Membuat model regresi dengan BigQuery DataFrames
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Buat model regresi linear pada massa tubuh penguin menggunakan BigQuery DataFrames API.
Mempelajari lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis example demonstrates creating a linear regression model to predict penguin body mass using the BigQuery DataFrames API.\u003c/p\u003e\n"],["\u003cp\u003eThe code utilizes the \u003ccode\u003ebigquery-public-data.ml_datasets.penguins\u003c/code\u003e dataset, specifically focusing on the Adelie Penguin species.\u003c/p\u003e\n"],["\u003cp\u003eThe script involves loading data, filtering by species, dropping irrelevant columns, handling null values, and splitting data into training sets.\u003c/p\u003e\n"],["\u003cp\u003eA \u003ccode\u003eLinearRegression\u003c/code\u003e model is created, trained, and scored using specified feature and label columns, and predictions are made on the test set.\u003c/p\u003e\n"],["\u003cp\u003eThe sample uses the BigQuery DataFrames library with the python language.\u003c/p\u003e\n"]]],[],null,["# Create a regression model with BigQuery DataFrames\n\nCreate a linear regression model on the body mass of penguins using the BigQuery DataFrames API.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Use BigQuery DataFrames](/bigquery/docs/use-bigquery-dataframes)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[BigQuery quickstart using\nclient libraries](/bigquery/docs/quickstarts/quickstart-client-libraries).\n\n\nFor more information, see the\n[BigQuery Python API\nreference documentation](/python/docs/reference/bigquery/latest).\n\n\nTo authenticate to BigQuery, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for client libraries](/bigquery/docs/authentication#client-libs).\n\n from bigframes.ml.linear_model import LinearRegression\n import bigframes.pandas as bpd\n\n # Load data from BigQuery\n query_or_table = \"bigquery-public-data.ml_datasets.penguins\"\n bq_df = bpd.read_gbq(query_or_table)\n\n # Filter down to the data to the Adelie Penguin species\n adelie_data = bq_df[bq_df.species == \"Adelie Penguin (Pygoscelis adeliae)\"]\n\n # Drop the species column\n adelie_data = adelie_data.drop(columns=[\"species\"])\n\n # Drop rows with nulls to get training data\n training_data = adelie_data.dropna()\n\n # Specify your feature (or input) columns and the label (or output) column:\n feature_columns = training_data[\n [\"island\", \"culmen_length_mm\", \"culmen_depth_mm\", \"flipper_length_mm\", \"sex\"]\n ]\n label_columns = training_data[[\"body_mass_g\"]]\n\n test_data = adelie_data[adelie_data.body_mass_g.isnull()]\n\n # Create the linear model\n model = LinearRegression()\n model.fit(feature_columns, label_columns)\n\n # Score the model\n score = model.score(feature_columns, label_columns)\n\n # Predict using the model\n result = model.predict(test_data)\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=bigquery)."]]