMetadata_BatchPredictOutputInfo.ProtoReflect.Descriptor instead.
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetGcsOutputDirectory() string
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation
func (m *BatchPredictOperationMetadata_BatchPredictOutputInfo) GetOutputLocation() isBatchPredictOperationMetadata_BatchPredictOutputInfo_OutputLocation
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoMessage()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) ProtoReflect() protoreflect.Message
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) Reset()
func (*BatchPredictOperationMetadata_BatchPredictOutputInfo) String
func (x *BatchPredictOperationMetadata_BatchPredictOutputInfo) String() string
BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory
type BatchPredictOperationMetadata_BatchPredictOutputInfo_GcsOutputDirectory struct {
// The full path of the Google Cloud Storage directory created, into which
// the prediction output is written.
GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"`
}
BatchPredictOutputConfig
type BatchPredictOutputConfig struct {
// The destination of the output.
//
// Types that are assignable to Destination:
// *BatchPredictOutputConfig_GcsDestination
Destination isBatchPredictOutputConfig_Destination `protobuf_oneof:"destination"`
// contains filtered or unexported fields
}
Output configuration for BatchPredict Action.
As destination the [gcs_destination][google.cloud.automl.v1.BatchPredictOutputConfig.gcs_destination] must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction-
For Image Classification: In the created directory files
image_classification_1.jsonl
,image_classification_2.jsonl
,...,image_classification_N.jsonl
will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additionalerrors_1.jsonl
,errors_2.jsonl
,...,errors_N.jsonl
files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly onegoogle.rpc.Status
containing onlycode
andmessage
fields.For Image Object Detection: In the created directory files
image_object_detection_1.jsonl
,image_object_detection_2.jsonl
,...,image_object_detection_N.jsonl
will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have image_object_detection detail populated. A single image will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any image failed (partially or completely), then additionalerrors_1.jsonl
,errors_2.jsonl
,...,errors_N.jsonl
files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly onegoogle.rpc.Status
containing onlycode
andmessage
fields.For Video Classification: In the created directory a video_classification.csv file, and a .JSON file per each video classification requested in the input (i.e. each line in given CSV(s)), will be created.
The format of video_classification.csv is: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_classification.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty.
Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for the video time segment the file is assigned to in the video_classification.csv. All AnnotationPayload protos will have video_classification field set, and will be sorted by video_classification.type field (note that the returned types are governed by
classifaction_types
parameter in [PredictService.BatchPredictRequest.params][]).For Video Object Tracking: In the created directory a video_object_tracking.csv file will be created, and multiple files video_object_trackinng_1.json, video_object_trackinng_2.json,..., video_object_trackinng_N.json, where N is the number of requests in the input (i.e. the number of lines in given CSV(s)).
The format of video_object_tracking.csv is: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_object_tracking.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty.
Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for each frame of the video time segment the file is assigned to in video_object_tracking.csv. All AnnotationPayload protos will have video_object_tracking field set.
For Text Classification: In the created directory files
text_classification_1.jsonl
,text_classification_2.jsonl
,...,text_classification_N.jsonl
will be created, where N may be 1, and depends on the total number of inputs and annotations found.Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text file (or document) in the text snippet (or document) proto and a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. A single text file (or document) will be listed only once with all its annotations, and its annotations will never be split across files.
If prediction for any input file (or document) failed (partially or completely), then additional
errors_1.jsonl
,errors_2.jsonl
,...,errors_N.jsonl
files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input file followed by exactly onegoogle.rpc.Status
containing onlycode
andmessage
.For Text Sentiment: In the created directory files
text_sentiment_1.jsonl
,text_sentiment_2.jsonl
,...,text_sentiment_N.jsonl
will be created, where N may be 1, and depends on the total number of inputs and annotations found.Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text file (or document) in the text snippet (or document) proto and a list of zero or more AnnotationPayload protos (called annotations), which have text_sentiment detail populated. A single text file (or document) will be listed only once with all its annotations, and its annotations will never be split across files.
If prediction for any input file (or document) failed (partially or completely), then additional
errors_1.jsonl
,errors_2.jsonl
,...,errors_N.jsonl
files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input file followed by exactly onegoogle.rpc.Status
containing onlycode
andmessage
.For Text Extraction: In the created directory files
text_extraction_1.jsonl
,text_extraction_2.jsonl
,...,text_extraction_N.jsonl
will be created, where N may be 1, and depends on the total number of inputs and annotations found. The contents of these .JSONL file(s) depend on whether the input used inline text, or documents. If input was inline, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request text snippet's "id" (if specified), followed by input text snippet, and a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated. A single text snippet will be listed only once with all its annotations, and its annotations will never be split across files. If input used documents, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request document proto, followed by its OCR-ed representation in the form of a text snippet, finally followed by a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated and refer, via their indices, to the OCR-ed text snippet. A single document (and its text snippet) will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet failed (partially or completely), then additionalerrors_1.jsonl
,errors_2.jsonl
,...,errors_N.jsonl
files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps either the "id" : "<id_value>" (in case of inline) or the document proto (in case of document) but here followed by exactly onegoogle.rpc.Status
containing onlycode
andmessage
.For Tables: Output depends on whether [gcs_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.gcs_destination] or [bigquery_destination][google.cloud.automl.v1p1beta.BatchPredictOutputConfig.bigquery_destination] is set (either is allowed). Google Cloud Storage case: In the created directory files
tables_1.csv
,tables_2.csv
,...,tables_N.csv
will be created, where N may be 1, and depends on the total number of the successfully predicted rows. For all CLASSIFICATION [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]: Each .csv file will contain a header, listing all columns' [display_name-s][google.cloud.automl.v1p1beta.ColumnSpec.display_name] given on input followed by M target column names in the format of "<[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec] [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]><[target_column_specs][google.cloud.automl.v1p1beta.TablesModelMetadata.target_column_spec] [display_name][google.cloud.automl.v1p1beta.ColumnSpec.display_name]>" Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, column having the predicted target value. If prediction for any rows failed, then an additionalerrors_1.csv
,errors_2.csv
,...,errors_N.csv
will be created (N depends on total number of failed rows). These files will have analogous format astables_*.csv
, but always with a single target column havinggoogle.rpc.Status
represented as a JSON string, and containing onlycode
andmessage
. BigQuery case: [bigquery_destination][google.cloud.automl.v1p1beta.OutputConfig.bigquery_destination] pointing to a BigQuery project must be set. In the given project a new dataset will be created with nameprediction_<model-display-name>_<timestamp-of-prediction-call>
where
func (*BatchPredictOutputConfig) Descriptor
func (*BatchPredictOutputConfig) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictOutputConfig.ProtoReflect.Descriptor instead.
func (*BatchPredictOutputConfig) GetDestination
func (m *BatchPredictOutputConfig) GetDestination() isBatchPredictOutputConfig_Destination
func (*BatchPredictOutputConfig) GetGcsDestination
func (x *BatchPredictOutputConfig) GetGcsDestination() *GcsDestination
func (*BatchPredictOutputConfig) ProtoMessage
func (*BatchPredictOutputConfig) ProtoMessage()
func (*BatchPredictOutputConfig) ProtoReflect
func (x *BatchPredictOutputConfig) ProtoReflect() protoreflect.Message
func (*BatchPredictOutputConfig) Reset
func (x *BatchPredictOutputConfig) Reset()
func (*BatchPredictOutputConfig) String
func (x *BatchPredictOutputConfig) String() string
BatchPredictOutputConfig_GcsDestination
type BatchPredictOutputConfig_GcsDestination struct {
// Required. The Google Cloud Storage location of the directory where the output is to
// be written to.
GcsDestination *GcsDestination `protobuf:"bytes,1,opt,name=gcs_destination,json=gcsDestination,proto3,oneof"`
}
BatchPredictRequest
type BatchPredictRequest struct {
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
InputConfig *BatchPredictInputConfig `protobuf:"bytes,3,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
OutputConfig *BatchPredictOutputConfig `protobuf:"bytes,4,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`
Params map[string]string "" /* 153 byte string literal not displayed */
}
Request message for [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
func (*BatchPredictRequest) Descriptor
func (*BatchPredictRequest) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictRequest.ProtoReflect.Descriptor instead.
func (*BatchPredictRequest) GetInputConfig
func (x *BatchPredictRequest) GetInputConfig() *BatchPredictInputConfig
func (*BatchPredictRequest) GetName
func (x *BatchPredictRequest) GetName() string
func (*BatchPredictRequest) GetOutputConfig
func (x *BatchPredictRequest) GetOutputConfig() *BatchPredictOutputConfig
func (*BatchPredictRequest) GetParams
func (x *BatchPredictRequest) GetParams() map[string]string
func (*BatchPredictRequest) ProtoMessage
func (*BatchPredictRequest) ProtoMessage()
func (*BatchPredictRequest) ProtoReflect
func (x *BatchPredictRequest) ProtoReflect() protoreflect.Message
func (*BatchPredictRequest) Reset
func (x *BatchPredictRequest) Reset()
func (*BatchPredictRequest) String
func (x *BatchPredictRequest) String() string
BatchPredictResult
type BatchPredictResult struct {
Metadata map[string]string "" /* 157 byte string literal not displayed */
}
Result of the Batch Predict. This message is returned in [response][google.longrunning.Operation.response] of the operation returned by the [PredictionService.BatchPredict][google.cloud.automl.v1.PredictionService.BatchPredict].
func (*BatchPredictResult) Descriptor
func (*BatchPredictResult) Descriptor() ([]byte, []int)
Deprecated: Use BatchPredictResult.ProtoReflect.Descriptor instead.
