Class Quaternion (2.10.0)

public sealed class Quaternion : IMessage<Quaternion>, IEquatable<Quaternion>, IDeepCloneable<Quaternion>, IBufferMessage, IMessage

A quaternion is defined as the quotient of two directed lines in a three-dimensional space or equivalently as the quotient of two Euclidean vectors (https://en.wikipedia.org/wiki/Quaternion).

Quaternions are often used in calculations involving three-dimensional rotations (https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation), as they provide greater mathematical robustness by avoiding the gimbal lock problems that can be encountered when using Euler angles (https://en.wikipedia.org/wiki/Gimbal_lock).

Quaternions are generally represented in this form:

w + xi + yj + zk

where x, y, z, and w are real numbers, and i, j, and k are three imaginary numbers.

Our naming choice (x, y, z, w) comes from the desire to avoid confusion for those interested in the geometric properties of the quaternion in the 3D Cartesian space. Other texts often use alternative names or subscripts, such as (a, b, c, d), (1, i, j, k), or (0, 1, 2, 3), which are perhaps better suited for mathematical interpretations.

To avoid any confusion, as well as to maintain compatibility with a large number of software libraries, the quaternions represented using the protocol buffer below must follow the Hamilton convention, which defines ij = k (i.e. a right-handed algebra), and therefore:

i^2 = j^2 = k^2 = ijk = −1
ij = −ji = k
jk = −kj = i
ki = −ik = j

Please DO NOT use this to represent quaternions that follow the JPL convention, or any of the other quaternion flavors out there.

Definitions:

  • Quaternion norm (or magnitude): sqrt(x^2 + y^2 + z^2 + w^2).
  • Unit (or normalized) quaternion: a quaternion whose norm is 1.
  • Pure quaternion: a quaternion whose scalar component (w) is 0.
  • Rotation quaternion: a unit quaternion used to represent rotation.
  • Orientation quaternion: a unit quaternion used to represent orientation.

A quaternion can be normalized by dividing it by its norm. The resulting quaternion maintains the same direction, but has a norm of 1, i.e. it moves on the unit sphere. This is generally necessary for rotation and orientation quaternions, to avoid rounding errors: https://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions

Note that (x, y, z, w) and (-x, -y, -z, -w) represent the same rotation, but normalization would be even more useful, e.g. for comparison purposes, if it would produce a unique representation. It is thus recommended that w be kept positive, which can be achieved by changing all the signs when w is negative.

Inheritance

object > Quaternion

Namespace

Google.Type

Assembly

Google.Api.CommonProtos.dll

Constructors

Quaternion()

public Quaternion()

Quaternion(Quaternion)

public Quaternion(Quaternion other)
Parameter
Name Description
other Quaternion

Fields

WFieldNumber

public const int WFieldNumber = 4

Field number for the "w" field.

Field Value
Type Description
int

XFieldNumber

public const int XFieldNumber = 1

Field number for the "x" field.

Field Value
Type Description
int

YFieldNumber

public const int YFieldNumber = 2

Field number for the "y" field.

Field Value
Type Description
int

ZFieldNumber

public const int ZFieldNumber = 3

Field number for the "z" field.

Field Value
Type Description
int

Properties

Descriptor

public static MessageDescriptor Descriptor { get; }
Property Value
Type Description
MessageDescriptor

Parser

public static MessageParser<Quaternion> Parser { get; }
Property Value
Type Description
MessageParserQuaternion

W

public double W { get; set; }

The scalar component.

Property Value
Type Description
double

X

public double X { get; set; }

The x component.

Property Value
Type Description
double

Y

public double Y { get; set; }

The y component.

Property Value
Type Description
double

Z

public double Z { get; set; }

The z component.

Property Value
Type Description
double

Methods

CalculateSize()

public int CalculateSize()
Returns
Type Description
int

Clone()

public Quaternion Clone()
Returns
Type Description
Quaternion

Equals(Quaternion)

public bool Equals(Quaternion other)
Parameter
Name Description
other Quaternion
Returns
Type Description
bool

Equals(object)

public override bool Equals(object other)
Parameter
Name Description
other object
Returns
Type Description
bool
Overrides

GetHashCode()

public override int GetHashCode()
Returns
Type Description
int
Overrides

MergeFrom(CodedInputStream)

public void MergeFrom(CodedInputStream input)
Parameter
Name Description
input CodedInputStream

MergeFrom(Quaternion)

public void MergeFrom(Quaternion other)
Parameter
Name Description
other Quaternion

ToString()

public override string ToString()
Returns
Type Description
string
Overrides

WriteTo(CodedOutputStream)

public void WriteTo(CodedOutputStream output)
Parameter
Name Description
output CodedOutputStream