Kurzanleitung: Text mit der Gemini API in Vertex AI generieren

In dieser Kurzanleitung senden Sie die folgenden multimodalen Anfragen an die Gemini API in Vertex AI und sehen sich die Antworten an:

  • Ein Text-Prompt
  • Ein Prompt und ein Bild
  • Ein Prompt und eine Videodatei (mit einem Audiotrack)

Sie können diese Kurzanleitung mit einem SDK für Programmiersprachen in Ihrer lokalen Umgebung oder mit der REST API durcharbeiten.

Vorbereitung

Für diese Kurzanleitung müssen Sie Folgendes tun:

  • Ein Google Cloud Projekt einrichten und die Vertex AI API aktivieren
  • Auf Ihrem lokalen Computer:
    • Google Cloud CLI installieren, initialisieren und authentifizieren
    • SDK für Ihre Sprache installieren

Google Cloud -Projekt einrichten

Richten Sie Ihr Google Cloud -Projekt ein und aktivieren Sie die Vertex AI API.

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Vertex AI API.

    Enable the API

  5. Make sure that you have the following role or roles on the project: Vertex AI Platform Express User

    Check for the roles

    1. In the Google Cloud console, go to the IAM page.

      Go to IAM
    2. Select the project.
    3. In the Principal column, find all rows that identify you or a group that you're included in. To learn which groups you're included in, contact your administrator.

    4. For all rows that specify or include you, check the Role column to see whether the list of roles includes the required roles.

    Grant the roles

    1. In the Google Cloud console, go to the IAM page.

      Zu IAM
    2. Wählen Sie das Projekt aus.
    3. Klicken Sie auf Zugriff erlauben.
    4. Geben Sie im Feld Neue Hauptkonten Ihre Nutzer-ID ein. Dies ist in der Regel die E-Mail-Adresse eines Google-Kontos.

    5. Wählen Sie in der Liste Rolle auswählen eine Rolle aus.
    6. Wenn Sie weitere Rollen hinzufügen möchten, klicken Sie auf Weitere Rolle hinzufügen und fügen Sie weitere Rollen hinzu.
    7. Klicken Sie auf Speichern.
  6. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  7. Make sure that billing is enabled for your Google Cloud project.

  8. Enable the Vertex AI API.

    Enable the API

  9. Make sure that you have the following role or roles on the project: Vertex AI Platform Express User

    Check for the roles

    1. In the Google Cloud console, go to the IAM page.

      Go to IAM
    2. Select the project.
    3. In the Principal column, find all rows that identify you or a group that you're included in. To learn which groups you're included in, contact your administrator.

    4. For all rows that specify or include you, check the Role column to see whether the list of roles includes the required roles.

    Grant the roles

    1. In the Google Cloud console, go to the IAM page.

      Zu IAM
    2. Wählen Sie das Projekt aus.
    3. Klicken Sie auf Zugriff erlauben.
    4. Geben Sie im Feld Neue Hauptkonten Ihre Nutzer-ID ein. Dies ist in der Regel die E-Mail-Adresse eines Google-Kontos.

    5. Wählen Sie in der Liste Rolle auswählen eine Rolle aus.
    6. Wenn Sie weitere Rollen hinzufügen möchten, klicken Sie auf Weitere Rolle hinzufügen und fügen Sie weitere Rollen hinzu.
    7. Klicken Sie auf Speichern.

    Google Cloud CLI installieren und authentifizieren

    Wenn Sie die Gemini API in Vertex AI verwenden möchten, richten Sie die Google Cloud CLI auf Ihrem lokalen Computer ein und authentifizieren Sie sie. Im Gegensatz zur Gemini API in Google AI Studio, für die API-Schlüssel verwendet werden, wird der Zugriff auf die Gemini API in Vertex AI mit Identity and Access Management verwaltet.

    1. Installieren und initialisieren Sie Google Cloud CLI.

    2. Wenn Sie die gcloud CLI bereits installiert haben, aktualisieren Sie die gcloud-Komponenten mit diesem Befehl.

      gcloud components update
    3. Wenn Sie sich mit der gcloud CLI authentifizieren möchten, generieren Sie eine lokale Datei mit Standardanmeldedaten für Anwendungen (Application Default Credentials, ADC), indem Sie diesen Befehl ausführen. Der durch den Befehl gestartete Web-Ablauf wird verwendet, um Ihre Nutzeranmeldedaten anzugeben.

      gcloud auth application-default login

      Weitere Informationen finden Sie unter Standardanmeldedaten für Anwendungen einrichten.

    SDK für Ihre Programmiersprache einrichten

    Klicken Sie auf Ihrem lokalen Computer auf einen der folgenden Tabs, um das SDK für Ihre Programmiersprache zu installieren.