func (*BatchPredictResult) GetMetadata
func (x *BatchPredictResult) GetMetadata() map[string]string
func (*BatchPredictResult) ProtoMessage
func (*BatchPredictResult) ProtoMessage()
func (*BatchPredictResult) ProtoReflect
func (x *BatchPredictResult) ProtoReflect() protoreflect.Message
func (*BatchPredictResult) Reset
func (x *BatchPredictResult) Reset()
func (*BatchPredictResult) String
func (x *BatchPredictResult) String() string
BoundingBoxMetricsEntry
type BoundingBoxMetricsEntry struct {
IouThreshold float32 `protobuf:"fixed32,1,opt,name=iou_threshold,json=iouThreshold,proto3" json:"iou_threshold,omitempty"`
MeanAveragePrecision float32 `protobuf:"fixed32,2,opt,name=mean_average_precision,json=meanAveragePrecision,proto3" json:"mean_average_precision,omitempty"`
ConfidenceMetricsEntries []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry "" /* 135 byte string literal not displayed */
}
Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.
func (*BoundingBoxMetricsEntry) Descriptor
func (*BoundingBoxMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use BoundingBoxMetricsEntry.ProtoReflect.Descriptor instead.
func (*BoundingBoxMetricsEntry) GetConfidenceMetricsEntries
func (x *BoundingBoxMetricsEntry) GetConfidenceMetricsEntries() []*BoundingBoxMetricsEntry_ConfidenceMetricsEntry
func (*BoundingBoxMetricsEntry) GetIouThreshold
func (x *BoundingBoxMetricsEntry) GetIouThreshold() float32
func (*BoundingBoxMetricsEntry) GetMeanAveragePrecision
func (x *BoundingBoxMetricsEntry) GetMeanAveragePrecision() float32
func (*BoundingBoxMetricsEntry) ProtoMessage
func (*BoundingBoxMetricsEntry) ProtoMessage()
func (*BoundingBoxMetricsEntry) ProtoReflect
func (x *BoundingBoxMetricsEntry) ProtoReflect() protoreflect.Message
func (*BoundingBoxMetricsEntry) Reset
func (x *BoundingBoxMetricsEntry) Reset()
func (*BoundingBoxMetricsEntry) String
func (x *BoundingBoxMetricsEntry) String() string
BoundingBoxMetricsEntry_ConfidenceMetricsEntry
type BoundingBoxMetricsEntry_ConfidenceMetricsEntry struct {
// Output only. The confidence threshold value used to compute the metrics.
ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
// Output only. Recall under the given confidence threshold.
Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`
// Output only. Precision under the given confidence threshold.
Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"`
// Output only. The harmonic mean of recall and precision.
F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
// contains filtered or unexported fields
}
Metrics for a single confidence threshold.
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use BoundingBoxMetricsEntry_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetF1Score() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetPrecision() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) GetRecall() float32
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoMessage()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) Reset()
func (*BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String
func (x *BoundingBoxMetricsEntry_ConfidenceMetricsEntry) String() string
BoundingPoly
type BoundingPoly struct {
// Output only . The bounding polygon normalized vertices.
NormalizedVertices []*NormalizedVertex `protobuf:"bytes,2,rep,name=normalized_vertices,json=normalizedVertices,proto3" json:"normalized_vertices,omitempty"`
// contains filtered or unexported fields
}
A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.
func (*BoundingPoly) Descriptor
func (*BoundingPoly) Descriptor() ([]byte, []int)
Deprecated: Use BoundingPoly.ProtoReflect.Descriptor instead.
func (*BoundingPoly) GetNormalizedVertices
func (x *BoundingPoly) GetNormalizedVertices() []*NormalizedVertex
func (*BoundingPoly) ProtoMessage
func (*BoundingPoly) ProtoMessage()
func (*BoundingPoly) ProtoReflect
func (x *BoundingPoly) ProtoReflect() protoreflect.Message
func (*BoundingPoly) Reset
func (x *BoundingPoly) Reset()
func (*BoundingPoly) String
func (x *BoundingPoly) String() string
ClassificationAnnotation
type ClassificationAnnotation struct {
// Output only. A confidence estimate between 0.0 and 1.0. A higher value
// means greater confidence that the annotation is positive. If a user
// approves an annotation as negative or positive, the score value remains
// unchanged. If a user creates an annotation, the score is 0 for negative or
// 1 for positive.
Score float32 `protobuf:"fixed32,1,opt,name=score,proto3" json:"score,omitempty"`
// contains filtered or unexported fields
}
Contains annotation details specific to classification.
func (*ClassificationAnnotation) Descriptor
func (*ClassificationAnnotation) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationAnnotation.ProtoReflect.Descriptor instead.
func (*ClassificationAnnotation) GetScore
func (x *ClassificationAnnotation) GetScore() float32
func (*ClassificationAnnotation) ProtoMessage
func (*ClassificationAnnotation) ProtoMessage()
func (*ClassificationAnnotation) ProtoReflect
func (x *ClassificationAnnotation) ProtoReflect() protoreflect.Message
func (*ClassificationAnnotation) Reset
func (x *ClassificationAnnotation) Reset()
func (*ClassificationAnnotation) String
func (x *ClassificationAnnotation) String() string
ClassificationEvaluationMetrics
type ClassificationEvaluationMetrics struct {
AuPrc float32 `protobuf:"fixed32,1,opt,name=au_prc,json=auPrc,proto3" json:"au_prc,omitempty"`
AuRoc float32 `protobuf:"fixed32,6,opt,name=au_roc,json=auRoc,proto3" json:"au_roc,omitempty"`
LogLoss float32 `protobuf:"fixed32,7,opt,name=log_loss,json=logLoss,proto3" json:"log_loss,omitempty"`
ConfidenceMetricsEntry []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry "" /* 129 byte string literal not displayed */
ConfusionMatrix *ClassificationEvaluationMetrics_ConfusionMatrix `protobuf:"bytes,4,opt,name=confusion_matrix,json=confusionMatrix,proto3" json:"confusion_matrix,omitempty"`
AnnotationSpecId []string `protobuf:"bytes,5,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
}
Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.
func (*ClassificationEvaluationMetrics) Descriptor
func (*ClassificationEvaluationMetrics) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics) GetAnnotationSpecId
func (x *ClassificationEvaluationMetrics) GetAnnotationSpecId() []string
func (*ClassificationEvaluationMetrics) GetAuPrc
func (x *ClassificationEvaluationMetrics) GetAuPrc() float32
func (*ClassificationEvaluationMetrics) GetAuRoc
func (x *ClassificationEvaluationMetrics) GetAuRoc() float32
func (*ClassificationEvaluationMetrics) GetConfidenceMetricsEntry
func (x *ClassificationEvaluationMetrics) GetConfidenceMetricsEntry() []*ClassificationEvaluationMetrics_ConfidenceMetricsEntry
func (*ClassificationEvaluationMetrics) GetConfusionMatrix
func (x *ClassificationEvaluationMetrics) GetConfusionMatrix() *ClassificationEvaluationMetrics_ConfusionMatrix
func (*ClassificationEvaluationMetrics) GetLogLoss
func (x *ClassificationEvaluationMetrics) GetLogLoss() float32
func (*ClassificationEvaluationMetrics) ProtoMessage
func (*ClassificationEvaluationMetrics) ProtoMessage()
func (*ClassificationEvaluationMetrics) ProtoReflect
func (x *ClassificationEvaluationMetrics) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics) Reset
func (x *ClassificationEvaluationMetrics) Reset()
func (*ClassificationEvaluationMetrics) String
func (x *ClassificationEvaluationMetrics) String() string
ClassificationEvaluationMetrics_ConfidenceMetricsEntry
type ClassificationEvaluationMetrics_ConfidenceMetricsEntry struct {
ConfidenceThreshold float32 `protobuf:"fixed32,1,opt,name=confidence_threshold,json=confidenceThreshold,proto3" json:"confidence_threshold,omitempty"`
PositionThreshold int32 `protobuf:"varint,14,opt,name=position_threshold,json=positionThreshold,proto3" json:"position_threshold,omitempty"`
Recall float32 `protobuf:"fixed32,2,opt,name=recall,proto3" json:"recall,omitempty"`
Precision float32 `protobuf:"fixed32,3,opt,name=precision,proto3" json:"precision,omitempty"`
FalsePositiveRate float32 `protobuf:"fixed32,8,opt,name=false_positive_rate,json=falsePositiveRate,proto3" json:"false_positive_rate,omitempty"`
F1Score float32 `protobuf:"fixed32,4,opt,name=f1_score,json=f1Score,proto3" json:"f1_score,omitempty"`
RecallAt1 float32 `protobuf:"fixed32,5,opt,name=recall_at1,json=recallAt1,proto3" json:"recall_at1,omitempty"`
PrecisionAt1 float32 `protobuf:"fixed32,6,opt,name=precision_at1,json=precisionAt1,proto3" json:"precision_at1,omitempty"`
FalsePositiveRateAt1 float32 "" /* 127 byte string literal not displayed */
F1ScoreAt1 float32 `protobuf:"fixed32,7,opt,name=f1_score_at1,json=f1ScoreAt1,proto3" json:"f1_score_at1,omitempty"`
TruePositiveCount int64 `protobuf:"varint,10,opt,name=true_positive_count,json=truePositiveCount,proto3" json:"true_positive_count,omitempty"`
FalsePositiveCount int64 `protobuf:"varint,11,opt,name=false_positive_count,json=falsePositiveCount,proto3" json:"false_positive_count,omitempty"`
FalseNegativeCount int64 `protobuf:"varint,12,opt,name=false_negative_count,json=falseNegativeCount,proto3" json:"false_negative_count,omitempty"`
TrueNegativeCount int64 `protobuf:"varint,13,opt,name=true_negative_count,json=trueNegativeCount,proto3" json:"true_negative_count,omitempty"`
}
Metrics for a single confidence threshold.
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfidenceMetricsEntry.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetConfidenceThreshold() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1Score() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetF1ScoreAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalseNegativeCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRate() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetFalsePositiveRateAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPositionThreshold() int32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecision() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetPrecisionAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecall() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetRecallAt1() float32
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTrueNegativeCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) GetTruePositiveCount() int64
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) Reset()
func (*ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String
func (x *ClassificationEvaluationMetrics_ConfidenceMetricsEntry) String() string
ClassificationEvaluationMetrics_ConfusionMatrix
type ClassificationEvaluationMetrics_ConfusionMatrix struct {
// Output only. IDs of the annotation specs used in the confusion matrix.
