Tabel yang dikelompokkan

Memuat data dari file CSV di Cloud Storage ke tabel yang dikelompokkan.

Pelajari lebih lanjut

Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:

Contoh kode

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Go API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// importClusteredTable demonstrates creating a table from a load job and defining partitioning and clustering
// properties.
func importClusteredTable(projectID, destDatasetID, destTableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	gcsRef := bigquery.NewGCSReference("gs://cloud-samples-data/bigquery/sample-transactions/transactions.csv")
	gcsRef.SkipLeadingRows = 1
	gcsRef.Schema = bigquery.Schema{
		{Name: "timestamp", Type: bigquery.TimestampFieldType},
		{Name: "origin", Type: bigquery.StringFieldType},
		{Name: "destination", Type: bigquery.StringFieldType},
		{Name: "amount", Type: bigquery.NumericFieldType},
	}
	loader := client.Dataset(destDatasetID).Table(destTableID).LoaderFrom(gcsRef)
	loader.TimePartitioning = &bigquery.TimePartitioning{
		Field: "timestamp",
	}
	loader.Clustering = &bigquery.Clustering{
		Fields: []string{"origin", "destination"},
	}
	loader.WriteDisposition = bigquery.WriteEmpty

	job, err := loader.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}

	if status.Err() != nil {
		return fmt.Errorf("job completed with error: %w", status.Err())
	}
	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Java API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Clustering;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.FormatOptions;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.LoadJobConfiguration;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TimePartitioning;
import com.google.common.collect.ImmutableList;
import java.util.List;

// Sample to load clustered table.
public class LoadTableClustered {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String sourceUri = "/path/to/file.csv";
    Schema schema =
        Schema.of(
            Field.of("name", StandardSQLTypeName.STRING),
            Field.of("post_abbr", StandardSQLTypeName.STRING),
            Field.of("date", StandardSQLTypeName.DATE));
    loadTableClustered(
        datasetName, tableName, sourceUri, schema, ImmutableList.of("name", "post_abbr"));
  }

  public static void loadTableClustered(
      String datasetName,
      String tableName,
      String sourceUri,
      Schema schema,
      List<String> clusteringFields) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      TimePartitioning partitioning = TimePartitioning.of(TimePartitioning.Type.DAY);
      // Clustering fields will be consisted of fields mentioned in the schema.
      // BigQuery supports clustering for both partitioned and non-partitioned tables.
      Clustering clustering = Clustering.newBuilder().setFields(clusteringFields).build();

      LoadJobConfiguration loadJobConfig =
          LoadJobConfiguration.builder(tableId, sourceUri)
              .setFormatOptions(FormatOptions.csv())
              .setSchema(schema)
              .setTimePartitioning(partitioning)
              .setClustering(clustering)
              .build();

      Job loadJob = bigquery.create(JobInfo.newBuilder(loadJobConfig).build());

      // Load data from a GCS parquet file into the table
      // Blocks until this load table job completes its execution, either failing or succeeding.
      Job job = loadJob.waitFor();

      // Check for errors
      if (job.isDone() && job.getStatus().getError() == null) {
        System.out.println("Data successfully loaded into clustered table during load job");
      } else {
        System.out.println(
            "BigQuery was unable to load into the table due to an error:"
                + job.getStatus().getError());
      }
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Data not loaded into clustered table during load job \n" + e.toString());
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Node.js API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

// Instantiate clients
const bigquery = new BigQuery();
const storage = new Storage();

/**
 * This sample loads the CSV file at
 * https://storage.googleapis.com/cloud-samples-data/sample-transactions/transactions.csv
 *
 * TODO(developer): Replace the following lines with the path to your file.
 */
const bucketName = 'cloud-samples-data';
const filename = 'bigquery/sample-transactions/transactions.csv';

async function loadTableClustered() {
  // Loads a new clustered table named "my_table" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  const metadata = {
    sourceFormat: 'CSV',
    skipLeadingRows: 1,
    schema: {
      fields: [
        {name: 'timestamp', type: 'TIMESTAMP'},
        {name: 'origin', type: 'STRING'},
        {name: 'destination', type: 'STRING'},
        {name: 'amount', type: 'NUMERIC'},
      ],
    },
    clustering: {
      fields: ['origin', 'destination'],
    },
  };

  // Load data from a Google Cloud Storage file into the table
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .load(storage.bucket(bucketName).file(filename), metadata);

  // load() waits for the job to finish
  console.log(`Job ${job.id} completed.`);
}

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai BigQuery menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi BigQuery Python API.

Untuk melakukan autentikasi ke BigQuery, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk library klien.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.LoadJobConfig(
    skip_leading_rows=1,
    source_format=bigquery.SourceFormat.CSV,
    schema=[
        bigquery.SchemaField("timestamp", bigquery.SqlTypeNames.TIMESTAMP),
        bigquery.SchemaField("origin", bigquery.SqlTypeNames.STRING),
        bigquery.SchemaField("destination", bigquery.SqlTypeNames.STRING),
        bigquery.SchemaField("amount", bigquery.SqlTypeNames.NUMERIC),
    ],
    time_partitioning=bigquery.TimePartitioning(field="timestamp"),
    clustering_fields=["origin", "destination"],
)

job = client.load_table_from_uri(
    ["gs://cloud-samples-data/bigquery/sample-transactions/transactions.csv"],
    table_id,
    job_config=job_config,
)

job.result()  # Waits for the job to complete.

table = client.get_table(table_id)  # Make an API request.
print(
    "Loaded {} rows and {} columns to {}".format(
        table.num_rows, len(table.schema), table_id
    )
)

Langkah selanjutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat browser contoh Google Cloud.