Stay organized with collections
Save and categorize content based on your preferences.
Updates a ModelDeploymentMonitoringJob.
This method waits—the workflow execution is paused—until the operation is
complete, fails, or times out. The default timeout value is 1800 seconds (30
minutes) and can be changed to a maximum value of 31536000 seconds (one year)
for long-running operations using the connector_params field. See the
Connectors reference.
The connector uses polling to monitor the long-running operation, which might
generate additional billable steps. For more information about retries and
long-running operations, refer to Understand connectors.
The polling policy for the long-running operation can be configured. To set the
connector-specific parameters (connector_params), refer to
Invoke a connector call.
Arguments
Parameters
name
string
Required. Output only. Resource name of a ModelDeploymentMonitoringJob.
Required. The update mask is used to specify the fields to be overwritten in the ModelDeploymentMonitoringJob resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to * to override all fields. For the objective config, the user can either provide the update mask for model_deployment_monitoring_objective_configs or any combination of its nested fields, such as: model_deployment_monitoring_objective_configs.objective_config.training_dataset. Updatable fields: * display_name * model_deployment_monitoring_schedule_config * model_monitoring_alert_config * logging_sampling_strategy * labels * log_ttl * enable_monitoring_pipeline_logs . and * model_deployment_monitoring_objective_configs . or * model_deployment_monitoring_objective_configs.objective_config.training_dataset * model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config * model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
region
string
Required. Region of the HTTP endpoint. For example, if region is set to us-central1, the endpoint https://us-central1-integrations.googleapis.com will be used. See service endpoints.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-28 UTC."],[],[],null,["# Method: googleapis.aiplatform.v1beta1.projects.locations.modelDeploymentMonitoringJobs.patch\n\n| **Preview**\n|\n|\n| This feature is subject to the \"Pre-GA Offerings Terms\" in the General Service Terms section\n| of the [Service Specific Terms](/terms/service-terms#1).\n|\n| Pre-GA features are available \"as is\" and might have limited support.\n|\n| For more information, see the\n| [launch stage descriptions](/products#product-launch-stages).\n\nUpdates a ModelDeploymentMonitoringJob.\n\nThis method waits---the workflow execution is paused---until the operation is\ncomplete, fails, or times out. The default timeout value is `1800` seconds (30\nminutes) and can be changed to a maximum value of `31536000` seconds (one year)\nfor long-running operations using the `connector_params` field. See the\n[Connectors reference](/workflows/docs/reference/googleapis).\n\nThe connector uses polling to monitor the long-running operation, which might\ngenerate additional billable steps. For more information about retries and\nlong-running operations, refer to [Understand connectors](/workflows/docs/connectors).\n\nThe polling policy for the long-running operation can be configured. To set the\nconnector-specific parameters (`connector_params`), refer to\n[Invoke a connector call](/workflows/docs/reference/googleapis#invoke_a_connector_call).\n\nArguments\n---------\n\nRaised exceptions\n-----------------\n\nResponse\n--------\n\nIf successful, the response contains an instance of [`GoogleLongrunningOperation`](https://cloud.google.com/workflows/docs/reference/googleapis/aiplatform/v1beta1/Overview#GoogleLongrunningOperation).\n\nSubworkflow snippet\n-------------------\n\nSome fields might be optional or required.\nTo identify required fields, refer to the [API documentation](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/projects.locations.modelDeploymentMonitoringJobs/patch). \n\n### YAML\n\n```yaml\n- patch:\n call: googleapis.aiplatform.v1beta1.projects.locations.modelDeploymentMonitoringJobs.patch\n args:\n name: ...\n updateMask: ...\n region: ...\n body:\n analysisInstanceSchemaUri: ...\n displayName: ...\n enableMonitoringPipelineLogs: ...\n encryptionSpec:\n kmsKeyName: ...\n endpoint: ...\n labels: ...\n logTtl: ...\n loggingSamplingStrategy:\n randomSampleConfig:\n sampleRate: ...\n modelDeploymentMonitoringObjectiveConfigs: ...\n modelDeploymentMonitoringScheduleConfig:\n monitorInterval: ...\n monitorWindow: ...\n modelMonitoringAlertConfig:\n emailAlertConfig:\n userEmails: ...\n enableLogging: ...\n notificationChannels: ...\n predictInstanceSchemaUri: ...\n samplePredictInstance: ...\n statsAnomaliesBaseDirectory:\n outputUriPrefix: ...\n result: patchResult\n```\n\n### JSON\n\n```json\n[\n {\n \"patch\": {\n \"call\": \"googleapis.aiplatform.v1beta1.projects.locations.modelDeploymentMonitoringJobs.patch\",\n \"args\": {\n \"name\": \"...\",\n \"updateMask\": \"...\",\n \"region\": \"...\",\n \"body\": {\n \"analysisInstanceSchemaUri\": \"...\",\n \"displayName\": \"...\",\n \"enableMonitoringPipelineLogs\": \"...\",\n \"encryptionSpec\": {\n \"kmsKeyName\": \"...\"\n },\n \"endpoint\": \"...\",\n \"labels\": \"...\",\n \"logTtl\": \"...\",\n \"loggingSamplingStrategy\": {\n \"randomSampleConfig\": {\n \"sampleRate\": \"...\"\n }\n },\n \"modelDeploymentMonitoringObjectiveConfigs\": \"...\",\n \"modelDeploymentMonitoringScheduleConfig\": {\n \"monitorInterval\": \"...\",\n \"monitorWindow\": \"...\"\n },\n \"modelMonitoringAlertConfig\": {\n \"emailAlertConfig\": {\n \"userEmails\": \"...\"\n },\n \"enableLogging\": \"...\",\n \"notificationChannels\": \"...\"\n },\n \"predictInstanceSchemaUri\": \"...\",\n \"samplePredictInstance\": \"...\",\n \"statsAnomaliesBaseDirectory\": {\n \"outputUriPrefix\": \"...\"\n }\n }\n },\n \"result\": \"patchResult\"\n }\n }\n]\n```"]]