// For Tables CLASSIFICATION
// [prediction_type][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type]
// only list of [annotation_spec_display_name-s][] is populated.
AnnotationSpecId []string `protobuf:"bytes,1,rep,name=annotation_spec_id,json=annotationSpecId,proto3" json:"annotation_spec_id,omitempty"`
// Output only. Display name of the annotation specs used in the confusion
// matrix, as they were at the moment of the evaluation. For Tables
// CLASSIFICATION
// [prediction_type-s][google.cloud.automl.v1p1beta.TablesModelMetadata.prediction_type],
// distinct values of the target column at the moment of the model
// evaluation are populated here.
DisplayName []string `protobuf:"bytes,3,rep,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
// Output only. Rows in the confusion matrix. The number of rows is equal to
// the size of `annotation_spec_id`.
// `row[i].example_count[j]` is the number of examples that have ground
// truth of the `annotation_spec_id[i]` and are predicted as
// `annotation_spec_id[j]` by the model being evaluated.
Row []*ClassificationEvaluationMetrics_ConfusionMatrix_Row `protobuf:"bytes,2,rep,name=row,proto3" json:"row,omitempty"`
// contains filtered or unexported fields
}
Confusion matrix of the model running the classification.
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetAnnotationSpecId() []string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetDisplayName() []string
func (*ClassificationEvaluationMetrics_ConfusionMatrix) GetRow
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) GetRow() []*ClassificationEvaluationMetrics_ConfusionMatrix_Row
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfusionMatrix) Reset
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) Reset()
func (*ClassificationEvaluationMetrics_ConfusionMatrix) String
func (x *ClassificationEvaluationMetrics_ConfusionMatrix) String() string
ClassificationEvaluationMetrics_ConfusionMatrix_Row
type ClassificationEvaluationMetrics_ConfusionMatrix_Row struct {
// Output only. Value of the specific cell in the confusion matrix.
// The number of values each row has (i.e. the length of the row) is equal
// to the length of the `annotation_spec_id` field or, if that one is not
// populated, length of the [display_name][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
ExampleCount []int32 `protobuf:"varint,1,rep,packed,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
// contains filtered or unexported fields
}
Output only. A row in the confusion matrix.
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Descriptor() ([]byte, []int)
Deprecated: Use ClassificationEvaluationMetrics_ConfusionMatrix_Row.ProtoReflect.Descriptor instead.
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) GetExampleCount() []int32
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoMessage()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) ProtoReflect() protoreflect.Message
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) Reset()
func (*ClassificationEvaluationMetrics_ConfusionMatrix_Row) String
func (x *ClassificationEvaluationMetrics_ConfusionMatrix_Row) String() string
ClassificationType
type ClassificationType int32
Type of the classification problem.
ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED, ClassificationType_MULTICLASS, ClassificationType_MULTILABEL
const (
// An un-set value of this enum.
ClassificationType_CLASSIFICATION_TYPE_UNSPECIFIED ClassificationType = 0
// At most one label is allowed per example.
ClassificationType_MULTICLASS ClassificationType = 1
// Multiple labels are allowed for one example.
ClassificationType_MULTILABEL ClassificationType = 2
)
func (ClassificationType) Descriptor
func (ClassificationType) Descriptor() protoreflect.EnumDescriptor
func (ClassificationType) Enum
func (x ClassificationType) Enum() *ClassificationType
func (ClassificationType) EnumDescriptor
func (ClassificationType) EnumDescriptor() ([]byte, []int)
Deprecated: Use ClassificationType.Descriptor instead.
func (ClassificationType) Number
func (x ClassificationType) Number() protoreflect.EnumNumber
func (ClassificationType) String
func (x ClassificationType) String() string
func (ClassificationType) Type
func (ClassificationType) Type() protoreflect.EnumType
CreateDatasetOperationMetadata
type CreateDatasetOperationMetadata struct {
// contains filtered or unexported fields
}
Details of CreateDataset operation.
func (*CreateDatasetOperationMetadata) Descriptor
func (*CreateDatasetOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use CreateDatasetOperationMetadata.ProtoReflect.Descriptor instead.
func (*CreateDatasetOperationMetadata) ProtoMessage
func (*CreateDatasetOperationMetadata) ProtoMessage()
func (*CreateDatasetOperationMetadata) ProtoReflect
func (x *CreateDatasetOperationMetadata) ProtoReflect() protoreflect.Message
func (*CreateDatasetOperationMetadata) Reset
func (x *CreateDatasetOperationMetadata) Reset()
func (*CreateDatasetOperationMetadata) String
func (x *CreateDatasetOperationMetadata) String() string
CreateDatasetRequest
type CreateDatasetRequest struct {
// Required. The resource name of the project to create the dataset for.
Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
// Required. The dataset to create.
Dataset *Dataset `protobuf:"bytes,2,opt,name=dataset,proto3" json:"dataset,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.CreateDataset][google.cloud.automl.v1.AutoMl.CreateDataset].
func (*CreateDatasetRequest) Descriptor
func (*CreateDatasetRequest) Descriptor() ([]byte, []int)
Deprecated: Use CreateDatasetRequest.ProtoReflect.Descriptor instead.
func (*CreateDatasetRequest) GetDataset
func (x *CreateDatasetRequest) GetDataset() *Dataset
func (*CreateDatasetRequest) GetParent
func (x *CreateDatasetRequest) GetParent() string
func (*CreateDatasetRequest) ProtoMessage
func (*CreateDatasetRequest) ProtoMessage()
func (*CreateDatasetRequest) ProtoReflect
func (x *CreateDatasetRequest) ProtoReflect() protoreflect.Message
func (*CreateDatasetRequest) Reset
func (x *CreateDatasetRequest) Reset()
func (*CreateDatasetRequest) String
func (x *CreateDatasetRequest) String() string
CreateModelOperationMetadata
type CreateModelOperationMetadata struct {
// contains filtered or unexported fields
}
Details of CreateModel operation.
func (*CreateModelOperationMetadata) Descriptor
func (*CreateModelOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use CreateModelOperationMetadata.ProtoReflect.Descriptor instead.
func (*CreateModelOperationMetadata) ProtoMessage
func (*CreateModelOperationMetadata) ProtoMessage()
func (*CreateModelOperationMetadata) ProtoReflect
func (x *CreateModelOperationMetadata) ProtoReflect() protoreflect.Message
func (*CreateModelOperationMetadata) Reset
func (x *CreateModelOperationMetadata) Reset()
func (*CreateModelOperationMetadata) String
func (x *CreateModelOperationMetadata) String() string
CreateModelRequest
type CreateModelRequest struct {
// Required. Resource name of the parent project where the model is being created.
Parent string `protobuf:"bytes,1,opt,name=parent,proto3" json:"parent,omitempty"`
// Required. The model to create.
Model *Model `protobuf:"bytes,4,opt,name=model,proto3" json:"model,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.CreateModel][google.cloud.automl.v1.AutoMl.CreateModel].
func (*CreateModelRequest) Descriptor
func (*CreateModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use CreateModelRequest.ProtoReflect.Descriptor instead.
func (*CreateModelRequest) GetModel
func (x *CreateModelRequest) GetModel() *Model
func (*CreateModelRequest) GetParent
func (x *CreateModelRequest) GetParent() string
func (*CreateModelRequest) ProtoMessage
func (*CreateModelRequest) ProtoMessage()
func (*CreateModelRequest) ProtoReflect
func (x *CreateModelRequest) ProtoReflect() protoreflect.Message
func (*CreateModelRequest) Reset
func (x *CreateModelRequest) Reset()
func (*CreateModelRequest) String
func (x *CreateModelRequest) String() string
Dataset
type Dataset struct {
DatasetMetadata isDataset_DatasetMetadata `protobuf_oneof:"dataset_metadata"`
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
DisplayName string `protobuf:"bytes,2,opt,name=display_name,json=displayName,proto3" json:"display_name,omitempty"`
Description string `protobuf:"bytes,3,opt,name=description,proto3" json:"description,omitempty"`
ExampleCount int32 `protobuf:"varint,21,opt,name=example_count,json=exampleCount,proto3" json:"example_count,omitempty"`
CreateTime *timestamppb.Timestamp `protobuf:"bytes,14,opt,name=create_time,json=createTime,proto3" json:"create_time,omitempty"`
Etag string `protobuf:"bytes,17,opt,name=etag,proto3" json:"etag,omitempty"`
Labels map[string]string "" /* 154 byte string literal not displayed */
}
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
func (*Dataset) Descriptor
Deprecated: Use Dataset.ProtoReflect.Descriptor instead.
func (*Dataset) GetCreateTime
func (x *Dataset) GetCreateTime() *timestamppb.Timestamp
func (*Dataset) GetDatasetMetadata
func (m *Dataset) GetDatasetMetadata() isDataset_DatasetMetadata
func (*Dataset) GetDescription
func (*Dataset) GetDisplayName
func (*Dataset) GetEtag
func (*Dataset) GetExampleCount
func (*Dataset) GetImageClassificationDatasetMetadata
func (x *Dataset) GetImageClassificationDatasetMetadata() *ImageClassificationDatasetMetadata
func (*Dataset) GetImageObjectDetectionDatasetMetadata
func (x *Dataset) GetImageObjectDetectionDatasetMetadata() *ImageObjectDetectionDatasetMetadata
func (*Dataset) GetLabels
func (*Dataset) GetName
func (*Dataset) GetTextClassificationDatasetMetadata
func (x *Dataset) GetTextClassificationDatasetMetadata() *TextClassificationDatasetMetadata
func (*Dataset) GetTextExtractionDatasetMetadata
func (x *Dataset) GetTextExtractionDatasetMetadata() *TextExtractionDatasetMetadata
func (*Dataset) GetTextSentimentDatasetMetadata
func (x *Dataset) GetTextSentimentDatasetMetadata() *TextSentimentDatasetMetadata
func (*Dataset) GetTranslationDatasetMetadata
func (x *Dataset) GetTranslationDatasetMetadata() *TranslationDatasetMetadata
func (*Dataset) ProtoMessage
func (*Dataset) ProtoMessage()
func (*Dataset) ProtoReflect
func (x *Dataset) ProtoReflect() protoreflect.Message
func (*Dataset) Reset
func (x *Dataset) Reset()
func (*Dataset) String
Dataset_ImageClassificationDatasetMetadata
type Dataset_ImageClassificationDatasetMetadata struct {
// Metadata for a dataset used for image classification.
