Google Cloud Dialogflow v2 API - Class InferenceParameter (4.22.0)

public sealed class InferenceParameter : IMessage<InferenceParameter>, IEquatable<InferenceParameter>, IDeepCloneable<InferenceParameter>, IBufferMessage, IMessage

Reference documentation and code samples for the Google Cloud Dialogflow v2 API class InferenceParameter.

The parameters of inference.

Inheritance

object > InferenceParameter

Namespace

Google.Cloud.Dialogflow.V2

Assembly

Google.Cloud.Dialogflow.V2.dll

Constructors

InferenceParameter()

public InferenceParameter()

InferenceParameter(InferenceParameter)

public InferenceParameter(InferenceParameter other)
Parameter
Name Description
other InferenceParameter

Properties

HasMaxOutputTokens

public bool HasMaxOutputTokens { get; }

Gets whether the "max_output_tokens" field is set

Property Value
Type Description
bool

HasTemperature

public bool HasTemperature { get; }

Gets whether the "temperature" field is set

Property Value
Type Description
bool

HasTopK

public bool HasTopK { get; }

Gets whether the "top_k" field is set

Property Value
Type Description
bool

HasTopP

public bool HasTopP { get; }

Gets whether the "top_p" field is set

Property Value
Type Description
bool

MaxOutputTokens

public int MaxOutputTokens { get; set; }

Optional. Maximum number of the output tokens for the generator.

Property Value
Type Description
int

Temperature

public double Temperature { get; set; }

Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.

Property Value
Type Description
double

TopK

public int TopK { get; set; }

Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.

Property Value
Type Description
int

TopP

public double TopP { get; set; }

Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.

Property Value
Type Description
double