Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Nachdem Sie Apps erstellt und bereitgestellt haben, können Sie sie über die Google Cloud -Konsole oder die Befehlszeile verwalten.
Anwendung verwalten
App aktualisieren
Nicht bereitgestellte Apps
Nehmen Sie Änderungen an der App vor, z. B. durch Hinzufügen oder Entfernen von Komponentenknoten. Vertex AI Vision speichert die Änderungen automatisch.
Bereitgestellte Apps
Änderungen an bereitgestellten Apps werden automatisch auf dem Vertex AI Vision-Server gespeichert und die bereitgestellte Anwendung ist davon nicht betroffen. Wenn Sie die Änderungen verwerfen möchten, klicken Sie auf die Schaltfläche Änderungen verwerfen. Wählen Sie Anwendung aktualisieren aus, um die Änderungen zu speichern. Wenn Sie diese lokalen Änderungen auf die Anwendung anwenden möchten, heben Sie die Bereitstellung der aktuellen Anwendung auf und stellen Sie sie dann noch einmal bereit.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-09-04 (UTC)."],[],[],null,["# Manage applications\n\nAfter you [build](/vision-ai/docs/build-app) and [deploy](/vision-ai/docs/deploy-app) apps, you can\nmanage these apps using the Google Cloud console or command line.\n\nManage an application\n---------------------\n\nUpdate an app\n-------------\n\n#### Undeployed apps\n\nMake any modifications to the app (such as adding or removing component nodes)\n; Vertex AI Vision will automatically store the changes.\n\n#### Deployed apps\n\nChanges to deployed apps are automatically stored to the Vertex AI Vision server\nand the deployed application is not affected. To discard modifications, click\nthe **Discard changes** button. To save changes, select\n**Update the application**. To apply these local changes to the application,\nundeploy the current application, then redeploy it.\n\nList apps\n---------\n\n### REST\n\nTo list all apps in a project, send a GET request by using the\n[projects.locations.applications.list](/vision-ai/docs/reference/rest/v1/projects.locations.applications/list)\nmethod.\n\n\nBefore using any of the request data,\nmake the following replacements:\n\n- \u003cvar translate=\"no\"\u003ePROJECT\u003c/var\u003e: Your Google Cloud [project ID or\n project number](/resource-manager/docs/creating-managing-projects#identifying_projects).\n- \u003cvar translate=\"no\"\u003eLOCATION_ID\u003c/var\u003e: The [region](/about/locations) where you are using Vertex AI Vision. For example: `us-central1`, `europe-west4`. See [available regions](/vision-ai/docs/warehouse-supported-regions).\n\n\nHTTP method and URL:\n\n```\nGET https://visionai.googleapis.com/v1/projects/PROJECT_NUMBER/locations/LOCATION_ID/applications\n```\n\nTo send your request, choose one of these options: \n\n#### curl\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) , or by using [Cloud Shell](/shell/docs), which automatically logs you into the `gcloud` CLI . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nExecute the following command:\n\n```\ncurl -X GET \\\n -H \"Authorization: Bearer $(gcloud auth print-access-token)\" \\\n \"https://visionai.googleapis.com/v1/projects/PROJECT_NUMBER/locations/LOCATION_ID/applications\"\n```\n\n#### PowerShell\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nExecute the following command:\n\n```\n$cred = gcloud auth print-access-token\n$headers = @{ \"Authorization\" = \"Bearer $cred\" }\n\nInvoke-WebRequest `\n -Method GET `\n -Headers $headers `\n -Uri \"https://visionai.googleapis.com/v1/projects/PROJECT_NUMBER/locations/LOCATION_ID/applications\" | Select-Object -Expand Content\n```\n\nYou should receive a JSON response similar to the following:\n\n```\n{\n \"applications\": [\n {\n \"name\": \"projects/PROJECT_NUMBER/locations/LOCATION_ID/applications/test-application-1\",\n \"createTime\": \"2022-03-01T20:04:12.558371402Z\",\n \"updateTime\": \"2022-03-01T20:07:21.589713094Z\",\n \"displayName\": \"Test Application 1\",\n \"runtimeInfo\": {\n \"deployTime\": \"2022-03-01T20:07:21.460654Z\"\n }\n \"state\": \"DEPLOYED\"\n },\n {\n \"name\": \"projects/PROJECT_NUMBER/locations/LOCATION_ID/applications/test-application-2\",\n \"createTime\": \"2022-03-01T20:04:12.558371402Z\",\n \"updateTime\": \"2022-03-01T20:07:21.589713094Z\",\n \"displayName\": \"Test Application 2\",\n \"runtimeInfo\": {\n \"deployTime\": \"2022-03-01T20:07:21.460654Z\"\n }\n \"state\": \"DEPLOYED\"\n },\n ]\n}\n```\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\nWhat's next\n-----------\n\n- Learn how to read app input data from an ingestion stream or analyzed model output data in [Read stream data](/vision-ai/docs/read-stream)."]]