ImageClassificationDatasetMetadata *ImageClassificationDatasetMetadata `protobuf:"bytes,24,opt,name=image_classification_dataset_metadata,json=imageClassificationDatasetMetadata,proto3,oneof"`
}
Dataset_ImageObjectDetectionDatasetMetadata
type Dataset_ImageObjectDetectionDatasetMetadata struct {
// Metadata for a dataset used for image object detection.
ImageObjectDetectionDatasetMetadata *ImageObjectDetectionDatasetMetadata `protobuf:"bytes,26,opt,name=image_object_detection_dataset_metadata,json=imageObjectDetectionDatasetMetadata,proto3,oneof"`
}
Dataset_TextClassificationDatasetMetadata
type Dataset_TextClassificationDatasetMetadata struct {
// Metadata for a dataset used for text classification.
TextClassificationDatasetMetadata *TextClassificationDatasetMetadata `protobuf:"bytes,25,opt,name=text_classification_dataset_metadata,json=textClassificationDatasetMetadata,proto3,oneof"`
}
Dataset_TextExtractionDatasetMetadata
type Dataset_TextExtractionDatasetMetadata struct {
// Metadata for a dataset used for text extraction.
TextExtractionDatasetMetadata *TextExtractionDatasetMetadata `protobuf:"bytes,28,opt,name=text_extraction_dataset_metadata,json=textExtractionDatasetMetadata,proto3,oneof"`
}
Dataset_TextSentimentDatasetMetadata
type Dataset_TextSentimentDatasetMetadata struct {
// Metadata for a dataset used for text sentiment.
TextSentimentDatasetMetadata *TextSentimentDatasetMetadata `protobuf:"bytes,30,opt,name=text_sentiment_dataset_metadata,json=textSentimentDatasetMetadata,proto3,oneof"`
}
Dataset_TranslationDatasetMetadata
type Dataset_TranslationDatasetMetadata struct {
// Metadata for a dataset used for translation.
TranslationDatasetMetadata *TranslationDatasetMetadata `protobuf:"bytes,23,opt,name=translation_dataset_metadata,json=translationDatasetMetadata,proto3,oneof"`
}
DeleteDatasetRequest
type DeleteDatasetRequest struct {
// Required. The resource name of the dataset to delete.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.DeleteDataset][google.cloud.automl.v1.AutoMl.DeleteDataset].
func (*DeleteDatasetRequest) Descriptor
func (*DeleteDatasetRequest) Descriptor() ([]byte, []int)
Deprecated: Use DeleteDatasetRequest.ProtoReflect.Descriptor instead.
func (*DeleteDatasetRequest) GetName
func (x *DeleteDatasetRequest) GetName() string
func (*DeleteDatasetRequest) ProtoMessage
func (*DeleteDatasetRequest) ProtoMessage()
func (*DeleteDatasetRequest) ProtoReflect
func (x *DeleteDatasetRequest) ProtoReflect() protoreflect.Message
func (*DeleteDatasetRequest) Reset
func (x *DeleteDatasetRequest) Reset()
func (*DeleteDatasetRequest) String
func (x *DeleteDatasetRequest) String() string
DeleteModelRequest
type DeleteModelRequest struct {
// Required. Resource name of the model being deleted.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.DeleteModel][google.cloud.automl.v1.AutoMl.DeleteModel].
func (*DeleteModelRequest) Descriptor
func (*DeleteModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use DeleteModelRequest.ProtoReflect.Descriptor instead.
func (*DeleteModelRequest) GetName
func (x *DeleteModelRequest) GetName() string
func (*DeleteModelRequest) ProtoMessage
func (*DeleteModelRequest) ProtoMessage()
func (*DeleteModelRequest) ProtoReflect
func (x *DeleteModelRequest) ProtoReflect() protoreflect.Message
func (*DeleteModelRequest) Reset
func (x *DeleteModelRequest) Reset()
func (*DeleteModelRequest) String
func (x *DeleteModelRequest) String() string
DeleteOperationMetadata
type DeleteOperationMetadata struct {
// contains filtered or unexported fields
}
Details of operations that perform deletes of any entities.
func (*DeleteOperationMetadata) Descriptor
func (*DeleteOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use DeleteOperationMetadata.ProtoReflect.Descriptor instead.
func (*DeleteOperationMetadata) ProtoMessage
func (*DeleteOperationMetadata) ProtoMessage()
func (*DeleteOperationMetadata) ProtoReflect
func (x *DeleteOperationMetadata) ProtoReflect() protoreflect.Message
func (*DeleteOperationMetadata) Reset
func (x *DeleteOperationMetadata) Reset()
func (*DeleteOperationMetadata) String
func (x *DeleteOperationMetadata) String() string
DeployModelOperationMetadata
type DeployModelOperationMetadata struct {
// contains filtered or unexported fields
}
Details of DeployModel operation.
func (*DeployModelOperationMetadata) Descriptor
func (*DeployModelOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use DeployModelOperationMetadata.ProtoReflect.Descriptor instead.
func (*DeployModelOperationMetadata) ProtoMessage
func (*DeployModelOperationMetadata) ProtoMessage()
func (*DeployModelOperationMetadata) ProtoReflect
func (x *DeployModelOperationMetadata) ProtoReflect() protoreflect.Message
func (*DeployModelOperationMetadata) Reset
func (x *DeployModelOperationMetadata) Reset()
func (*DeployModelOperationMetadata) String
func (x *DeployModelOperationMetadata) String() string
DeployModelRequest
type DeployModelRequest struct {
// The per-domain specific deployment parameters.
//
// Types that are assignable to ModelDeploymentMetadata:
// *DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
// *DeployModelRequest_ImageClassificationModelDeploymentMetadata
ModelDeploymentMetadata isDeployModelRequest_ModelDeploymentMetadata `protobuf_oneof:"model_deployment_metadata"`
// Required. Resource name of the model to deploy.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.DeployModel][google.cloud.automl.v1.AutoMl.DeployModel].
func (*DeployModelRequest) Descriptor
func (*DeployModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use DeployModelRequest.ProtoReflect.Descriptor instead.
func (*DeployModelRequest) GetImageClassificationModelDeploymentMetadata
func (x *DeployModelRequest) GetImageClassificationModelDeploymentMetadata() *ImageClassificationModelDeploymentMetadata
func (*DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata
func (x *DeployModelRequest) GetImageObjectDetectionModelDeploymentMetadata() *ImageObjectDetectionModelDeploymentMetadata
func (*DeployModelRequest) GetModelDeploymentMetadata
func (m *DeployModelRequest) GetModelDeploymentMetadata() isDeployModelRequest_ModelDeploymentMetadata
func (*DeployModelRequest) GetName
func (x *DeployModelRequest) GetName() string
func (*DeployModelRequest) ProtoMessage
func (*DeployModelRequest) ProtoMessage()
func (*DeployModelRequest) ProtoReflect
func (x *DeployModelRequest) ProtoReflect() protoreflect.Message
func (*DeployModelRequest) Reset
func (x *DeployModelRequest) Reset()
func (*DeployModelRequest) String
func (x *DeployModelRequest) String() string
DeployModelRequest_ImageClassificationModelDeploymentMetadata
type DeployModelRequest_ImageClassificationModelDeploymentMetadata struct {
ImageClassificationModelDeploymentMetadata *ImageClassificationModelDeploymentMetadata "" /* 135 byte string literal not displayed */
}
DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata
type DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata struct {
ImageObjectDetectionModelDeploymentMetadata *ImageObjectDetectionModelDeploymentMetadata "" /* 138 byte string literal not displayed */
}
Document
type Document struct {
// An input config specifying the content of the document.
InputConfig *DocumentInputConfig `protobuf:"bytes,1,opt,name=input_config,json=inputConfig,proto3" json:"input_config,omitempty"`
// The plain text version of this document.
DocumentText *TextSnippet `protobuf:"bytes,2,opt,name=document_text,json=documentText,proto3" json:"document_text,omitempty"`
// Describes the layout of the document.
// Sorted by [page_number][].
Layout []*Document_Layout `protobuf:"bytes,3,rep,name=layout,proto3" json:"layout,omitempty"`
// The dimensions of the page in the document.
DocumentDimensions *DocumentDimensions `protobuf:"bytes,4,opt,name=document_dimensions,json=documentDimensions,proto3" json:"document_dimensions,omitempty"`
// Number of pages in the document.
