public sealed class AutoMlForecastingInputs : IMessage<AutoMlForecastingInputs>, IEquatable<AutoMlForecastingInputs>, IDeepCloneable<AutoMlForecastingInputs>, IBufferMessage, IMessage
Implements
IMessageAutoMlForecastingInputs, IEquatableAutoMlForecastingInputs, IDeepCloneableAutoMlForecastingInputs, IBufferMessage, IMessageNamespace
Google.Cloud.AIPlatform.V1Beta1.Schema.TrainingJob.DefinitionAssembly
Google.Cloud.AIPlatform.V1Beta1.dll
Constructors
AutoMlForecastingInputs()
public AutoMlForecastingInputs()
AutoMlForecastingInputs(AutoMlForecastingInputs)
public AutoMlForecastingInputs(AutoMlForecastingInputs other)
Parameter | |
---|---|
Name | Description |
other |
AutoMlForecastingInputs |
Properties
AdditionalExperiments
public RepeatedField<string> AdditionalExperiments { get; }
Additional experiment flags for the time series forcasting training.
Property Value | |
---|---|
Type | Description |
RepeatedFieldstring |
AvailableAtForecastColumns
public RepeatedField<string> AvailableAtForecastColumns { get; }
Names of columns that are available and provided when a forecast is requested. These columns contain information for the given entity (identified by the time_series_identifier_column column) that is known at forecast. For example, predicted weather for a specific day.
Property Value | |
---|---|
Type | Description |
RepeatedFieldstring |
ContextWindow
public long ContextWindow { get; set; }
The amount of time into the past training and prediction data is used
for model training and prediction respectively. Expressed in number of
units defined by the data_granularity
field.
Property Value | |
---|---|
Type | Description |
long |
DataGranularity
public AutoMlForecastingInputs.Types.Granularity DataGranularity { get; set; }
Expected difference in time granularity between rows in the data.
Property Value | |
---|---|
Type | Description |
AutoMlForecastingInputsTypesGranularity |
ExportEvaluatedDataItemsConfig
public ExportEvaluatedDataItemsConfig ExportEvaluatedDataItemsConfig { get; set; }
Configuration for exporting test set predictions to a BigQuery table. If this configuration is absent, then the export is not performed.
Property Value | |
---|---|
Type | Description |
ExportEvaluatedDataItemsConfig |
ForecastHorizon
public long ForecastHorizon { get; set; }
The amount of time into the future for which forecasted values for the
target are returned. Expressed in number of units defined by the
data_granularity
field.
Property Value | |
---|---|
Type | Description |
long |
OptimizationObjective
public string OptimizationObjective { get; set; }
Objective function the model is optimizing towards. The training process creates a model that optimizes the value of the objective function over the validation set.
The supported optimization objectives:
"minimize-rmse" (default) - Minimize root-mean-squared error (RMSE).
"minimize-mae" - Minimize mean-absolute error (MAE).
"minimize-rmsle" - Minimize root-mean-squared log error (RMSLE).
"minimize-rmspe" - Minimize root-mean-squared percentage error (RMSPE).
"minimize-wape-mae" - Minimize the combination of weighted absolute percentage error (WAPE) and mean-absolute-error (MAE).
"minimize-quantile-loss" - Minimize the quantile loss at the quantiles defined in
quantiles
.
Property Value | |
---|---|
Type | Description |
string |
Quantiles
public RepeatedField<double> Quantiles { get; }
Quantiles to use for minimize-quantile-loss optimization_objective
. Up to
5 quantiles are allowed of values between 0 and 1, exclusive. Required if
the value of optimization_objective is minimize-quantile-loss. Represents
the percent quantiles to use for that objective. Quantiles must be unique.
Property Value | |
---|---|
Type | Description |
RepeatedFielddouble |
TargetColumn
public string TargetColumn { get; set; }
The name of the column that the model is to predict.
Property Value | |
---|---|
Type | Description |
string |
TimeColumn
public string TimeColumn { get; set; }
The name of the column that identifies time order in the time series.
Property Value | |
---|---|
Type | Description |
string |
TimeSeriesAttributeColumns
public RepeatedField<string> TimeSeriesAttributeColumns { get; }
Column names that should be used as attribute columns. The value of these columns does not vary as a function of time. For example, store ID or item color.
Property Value | |
---|---|
Type | Description |
RepeatedFieldstring |
TimeSeriesIdentifierColumn
public string TimeSeriesIdentifierColumn { get; set; }
The name of the column that identifies the time series.
Property Value | |
---|---|
Type | Description |
string |
TrainBudgetMilliNodeHours
public long TrainBudgetMilliNodeHours { get; set; }
Required. The train budget of creating this model, expressed in milli node hours i.e. 1,000 value in this field means 1 node hour.
The training cost of the model will not exceed this budget. The final cost will be attempted to be close to the budget, though may end up being (even) noticeably smaller - at the backend's discretion. This especially may happen when further model training ceases to provide any improvements.
If the budget is set to a value known to be insufficient to train a model for the given dataset, the training won't be attempted and will error.
The train budget must be between 1,000 and 72,000 milli node hours, inclusive.
Property Value | |
---|---|
Type | Description |
long |
Transformations
public RepeatedField<AutoMlForecastingInputs.Types.Transformation> Transformations { get; }
Each transformation will apply transform function to given input column. And the result will be used for training. When creating transformation for BigQuery Struct column, the column should be flattened using "." as the delimiter.
Property Value | |
---|---|
Type | Description |
RepeatedFieldAutoMlForecastingInputsTypesTransformation |
UnavailableAtForecastColumns
public RepeatedField<string> UnavailableAtForecastColumns { get; }
Names of columns that are unavailable when a forecast is requested. This column contains information for the given entity (identified by the time_series_identifier_column) that is unknown before the forecast For example, actual weather on a given day.
Property Value | |
---|---|
Type | Description |
RepeatedFieldstring |
ValidationOptions
public string ValidationOptions { get; set; }
Validation options for the data validation component. The available options are:
"fail-pipeline" - default, will validate against the validation and fail the pipeline if it fails.
"ignore-validation" - ignore the results of the validation and continue
Property Value | |
---|---|
Type | Description |
string |
WeightColumn
public string WeightColumn { get; set; }
Column name that should be used as the weight column. Higher values in this column give more importance to the row during model training. The column must have numeric values between 0 and 10000 inclusively; 0 means the row is ignored for training. If weight column field is not set, then all rows are assumed to have equal weight of 1.
Property Value | |
---|---|
Type | Description |
string |