    Gen AI SDK für Python

    Installieren und aktualisieren Sie das Gen AI SDK für Python, indem Sie diesen Befehl ausführen.

    pip install --upgrade google-genai

    Gen AI SDK für Go

    Installieren und aktualisieren Sie das Gen AI SDK für Go, indem Sie diesen Befehl ausführen.

    go get google.golang.org/genai

    Gen AI SDK für Node.js

    Installieren und aktualisieren Sie das Gen AI SDK für Node.js, indem Sie diesen Befehl ausführen.

    npm install @google/genai

    Gen AI SDK für Java

    Gen AI SDK for Java installieren und aktualisieren:

    Maven

    Fügen Sie zum pom.xml Folgendes hinzu:

    <dependencies>
      <dependency>
        <groupId>com.google.genai</groupId>
        <artifactId>google-genai</artifactId>
        <version>0.7.0</version>
      </dependency>
    </dependencies>
    

    C#

    Installieren Sie das Paket Google.Cloud.AIPlatform.V1 von NuGet. Verwenden Sie die Methode Ihrer Wahl, um Ihrem Projekt Pakete hinzuzufügen. Klicken Sie z. B. in Visual Studio mit der rechten Maustaste auf das Projekt und wählen Sie NuGet-Pakete verwalten… aus.

    REST

    1. Konfigurieren Sie Umgebungsvariablen. Dazu geben Sie Folgendes ein. Ersetzen Sie PROJECT_ID durch die ID Ihres Projekts. Google Cloud

      MODEL_ID="gemini-2.0-flash-001"
      PROJECT_ID="PROJECT_ID"
    2. Stellen Sie den Endpunkt mit der Google Cloud CLI bereit, indem Sie diesen Befehl ausführen.

      gcloud beta services identity create --service=aiplatform.googleapis.com --project=${PROJECT_ID}

    Prompt an die Gemini API in Vertex AI senden

    Mit dem folgenden Code senden Sie einen Prompt an die Gemini API in Vertex AI. In diesem Beispiel wird eine Liste möglicher Namen für ein Blumengeschäft zurückgegeben.

    Sie können den Code über die Befehlszeile, mit einer IDE oder durch Einbinden des Codes in Ihre Anwendung ausführen.

    Gen AI SDK for Python

    Installieren

    pip install --upgrade google-genai

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    from google import genai
    from google.genai.types import HttpOptions
    
    client = genai.Client(http_options=HttpOptions(api_version="v1"))
    response = client.models.generate_content(
        model="gemini-2.5-flash",
        contents="How does AI work?",
    )
    print(response.text)
    # Example response:
    # Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...
    #
    # Here's a simplified overview:
    # ...

    Gen AI SDK for Go

    Informationen zum Installieren oder Aktualisieren von Gen AI SDK for Go

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    import (
    	"context"
    	"fmt"
    	"io"
    
    	"google.golang.org/genai"
    )
    
    // generateWithText shows how to generate text using a text prompt.
    func generateWithText(w io.Writer) error {
    	ctx := context.Background()
    
    	client, err := genai.NewClient(ctx, &genai.ClientConfig{
    		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
    	})
    	if err != nil {
    		return fmt.Errorf("failed to create genai client: %w", err)
    	}
    
    	resp, err := client.Models.GenerateContent(ctx,
    		"gemini-2.0-flash-001",
    		genai.Text("How does AI work?"),
    		nil,
    	)
    	if err != nil {
    		return fmt.Errorf("failed to generate content: %w", err)
    	}
    
    	respText, err := resp.Text()
    	if err != nil {
    		return fmt.Errorf("failed to convert model response to text: %w", err)
    	}
    	fmt.Fprintln(w, respText)
    	// Example response:
    	// That's a great question! Understanding how AI works can feel like ...
    	// ...
    	// **1. The Foundation: Data and Algorithms**
    	// ...
    
    	return nil
    }
    

    Gen AI SDK for Node.js

    Installieren

    npm install @google/genai

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    const {GoogleGenAI} = require('@google/genai');
    
    const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
    const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';
    
    async function generateContent(
      projectId = GOOGLE_CLOUD_PROJECT,
      location = GOOGLE_CLOUD_LOCATION
    ) {
      const ai = new GoogleGenAI({
        vertexai: true,
        project: projectId,
        location: location,
      });
    
      const response = await ai.models.generateContent({
        model: 'gemini-2.0-flash',
        contents: 'How does AI work?',
      });
    
      console.log(response.text);
    
      return response.text;
    }

    Gen AI SDK for Java

    Informationen zum Installieren oder Aktualisieren von Gen AI SDK for Java

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    
    import com.google.genai.Client;
    import com.google.genai.types.Content;
    import com.google.genai.types.GenerateContentResponse;
    import com.google.genai.types.HttpOptions;
    import com.google.genai.types.Part;
    
    public class GenerateContentWithText {
    
      public static void main(String[] args) {
        // TODO(developer): Replace these variables before running the sample.
        String modelId = "gemini-2.0-flash";
        generateContent(modelId);
      }
    
      public static String generateContent(String modelId) {
        // Initialize client that will be used to send requests. This client only needs to be created
        // once, and can be reused for multiple requests.
        try (Client client = Client.builder()
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {
    