PageCount int32 `protobuf:"varint,5,opt,name=page_count,json=pageCount,proto3" json:"page_count,omitempty"`
// contains filtered or unexported fields
}
A structured text document e.g. a PDF.
func (*Document) Descriptor
Deprecated: Use Document.ProtoReflect.Descriptor instead.
func (*Document) GetDocumentDimensions
func (x *Document) GetDocumentDimensions() *DocumentDimensions
func (*Document) GetDocumentText
func (x *Document) GetDocumentText() *TextSnippet
func (*Document) GetInputConfig
func (x *Document) GetInputConfig() *DocumentInputConfig
func (*Document) GetLayout
func (x *Document) GetLayout() []*Document_Layout
func (*Document) GetPageCount
func (*Document) ProtoMessage
func (*Document) ProtoMessage()
func (*Document) ProtoReflect
func (x *Document) ProtoReflect() protoreflect.Message
func (*Document) Reset
func (x *Document) Reset()
func (*Document) String
DocumentDimensions
type DocumentDimensions struct {
Unit DocumentDimensions_DocumentDimensionUnit "" /* 131 byte string literal not displayed */
Width float32 `protobuf:"fixed32,2,opt,name=width,proto3" json:"width,omitempty"`
Height float32 `protobuf:"fixed32,3,opt,name=height,proto3" json:"height,omitempty"`
}
Message that describes dimension of a document.
func (*DocumentDimensions) Descriptor
func (*DocumentDimensions) Descriptor() ([]byte, []int)
Deprecated: Use DocumentDimensions.ProtoReflect.Descriptor instead.
func (*DocumentDimensions) GetHeight
func (x *DocumentDimensions) GetHeight() float32
func (*DocumentDimensions) GetUnit
func (x *DocumentDimensions) GetUnit() DocumentDimensions_DocumentDimensionUnit
func (*DocumentDimensions) GetWidth
func (x *DocumentDimensions) GetWidth() float32
func (*DocumentDimensions) ProtoMessage
func (*DocumentDimensions) ProtoMessage()
func (*DocumentDimensions) ProtoReflect
func (x *DocumentDimensions) ProtoReflect() protoreflect.Message
func (*DocumentDimensions) Reset
func (x *DocumentDimensions) Reset()
func (*DocumentDimensions) String
func (x *DocumentDimensions) String() string
DocumentDimensions_DocumentDimensionUnit
type DocumentDimensions_DocumentDimensionUnit int32
Unit of the document dimension.
DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED, DocumentDimensions_INCH, DocumentDimensions_CENTIMETER, DocumentDimensions_POINT
const (
// Should not be used.
DocumentDimensions_DOCUMENT_DIMENSION_UNIT_UNSPECIFIED DocumentDimensions_DocumentDimensionUnit = 0
// Document dimension is measured in inches.
DocumentDimensions_INCH DocumentDimensions_DocumentDimensionUnit = 1
// Document dimension is measured in centimeters.
DocumentDimensions_CENTIMETER DocumentDimensions_DocumentDimensionUnit = 2
// Document dimension is measured in points. 72 points = 1 inch.
DocumentDimensions_POINT DocumentDimensions_DocumentDimensionUnit = 3
)
func (DocumentDimensions_DocumentDimensionUnit) Descriptor
func (DocumentDimensions_DocumentDimensionUnit) Descriptor() protoreflect.EnumDescriptor
func (DocumentDimensions_DocumentDimensionUnit) Enum
func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor
func (DocumentDimensions_DocumentDimensionUnit) EnumDescriptor() ([]byte, []int)
Deprecated: Use DocumentDimensions_DocumentDimensionUnit.Descriptor instead.
func (DocumentDimensions_DocumentDimensionUnit) Number
func (x DocumentDimensions_DocumentDimensionUnit) Number() protoreflect.EnumNumber
func (DocumentDimensions_DocumentDimensionUnit) String
func (x DocumentDimensions_DocumentDimensionUnit) String() string
func (DocumentDimensions_DocumentDimensionUnit) Type
func (DocumentDimensions_DocumentDimensionUnit) Type() protoreflect.EnumType
DocumentInputConfig
type DocumentInputConfig struct {
// The Google Cloud Storage location of the document file. Only a single path
// should be given.
//
// Max supported size: 512MB.
//
// Supported extensions: .PDF.
GcsSource *GcsSource `protobuf:"bytes,1,opt,name=gcs_source,json=gcsSource,proto3" json:"gcs_source,omitempty"`
// contains filtered or unexported fields
}
Input configuration of a [Document][google.cloud.automl.v1.Document].
func (*DocumentInputConfig) Descriptor
func (*DocumentInputConfig) Descriptor() ([]byte, []int)
Deprecated: Use DocumentInputConfig.ProtoReflect.Descriptor instead.
func (*DocumentInputConfig) GetGcsSource
func (x *DocumentInputConfig) GetGcsSource() *GcsSource
func (*DocumentInputConfig) ProtoMessage
func (*DocumentInputConfig) ProtoMessage()
func (*DocumentInputConfig) ProtoReflect
func (x *DocumentInputConfig) ProtoReflect() protoreflect.Message
func (*DocumentInputConfig) Reset
func (x *DocumentInputConfig) Reset()
func (*DocumentInputConfig) String
func (x *DocumentInputConfig) String() string
Document_Layout
type Document_Layout struct {
TextSegment *TextSegment `protobuf:"bytes,1,opt,name=text_segment,json=textSegment,proto3" json:"text_segment,omitempty"`
PageNumber int32 `protobuf:"varint,2,opt,name=page_number,json=pageNumber,proto3" json:"page_number,omitempty"`
BoundingPoly *BoundingPoly `protobuf:"bytes,3,opt,name=bounding_poly,json=boundingPoly,proto3" json:"bounding_poly,omitempty"`
TextSegmentType Document_Layout_TextSegmentType "" /* 169 byte string literal not displayed */
}
Describes the layout information of a [text_segment][google.cloud.automl.v1.Document.Layout.text_segment] in the document.
func (*Document_Layout) Descriptor
func (*Document_Layout) Descriptor() ([]byte, []int)
Deprecated: Use Document_Layout.ProtoReflect.Descriptor instead.
func (*Document_Layout) GetBoundingPoly
func (x *Document_Layout) GetBoundingPoly() *BoundingPoly
func (*Document_Layout) GetPageNumber
func (x *Document_Layout) GetPageNumber() int32
func (*Document_Layout) GetTextSegment
func (x *Document_Layout) GetTextSegment() *TextSegment
func (*Document_Layout) GetTextSegmentType
func (x *Document_Layout) GetTextSegmentType() Document_Layout_TextSegmentType
func (*Document_Layout) ProtoMessage
func (*Document_Layout) ProtoMessage()
func (*Document_Layout) ProtoReflect
func (x *Document_Layout) ProtoReflect() protoreflect.Message
func (*Document_Layout) Reset
func (x *Document_Layout) Reset()
func (*Document_Layout) String
func (x *Document_Layout) String() string
Document_Layout_TextSegmentType
type Document_Layout_TextSegmentType int32
The type of TextSegment in the context of the original document.
Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED, Document_Layout_TOKEN, Document_Layout_PARAGRAPH, Document_Layout_FORM_FIELD, Document_Layout_FORM_FIELD_NAME, Document_Layout_FORM_FIELD_CONTENTS, Document_Layout_TABLE, Document_Layout_TABLE_HEADER, Document_Layout_TABLE_ROW, Document_Layout_TABLE_CELL
const (
// Should not be used.
Document_Layout_TEXT_SEGMENT_TYPE_UNSPECIFIED Document_Layout_TextSegmentType = 0
// The text segment is a token. e.g. word.
Document_Layout_TOKEN Document_Layout_TextSegmentType = 1
// The text segment is a paragraph.
Document_Layout_PARAGRAPH Document_Layout_TextSegmentType = 2
// The text segment is a form field.
Document_Layout_FORM_FIELD Document_Layout_TextSegmentType = 3
// The text segment is the name part of a form field. It will be treated
// as child of another FORM_FIELD TextSegment if its span is subspan of
// another TextSegment with type FORM_FIELD.
Document_Layout_FORM_FIELD_NAME Document_Layout_TextSegmentType = 4
// The text segment is the text content part of a form field. It will be
// treated as child of another FORM_FIELD TextSegment if its span is
// subspan of another TextSegment with type FORM_FIELD.
Document_Layout_FORM_FIELD_CONTENTS Document_Layout_TextSegmentType = 5
// The text segment is a whole table, including headers, and all rows.
Document_Layout_TABLE Document_Layout_TextSegmentType = 6
// The text segment is a table's headers. It will be treated as child of
// another TABLE TextSegment if its span is subspan of another TextSegment
// with type TABLE.
Document_Layout_TABLE_HEADER Document_Layout_TextSegmentType = 7
// The text segment is a row in table. It will be treated as child of
// another TABLE TextSegment if its span is subspan of another TextSegment
// with type TABLE.
Document_Layout_TABLE_ROW Document_Layout_TextSegmentType = 8
// The text segment is a cell in table. It will be treated as child of
// another TABLE_ROW TextSegment if its span is subspan of another
// TextSegment with type TABLE_ROW.
Document_Layout_TABLE_CELL Document_Layout_TextSegmentType = 9
)
func (Document_Layout_TextSegmentType) Descriptor
func (Document_Layout_TextSegmentType) Descriptor() protoreflect.EnumDescriptor
func (Document_Layout_TextSegmentType) Enum
func (x Document_Layout_TextSegmentType) Enum() *Document_Layout_TextSegmentType
func (Document_Layout_TextSegmentType) EnumDescriptor
func (Document_Layout_TextSegmentType) EnumDescriptor() ([]byte, []int)
Deprecated: Use Document_Layout_TextSegmentType.Descriptor instead.
func (Document_Layout_TextSegmentType) Number
func (x Document_Layout_TextSegmentType) Number() protoreflect.EnumNumber
func (Document_Layout_TextSegmentType) String
func (x Document_Layout_TextSegmentType) String() string
func (Document_Layout_TextSegmentType) Type
func (Document_Layout_TextSegmentType) Type() protoreflect.EnumType
ExamplePayload
type ExamplePayload struct {
// Required. The example data.
//
// Types that are assignable to Payload:
// *ExamplePayload_Image
// *ExamplePayload_TextSnippet
// *ExamplePayload_Document
Payload isExamplePayload_Payload `protobuf_oneof:"payload"`
// contains filtered or unexported fields
}
Example data used for training or prediction.
func (*ExamplePayload) Descriptor
func (*ExamplePayload) Descriptor() ([]byte, []int)
Deprecated: Use ExamplePayload.ProtoReflect.Descriptor instead.
func (*ExamplePayload) GetDocument
func (x *ExamplePayload) GetDocument() *Document
func (*ExamplePayload) GetImage
func (x *ExamplePayload) GetImage() *Image
func (*ExamplePayload) GetPayload
func (m *ExamplePayload) GetPayload() isExamplePayload_Payload
func (*ExamplePayload) GetTextSnippet
func (x *ExamplePayload) GetTextSnippet() *TextSnippet
func (*ExamplePayload) ProtoMessage
func (*ExamplePayload) ProtoMessage()
func (*ExamplePayload) ProtoReflect
func (x *ExamplePayload) ProtoReflect() protoreflect.Message
func (*ExamplePayload) Reset
func (x *ExamplePayload) Reset()
func (*ExamplePayload) String
func (x *ExamplePayload) String() string
ExamplePayload_Document
type ExamplePayload_Document struct {
// Example document.
Document *Document `protobuf:"bytes,4,opt,name=document,proto3,oneof"`
}
ExamplePayload_Image
type ExamplePayload_Image struct {
// Example image.
Image *Image `protobuf:"bytes,1,opt,name=image,proto3,oneof"`
}
ExamplePayload_TextSnippet
type ExamplePayload_TextSnippet struct {
// Example text.
TextSnippet *TextSnippet `protobuf:"bytes,2,opt,name=text_snippet,json=textSnippet,proto3,oneof"`
}
ExportDataOperationMetadata
type ExportDataOperationMetadata struct {
// Output only. Information further describing this export data's output.
OutputInfo *ExportDataOperationMetadata_ExportDataOutputInfo `protobuf:"bytes,1,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
// contains filtered or unexported fields
}
Details of ExportData operation.
func (*ExportDataOperationMetadata) Descriptor
func (*ExportDataOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ExportDataOperationMetadata.ProtoReflect.Descriptor instead.
func (*ExportDataOperationMetadata) GetOutputInfo
func (x *ExportDataOperationMetadata) GetOutputInfo() *ExportDataOperationMetadata_ExportDataOutputInfo
func (*ExportDataOperationMetadata) ProtoMessage
func (*ExportDataOperationMetadata) ProtoMessage()
func (*ExportDataOperationMetadata) ProtoReflect
func (x *ExportDataOperationMetadata) ProtoReflect() protoreflect.Message
func (*ExportDataOperationMetadata) Reset
func (x *ExportDataOperationMetadata) Reset()
func (*ExportDataOperationMetadata) String
func (x *ExportDataOperationMetadata) String() string
ExportDataOperationMetadata_ExportDataOutputInfo
type ExportDataOperationMetadata_ExportDataOutputInfo struct {
// The output location to which the exported data is written.
//
// Types that are assignable to OutputLocation:
// *ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory
OutputLocation isExportDataOperationMetadata_ExportDataOutputInfo_OutputLocation `protobuf_oneof:"output_location"`
// contains filtered or unexported fields
}
Further describes this export data's output. Supplements [OutputConfig][google.cloud.automl.v1.OutputConfig].
func (*ExportDataOperationMetadata_ExportDataOutputInfo) Descriptor
func (*ExportDataOperationMetadata_ExportDataOutputInfo) Descriptor() ([]byte, []int)
Deprecated: Use ExportDataOperationMetadata_ExportDataOutputInfo.ProtoReflect.Descriptor instead.
func (*ExportDataOperationMetadata_ExportDataOutputInfo) GetGcsOutputDirectory
func (x *ExportDataOperationMetadata_ExportDataOutputInfo) GetGcsOutputDirectory() string
func (*ExportDataOperationMetadata_ExportDataOutputInfo) GetOutputLocation
func (m *ExportDataOperationMetadata_ExportDataOutputInfo) GetOutputLocation() isExportDataOperationMetadata_ExportDataOutputInfo_OutputLocation
func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoMessage
func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoMessage()
func (*ExportDataOperationMetadata_ExportDataOutputInfo) ProtoReflect
func (x *ExportDataOperationMetadata_ExportDataOutputInfo) ProtoReflect() protoreflect.Message
func (*ExportDataOperationMetadata_ExportDataOutputInfo) Reset
func (x *ExportDataOperationMetadata_ExportDataOutputInfo) Reset()
func (*ExportDataOperationMetadata_ExportDataOutputInfo) String
func (x *ExportDataOperationMetadata_ExportDataOutputInfo) String() string
ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory
type ExportDataOperationMetadata_ExportDataOutputInfo_GcsOutputDirectory struct {
// The full path of the Google Cloud Storage directory created, into which
// the exported data is written.
GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3,oneof"`
}
ExportDataRequest
type ExportDataRequest struct {
// Required. The resource name of the dataset.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// Required. The desired output location.
OutputConfig *OutputConfig `protobuf:"bytes,3,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.ExportData][google.cloud.automl.v1.AutoMl.ExportData].
func (*ExportDataRequest) Descriptor
func (*ExportDataRequest) Descriptor() ([]byte, []int)
Deprecated: Use ExportDataRequest.ProtoReflect.Descriptor instead.
func (*ExportDataRequest) GetName
func (x *ExportDataRequest) GetName() string
func (*ExportDataRequest) GetOutputConfig
func (x *ExportDataRequest) GetOutputConfig() *OutputConfig
func (*ExportDataRequest) ProtoMessage
func (*ExportDataRequest) ProtoMessage()
func (*ExportDataRequest) ProtoReflect
func (x *ExportDataRequest) ProtoReflect() protoreflect.Message
func (*ExportDataRequest) Reset
func (x *ExportDataRequest) Reset()
func (*ExportDataRequest) String
func (x *ExportDataRequest) String() string
ExportModelOperationMetadata
type ExportModelOperationMetadata struct {
// Output only. Information further describing the output of this model
// export.
OutputInfo *ExportModelOperationMetadata_ExportModelOutputInfo `protobuf:"bytes,2,opt,name=output_info,json=outputInfo,proto3" json:"output_info,omitempty"`
// contains filtered or unexported fields
}
Details of ExportModel operation.
func (*ExportModelOperationMetadata) Descriptor
func (*ExportModelOperationMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ExportModelOperationMetadata.ProtoReflect.Descriptor instead.
func (*ExportModelOperationMetadata) GetOutputInfo
func (x *ExportModelOperationMetadata) GetOutputInfo() *ExportModelOperationMetadata_ExportModelOutputInfo
func (*ExportModelOperationMetadata) ProtoMessage
func (*ExportModelOperationMetadata) ProtoMessage()
func (*ExportModelOperationMetadata) ProtoReflect
func (x *ExportModelOperationMetadata) ProtoReflect() protoreflect.Message
func (*ExportModelOperationMetadata) Reset
func (x *ExportModelOperationMetadata) Reset()
func (*ExportModelOperationMetadata) String
func (x *ExportModelOperationMetadata) String() string
ExportModelOperationMetadata_ExportModelOutputInfo
type ExportModelOperationMetadata_ExportModelOutputInfo struct {
// The full path of the Google Cloud Storage directory created, into which
// the model will be exported.
GcsOutputDirectory string `protobuf:"bytes,1,opt,name=gcs_output_directory,json=gcsOutputDirectory,proto3" json:"gcs_output_directory,omitempty"`
// contains filtered or unexported fields
}
Further describes the output of model export. Supplements [ModelExportOutputConfig][google.cloud.automl.v1.ModelExportOutputConfig].
func (*ExportModelOperationMetadata_ExportModelOutputInfo) Descriptor
func (*ExportModelOperationMetadata_ExportModelOutputInfo) Descriptor() ([]byte, []int)
Deprecated: Use ExportModelOperationMetadata_ExportModelOutputInfo.ProtoReflect.Descriptor instead.
func (*ExportModelOperationMetadata_ExportModelOutputInfo) GetGcsOutputDirectory
func (x *ExportModelOperationMetadata_ExportModelOutputInfo) GetGcsOutputDirectory() string
func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoMessage
func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoMessage()
func (*ExportModelOperationMetadata_ExportModelOutputInfo) ProtoReflect
func (x *ExportModelOperationMetadata_ExportModelOutputInfo) ProtoReflect() protoreflect.Message
func (*ExportModelOperationMetadata_ExportModelOutputInfo) Reset
func (x *ExportModelOperationMetadata_ExportModelOutputInfo) Reset()
func (*ExportModelOperationMetadata_ExportModelOutputInfo) String
func (x *ExportModelOperationMetadata_ExportModelOutputInfo) String() string
ExportModelRequest
type ExportModelRequest struct {
// Required. The resource name of the model to export.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// Required. The desired output location and configuration.
OutputConfig *ModelExportOutputConfig `protobuf:"bytes,3,opt,name=output_config,json=outputConfig,proto3" json:"output_config,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.ExportModel][google.cloud.automl.v1.AutoMl.ExportModel]. Models need to be enabled for exporting, otherwise an error code will be returned.
func (*ExportModelRequest) Descriptor
func (*ExportModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use ExportModelRequest.ProtoReflect.Descriptor instead.
func (*ExportModelRequest) GetName
func (x *ExportModelRequest) GetName() string
func (*ExportModelRequest) GetOutputConfig
func (x *ExportModelRequest) GetOutputConfig() *ModelExportOutputConfig
func (*ExportModelRequest) ProtoMessage
func (*ExportModelRequest) ProtoMessage()
func (*ExportModelRequest) ProtoReflect
func (x *ExportModelRequest) ProtoReflect() protoreflect.Message
func (*ExportModelRequest) Reset
func (x *ExportModelRequest) Reset()
func (*ExportModelRequest) String
func (x *ExportModelRequest) String() string
GcsDestination
type GcsDestination struct {
// Required. Google Cloud Storage URI to output directory, up to 2000
// characters long.
// Accepted forms:
// * Prefix path: gs://bucket/directory
// The requesting user must have write permission to the bucket.
// The directory is created if it doesn't exist.