          GenerateContentResponse response =
              client.models.generateContent(modelId, Content.fromParts(
                      Part.fromText("How does AI work?")),
                  null);
    
          System.out.print(response.text());
          // Example response:
          // Okay, let's break down how AI works. It's a broad field, so I'll focus on the ...
          //
          // Here's a simplified overview:
          // ...
          return response.text();
        }
      }
    }

    C#

    Um eine Aufforderungsanfrage zu senden, erstellen Sie eine C#-Datei (.cs) und kopieren Sie den folgenden Code in die Datei. Legen Sie your-project-id auf Ihre Google Cloud Projekt-ID fest. Führen Sie den Code nach dem Aktualisieren der Werte aus.

    
    using Google.Cloud.AIPlatform.V1;
    using System;
    using System.Threading.Tasks;
    
    public class TextInputSample
    {
        public async Task<string> TextInput(
            string projectId = "your-project-id",
            string location = "us-central1",
            string publisher = "google",
            string model = "gemini-2.0-flash-001")
        {
    
            var predictionServiceClient = new PredictionServiceClientBuilder
            {
                Endpoint = $"{location}-aiplatform.googleapis.com"
            }.Build();
            string prompt = @"What's a good name for a flower shop that specializes in selling bouquets of dried flowers?";
    
            var generateContentRequest = new GenerateContentRequest
            {
                Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
                Contents =
                {
                    new Content
                    {
                        Role = "USER",
                        Parts =
                        {
                            new Part { Text = prompt }
                        }
                    }
                }
            };
    
            GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);
    
            string responseText = response.Candidates[0].Content.Parts[0].Text;
            Console.WriteLine(responseText);
    
            return responseText;
        }
    }
    

    REST

    Führen Sie den curl-Befehl über die Befehlszeile aus oder fügen Sie den REST-Aufruf in Ihre Anwendung ein, um diese Prompt-Anfrage zu senden.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    https://aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/global/publishers/google/models/${MODEL_ID}:generateContent -d \
    $'{
      "contents": {
        "role": "user",
        "parts": [
          {
            "text": "What\'s a good name for a flower shop that specializes in selling bouquets of dried flowers?"
          }
        ]
      }
    }'

    Das Modell gibt eine Antwort zurück. Die Antwort wird in Abschnitten generiert, die jeweils separat auf Sicherheit geprüft werden.

    Prompt und Bild an die Gemini API in Vertex AI senden

    Mit dem folgenden Code können Sie einen Prompt mit Text und einem Bild an die Gemini API in Vertex AI senden. In diesem Beispiel wird eine Beschreibung des bereitgestellten Bilds zurückgegeben (Bild für Java-Beispiel).

    Gen AI SDK for Python

    Installieren

    pip install --upgrade google-genai

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    from google import genai
    from google.genai.types import HttpOptions, Part
    
    client = genai.Client(http_options=HttpOptions(api_version="v1"))
    response = client.models.generate_content(
        model="gemini-2.5-flash",
        contents=[
            "What is shown in this image?",
            Part.from_uri(
                file_uri="gs://cloud-samples-data/generative-ai/image/scones.jpg",
                mime_type="image/jpeg",
            ),
        ],
    )
    print(response.text)
    # Example response:
    # The image shows a flat lay of blueberry scones arranged on parchment paper. There are ...

    Gen AI SDK for Go

    Informationen zum Installieren oder Aktualisieren von Gen AI SDK for Go

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    import (
    	"context"
    	"fmt"
    	"io"
    
    	genai "google.golang.org/genai"
    )
    
    // generateWithTextImage shows how to generate text using both text and image input
    func generateWithTextImage(w io.Writer) error {
    	ctx := context.Background()
    
    	client, err := genai.NewClient(ctx, &genai.ClientConfig{
    		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
    	})
    	if err != nil {
    		return fmt.Errorf("failed to create genai client: %w", err)
    	}
    
    	modelName := "gemini-2.0-flash-001"
    	contents := []*genai.Content{
    		{Parts: []*genai.Part{
    			{Text: "What is shown in this image?"},
    			{FileData: &genai.FileData{
    				// Image source: https://storage.googleapis.com/cloud-samples-data/generative-ai/image/scones.jpg
    				FileURI:  "gs://cloud-samples-data/generative-ai/image/scones.jpg",
    				MIMEType: "image/jpeg",
    			}},
    		}},
    	}
    