OutputUriPrefix string `protobuf:"bytes,1,opt,name=output_uri_prefix,json=outputUriPrefix,proto3" json:"output_uri_prefix,omitempty"`
// contains filtered or unexported fields
}
The Google Cloud Storage location where the output is to be written to.
func (*GcsDestination) Descriptor
func (*GcsDestination) Descriptor() ([]byte, []int)
Deprecated: Use GcsDestination.ProtoReflect.Descriptor instead.
func (*GcsDestination) GetOutputUriPrefix
func (x *GcsDestination) GetOutputUriPrefix() string
func (*GcsDestination) ProtoMessage
func (*GcsDestination) ProtoMessage()
func (*GcsDestination) ProtoReflect
func (x *GcsDestination) ProtoReflect() protoreflect.Message
func (*GcsDestination) Reset
func (x *GcsDestination) Reset()
func (*GcsDestination) String
func (x *GcsDestination) String() string
GcsSource
type GcsSource struct {
// Required. Google Cloud Storage URIs to input files, up to 2000
// characters long. Accepted forms:
// * Full object path, e.g. gs://bucket/directory/object.csv
InputUris []string `protobuf:"bytes,1,rep,name=input_uris,json=inputUris,proto3" json:"input_uris,omitempty"`
// contains filtered or unexported fields
}
The Google Cloud Storage location for the input content.
func (*GcsSource) Descriptor
Deprecated: Use GcsSource.ProtoReflect.Descriptor instead.
func (*GcsSource) GetInputUris
func (*GcsSource) ProtoMessage
func (*GcsSource) ProtoMessage()
func (*GcsSource) ProtoReflect
func (x *GcsSource) ProtoReflect() protoreflect.Message
func (*GcsSource) Reset
func (x *GcsSource) Reset()
func (*GcsSource) String
GetAnnotationSpecRequest
type GetAnnotationSpecRequest struct {
// Required. The resource name of the annotation spec to retrieve.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.GetAnnotationSpec][google.cloud.automl.v1.AutoMl.GetAnnotationSpec].
func (*GetAnnotationSpecRequest) Descriptor
func (*GetAnnotationSpecRequest) Descriptor() ([]byte, []int)
Deprecated: Use GetAnnotationSpecRequest.ProtoReflect.Descriptor instead.
func (*GetAnnotationSpecRequest) GetName
func (x *GetAnnotationSpecRequest) GetName() string
func (*GetAnnotationSpecRequest) ProtoMessage
func (*GetAnnotationSpecRequest) ProtoMessage()
func (*GetAnnotationSpecRequest) ProtoReflect
func (x *GetAnnotationSpecRequest) ProtoReflect() protoreflect.Message
func (*GetAnnotationSpecRequest) Reset
func (x *GetAnnotationSpecRequest) Reset()
func (*GetAnnotationSpecRequest) String
func (x *GetAnnotationSpecRequest) String() string
GetDatasetRequest
type GetDatasetRequest struct {
// Required. The resource name of the dataset to retrieve.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.GetDataset][google.cloud.automl.v1.AutoMl.GetDataset].
func (*GetDatasetRequest) Descriptor
func (*GetDatasetRequest) Descriptor() ([]byte, []int)
Deprecated: Use GetDatasetRequest.ProtoReflect.Descriptor instead.
func (*GetDatasetRequest) GetName
func (x *GetDatasetRequest) GetName() string
func (*GetDatasetRequest) ProtoMessage
func (*GetDatasetRequest) ProtoMessage()
func (*GetDatasetRequest) ProtoReflect
func (x *GetDatasetRequest) ProtoReflect() protoreflect.Message
func (*GetDatasetRequest) Reset
func (x *GetDatasetRequest) Reset()
func (*GetDatasetRequest) String
func (x *GetDatasetRequest) String() string
GetModelEvaluationRequest
type GetModelEvaluationRequest struct {
// Required. Resource name for the model evaluation.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.GetModelEvaluation][google.cloud.automl.v1.AutoMl.GetModelEvaluation].
func (*GetModelEvaluationRequest) Descriptor
func (*GetModelEvaluationRequest) Descriptor() ([]byte, []int)
Deprecated: Use GetModelEvaluationRequest.ProtoReflect.Descriptor instead.
func (*GetModelEvaluationRequest) GetName
func (x *GetModelEvaluationRequest) GetName() string
func (*GetModelEvaluationRequest) ProtoMessage
func (*GetModelEvaluationRequest) ProtoMessage()
func (*GetModelEvaluationRequest) ProtoReflect
func (x *GetModelEvaluationRequest) ProtoReflect() protoreflect.Message
func (*GetModelEvaluationRequest) Reset
func (x *GetModelEvaluationRequest) Reset()
func (*GetModelEvaluationRequest) String
func (x *GetModelEvaluationRequest) String() string
GetModelRequest
type GetModelRequest struct {
// Required. Resource name of the model.
Name string `protobuf:"bytes,1,opt,name=name,proto3" json:"name,omitempty"`
// contains filtered or unexported fields
}
Request message for [AutoMl.GetModel][google.cloud.automl.v1.AutoMl.GetModel].
func (*GetModelRequest) Descriptor
func (*GetModelRequest) Descriptor() ([]byte, []int)
Deprecated: Use GetModelRequest.ProtoReflect.Descriptor instead.
func (*GetModelRequest) GetName
func (x *GetModelRequest) GetName() string
func (*GetModelRequest) ProtoMessage
func (*GetModelRequest) ProtoMessage()
func (*GetModelRequest) ProtoReflect
func (x *GetModelRequest) ProtoReflect() protoreflect.Message
func (*GetModelRequest) Reset
func (x *GetModelRequest) Reset()
func (*GetModelRequest) String
func (x *GetModelRequest) String() string
Image
type Image struct {
// Input only. The data representing the image.
// For Predict calls [image_bytes][google.cloud.automl.v1.Image.image_bytes] must be set .
//
// Types that are assignable to Data:
// *Image_ImageBytes
Data isImage_Data `protobuf_oneof:"data"`
// Output only. HTTP URI to the thumbnail image.
ThumbnailUri string `protobuf:"bytes,4,opt,name=thumbnail_uri,json=thumbnailUri,proto3" json:"thumbnail_uri,omitempty"`
// contains filtered or unexported fields
}
A representation of an image. Only images up to 30MB in size are supported.
func (*Image) Descriptor
Deprecated: Use Image.ProtoReflect.Descriptor instead.
func (*Image) GetData
func (m *Image) GetData() isImage_Data
func (*Image) GetImageBytes
func (*Image) GetThumbnailUri
func (*Image) ProtoMessage
func (*Image) ProtoMessage()
func (*Image) ProtoReflect
func (x *Image) ProtoReflect() protoreflect.Message
func (*Image) Reset
func (x *Image) Reset()
func (*Image) String
ImageClassificationDatasetMetadata
type ImageClassificationDatasetMetadata struct {
ClassificationType ClassificationType "" /* 163 byte string literal not displayed */
}
Dataset metadata that is specific to image classification.
func (*ImageClassificationDatasetMetadata) Descriptor
func (*ImageClassificationDatasetMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ImageClassificationDatasetMetadata.ProtoReflect.Descriptor instead.
func (*ImageClassificationDatasetMetadata) GetClassificationType
func (x *ImageClassificationDatasetMetadata) GetClassificationType() ClassificationType
func (*ImageClassificationDatasetMetadata) ProtoMessage
func (*ImageClassificationDatasetMetadata) ProtoMessage()
func (*ImageClassificationDatasetMetadata) ProtoReflect
func (x *ImageClassificationDatasetMetadata) ProtoReflect() protoreflect.Message
func (*ImageClassificationDatasetMetadata) Reset
func (x *ImageClassificationDatasetMetadata) Reset()
func (*ImageClassificationDatasetMetadata) String
func (x *ImageClassificationDatasetMetadata) String() string
ImageClassificationModelDeploymentMetadata
type ImageClassificationModelDeploymentMetadata struct {
// Input only. The number of nodes to deploy the model on. A node is an
// abstraction of a machine resource, which can handle online prediction QPS
// as given in the model's
// [node_qps][google.cloud.automl.v1.ImageClassificationModelMetadata.node_qps].
// Must be between 1 and 100, inclusive on both ends.
NodeCount int64 `protobuf:"varint,1,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"`
// contains filtered or unexported fields
}
Model deployment metadata specific to Image Classification.
func (*ImageClassificationModelDeploymentMetadata) Descriptor
func (*ImageClassificationModelDeploymentMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ImageClassificationModelDeploymentMetadata.ProtoReflect.Descriptor instead.
func (*ImageClassificationModelDeploymentMetadata) GetNodeCount
func (x *ImageClassificationModelDeploymentMetadata) GetNodeCount() int64
func (*ImageClassificationModelDeploymentMetadata) ProtoMessage
func (*ImageClassificationModelDeploymentMetadata) ProtoMessage()
func (*ImageClassificationModelDeploymentMetadata) ProtoReflect
func (x *ImageClassificationModelDeploymentMetadata) ProtoReflect() protoreflect.Message
func (*ImageClassificationModelDeploymentMetadata) Reset
func (x *ImageClassificationModelDeploymentMetadata) Reset()
func (*ImageClassificationModelDeploymentMetadata) String
func (x *ImageClassificationModelDeploymentMetadata) String() string
ImageClassificationModelMetadata
type ImageClassificationModelMetadata struct {
BaseModelId string `protobuf:"bytes,1,opt,name=base_model_id,json=baseModelId,proto3" json:"base_model_id,omitempty"`
TrainBudgetMilliNodeHours int64 "" /* 144 byte string literal not displayed */
TrainCostMilliNodeHours int64 "" /* 138 byte string literal not displayed */
StopReason string `protobuf:"bytes,5,opt,name=stop_reason,json=stopReason,proto3" json:"stop_reason,omitempty"`
ModelType string `protobuf:"bytes,7,opt,name=model_type,json=modelType,proto3" json:"model_type,omitempty"`
NodeQps float64 `protobuf:"fixed64,13,opt,name=node_qps,json=nodeQps,proto3" json:"node_qps,omitempty"`
NodeCount int64 `protobuf:"varint,14,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"`
}
Model metadata for image classification.
func (*ImageClassificationModelMetadata) Descriptor
func (*ImageClassificationModelMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ImageClassificationModelMetadata.ProtoReflect.Descriptor instead.
func (*ImageClassificationModelMetadata) GetBaseModelId
func (x *ImageClassificationModelMetadata) GetBaseModelId() string
func (*ImageClassificationModelMetadata) GetModelType
func (x *ImageClassificationModelMetadata) GetModelType() string
func (*ImageClassificationModelMetadata) GetNodeCount
func (x *ImageClassificationModelMetadata) GetNodeCount() int64
func (*ImageClassificationModelMetadata) GetNodeQps
func (x *ImageClassificationModelMetadata) GetNodeQps() float64
func (*ImageClassificationModelMetadata) GetStopReason
func (x *ImageClassificationModelMetadata) GetStopReason() string
func (*ImageClassificationModelMetadata) GetTrainBudgetMilliNodeHours
func (x *ImageClassificationModelMetadata) GetTrainBudgetMilliNodeHours() int64
func (*ImageClassificationModelMetadata) GetTrainCostMilliNodeHours
func (x *ImageClassificationModelMetadata) GetTrainCostMilliNodeHours() int64
func (*ImageClassificationModelMetadata) ProtoMessage
func (*ImageClassificationModelMetadata) ProtoMessage()
func (*ImageClassificationModelMetadata) ProtoReflect
func (x *ImageClassificationModelMetadata) ProtoReflect() protoreflect.Message
func (*ImageClassificationModelMetadata) Reset
func (x *ImageClassificationModelMetadata) Reset()
func (*ImageClassificationModelMetadata) String
func (x *ImageClassificationModelMetadata) String() string
ImageObjectDetectionAnnotation
type ImageObjectDetectionAnnotation struct {
// Output only. The rectangle representing the object location.
BoundingBox *BoundingPoly `protobuf:"bytes,1,opt,name=bounding_box,json=boundingBox,proto3" json:"bounding_box,omitempty"`
// Output only. The confidence that this annotation is positive for the parent example,
// value in [0, 1], higher means higher positivity confidence.
Score float32 `protobuf:"fixed32,2,opt,name=score,proto3" json:"score,omitempty"`
// contains filtered or unexported fields
}
Annotation details for image object detection.
func (*ImageObjectDetectionAnnotation) Descriptor
func (*ImageObjectDetectionAnnotation) Descriptor() ([]byte, []int)
Deprecated: Use ImageObjectDetectionAnnotation.ProtoReflect.Descriptor instead.
func (*ImageObjectDetectionAnnotation) GetBoundingBox
func (x *ImageObjectDetectionAnnotation) GetBoundingBox() *BoundingPoly
func (*ImageObjectDetectionAnnotation) GetScore
func (x *ImageObjectDetectionAnnotation) GetScore() float32
func (*ImageObjectDetectionAnnotation) ProtoMessage
func (*ImageObjectDetectionAnnotation) ProtoMessage()
func (*ImageObjectDetectionAnnotation) ProtoReflect
func (x *ImageObjectDetectionAnnotation) ProtoReflect() protoreflect.Message
func (*ImageObjectDetectionAnnotation) Reset
func (x *ImageObjectDetectionAnnotation) Reset()
func (*ImageObjectDetectionAnnotation) String
func (x *ImageObjectDetectionAnnotation) String() string
ImageObjectDetectionDatasetMetadata
type ImageObjectDetectionDatasetMetadata struct {
// contains filtered or unexported fields
}
Dataset metadata specific to image object detection.
func (*ImageObjectDetectionDatasetMetadata) Descriptor
func (*ImageObjectDetectionDatasetMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ImageObjectDetectionDatasetMetadata.ProtoReflect.Descriptor instead.
func (*ImageObjectDetectionDatasetMetadata) ProtoMessage
func (*ImageObjectDetectionDatasetMetadata) ProtoMessage()
func (*ImageObjectDetectionDatasetMetadata) ProtoReflect
func (x *ImageObjectDetectionDatasetMetadata) ProtoReflect() protoreflect.Message
func (*ImageObjectDetectionDatasetMetadata) Reset
func (x *ImageObjectDetectionDatasetMetadata) Reset()
func (*ImageObjectDetectionDatasetMetadata) String
func (x *ImageObjectDetectionDatasetMetadata) String() string
ImageObjectDetectionEvaluationMetrics
type ImageObjectDetectionEvaluationMetrics struct {
EvaluatedBoundingBoxCount int32 "" /* 141 byte string literal not displayed */
BoundingBoxMetricsEntries []*BoundingBoxMetricsEntry "" /* 140 byte string literal not displayed */
BoundingBoxMeanAveragePrecision float32 "" /* 162 byte string literal not displayed */
}
Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.
func (*ImageObjectDetectionEvaluationMetrics) Descriptor
func (*ImageObjectDetectionEvaluationMetrics) Descriptor() ([]byte, []int)
Deprecated: Use ImageObjectDetectionEvaluationMetrics.ProtoReflect.Descriptor instead.
func (*ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMeanAveragePrecision
func (x *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMeanAveragePrecision() float32
func (*ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMetricsEntries
func (x *ImageObjectDetectionEvaluationMetrics) GetBoundingBoxMetricsEntries() []*BoundingBoxMetricsEntry
func (*ImageObjectDetectionEvaluationMetrics) GetEvaluatedBoundingBoxCount
func (x *ImageObjectDetectionEvaluationMetrics) GetEvaluatedBoundingBoxCount() int32
func (*ImageObjectDetectionEvaluationMetrics) ProtoMessage
func (*ImageObjectDetectionEvaluationMetrics) ProtoMessage()
func (*ImageObjectDetectionEvaluationMetrics) ProtoReflect
func (x *ImageObjectDetectionEvaluationMetrics) ProtoReflect() protoreflect.Message
func (*ImageObjectDetectionEvaluationMetrics) Reset
func (x *ImageObjectDetectionEvaluationMetrics) Reset()
func (*ImageObjectDetectionEvaluationMetrics) String
func (x *ImageObjectDetectionEvaluationMetrics) String() string
ImageObjectDetectionModelDeploymentMetadata
type ImageObjectDetectionModelDeploymentMetadata struct {
// Input only. The number of nodes to deploy the model on. A node is an
// abstraction of a machine resource, which can handle online prediction QPS
// as given in the model's
// [qps_per_node][google.cloud.automl.v1.ImageObjectDetectionModelMetadata.qps_per_node].
// Must be between 1 and 100, inclusive on both ends.
NodeCount int64 `protobuf:"varint,1,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"`
// contains filtered or unexported fields
}
Model deployment metadata specific to Image Object Detection.
func (*ImageObjectDetectionModelDeploymentMetadata) Descriptor
func (*ImageObjectDetectionModelDeploymentMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ImageObjectDetectionModelDeploymentMetadata.ProtoReflect.Descriptor instead.
func (*ImageObjectDetectionModelDeploymentMetadata) GetNodeCount
func (x *ImageObjectDetectionModelDeploymentMetadata) GetNodeCount() int64
func (*ImageObjectDetectionModelDeploymentMetadata) ProtoMessage
func (*ImageObjectDetectionModelDeploymentMetadata) ProtoMessage()
func (*ImageObjectDetectionModelDeploymentMetadata) ProtoReflect
func (x *ImageObjectDetectionModelDeploymentMetadata) ProtoReflect() protoreflect.Message
func (*ImageObjectDetectionModelDeploymentMetadata) Reset
func (x *ImageObjectDetectionModelDeploymentMetadata) Reset()
func (*ImageObjectDetectionModelDeploymentMetadata) String
func (x *ImageObjectDetectionModelDeploymentMetadata) String() string
ImageObjectDetectionModelMetadata
type ImageObjectDetectionModelMetadata struct {
ModelType string `protobuf:"bytes,1,opt,name=model_type,json=modelType,proto3" json:"model_type,omitempty"`
NodeCount int64 `protobuf:"varint,3,opt,name=node_count,json=nodeCount,proto3" json:"node_count,omitempty"`
NodeQps float64 `protobuf:"fixed64,4,opt,name=node_qps,json=nodeQps,proto3" json:"node_qps,omitempty"`
StopReason string `protobuf:"bytes,5,opt,name=stop_reason,json=stopReason,proto3" json:"stop_reason,omitempty"`
TrainBudgetMilliNodeHours int64 "" /* 143 byte string literal not displayed */
TrainCostMilliNodeHours int64 "" /* 137 byte string literal not displayed */
}
Model metadata specific to image object detection.
func (*ImageObjectDetectionModelMetadata) Descriptor
func (*ImageObjectDetectionModelMetadata) Descriptor() ([]byte, []int)
Deprecated: Use ImageObjectDetectionModelMetadata.ProtoReflect.Descriptor instead.
func (*ImageObjectDetectionModelMetadata) GetModelType
func (x *ImageObjectDetectionModelMetadata) GetModelType() string
func (*ImageObjectDetectionModelMetadata) GetNodeCount
func (x *ImageObjectDetectionModelMetadata) GetNodeCount() int64
func (*ImageObjectDetectionModelMetadata) GetNodeQps
func (x *ImageObjectDetectionModelMetadata) GetNodeQps() float64
func (*ImageObjectDetectionModelMetadata) GetStopReason
func (x *ImageObjectDetectionModelMetadata) GetStopReason() string
func (*ImageObjectDetectionModelMetadata) GetTrainBudgetMilliNodeHours
func (x *ImageObjectDetectionModelMetadata) GetTrainBudgetMilliNodeHours() int64
func (*ImageObjectDetectionModelMetadata) GetTrainCostMilliNodeHours
func (x *ImageObjectDetectionModelMetadata) GetTrainCostMilliNodeHours() int64
func (*ImageObjectDetectionModelMetadata) ProtoMessage
func (*ImageObjectDetectionModelMetadata) ProtoMessage()