    	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
    	if err != nil {
    		return fmt.Errorf("failed to generate content: %w", err)
    	}
    
    	respText, err := resp.Text()
    	if err != nil {
    		return fmt.Errorf("failed to convert model response to text: %w", err)
    	}
    	fmt.Fprintln(w, respText)
    
    	// Example response:
    	// The image shows an overhead shot of a rustic, artistic arrangement on a surface that ...
    
    	return nil
    }
    

    Gen AI SDK for Node.js

    Installieren

    npm install @google/genai

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    const {GoogleGenAI} = require('@google/genai');
    
    const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
    const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';
    
    async function generateContent(
      projectId = GOOGLE_CLOUD_PROJECT,
      location = GOOGLE_CLOUD_LOCATION
    ) {
      const ai = new GoogleGenAI({
        vertexai: true,
        project: projectId,
        location: location,
      });
    
      const image = {
        fileData: {
          fileUri: 'gs://cloud-samples-data/generative-ai/image/scones.jpg',
          mimeType: 'image/jpeg',
        },
      };
    
      const response = await ai.models.generateContent({
        model: 'gemini-2.0-flash',
        contents: [image, 'What is shown in this image?'],
      });
    
      console.log(response.text);
    
      return response.text;
    }

    Gen AI SDK for Java

    Informationen zum Installieren oder Aktualisieren von Gen AI SDK for Java

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    
    import com.google.genai.Client;
    import com.google.genai.types.Content;
    import com.google.genai.types.GenerateContentResponse;
    import com.google.genai.types.HttpOptions;
    import com.google.genai.types.Part;
    
    public class GenerateContentWithTextAndImage {
    
      public static void main(String[] args) {
        // TODO(developer): Replace these variables before running the sample.
        String modelId = "gemini-2.0-flash";
        generateContent(modelId);
      }
    
      public static String generateContent(String modelId) {
        // Initialize client that will be used to send requests. This client only needs to be created
        // once, and can be reused for multiple requests.
        try (Client client = Client.builder()
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {
    
          GenerateContentResponse response =
              client.models.generateContent(modelId, Content.fromParts(
                      Part.fromText("What is shown in this image?"),
                      Part.fromUri("gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg")),
                  null);
    
          System.out.print(response.text());
          // Example response:
          // The image shows a flat lay of blueberry scones arranged on parchment paper. There are ...
          return response.text();
        }
      }
    }

    C#

    Um eine Aufforderungsanfrage zu senden, erstellen Sie eine C#-Datei (.cs) und kopieren Sie den folgenden Code in die Datei. Legen Sie your-project-id auf Ihre Google Cloud Projekt-ID fest. Führen Sie den Code nach dem Aktualisieren der Werte aus.

    
    using Google.Api.Gax.Grpc;
    using Google.Cloud.AIPlatform.V1;
    using System.Text;
    using System.Threading.Tasks;
    
    public class GeminiQuickstart
    {
        public async Task<string> GenerateContent(
            string projectId = "your-project-id",
            string location = "us-central1",
            string publisher = "google",
            string model = "gemini-2.0-flash-001"
        )
        {
            // Create client
            var predictionServiceClient = new PredictionServiceClientBuilder
            {
                Endpoint = $"{location}-aiplatform.googleapis.com"
            }.Build();
    
            // Initialize content request
            var generateContentRequest = new GenerateContentRequest
            {
                Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
                GenerationConfig = new GenerationConfig
                {
                    Temperature = 0.4f,
                    TopP = 1,
                    TopK = 32,
                    MaxOutputTokens = 2048
                },
                Contents =
                {
                    new Content
                    {
                        Role = "USER",
                        Parts =
                        {
                            new Part { Text = "What's in this photo?" },
                            new Part { FileData = new() { MimeType = "image/png", FileUri = "gs://generativeai-downloads/images/scones.jpg" } }
                        }
                    }
                }
            };
    
            // Make the request, returning a streaming response
            using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);
    
            StringBuilder fullText = new();
    
            // Read streaming responses from server until complete
            AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
            await foreach (GenerateContentResponse responseItem in responseStream)
            {
                fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
            }
    
            return fullText.ToString();
        }
    }
    

    REST

    Sie können diese Aufforderungsanfrage über Ihre IDE senden oder den REST-Aufruf bei Bedarf in Ihre Anwendung einbetten.

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    https://aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/global/publishers/google/models/${MODEL_ID}:generateContent -d \
    $'{
      "contents": {
        "role": "user",
        "parts": [
          {
          "fileData": {
            "mimeType": "image/jpeg",
            "fileUri": "gs://generativeai-downloads/images/scones.jpg"
            }
          },
          {
            "text": "Describe this picture."
          }
        ]
      }
    }'

    Das Modell gibt eine Antwort zurück. Die Antwort wird in Abschnitten generiert, die jeweils separat auf Sicherheit geprüft werden.

    Prompt und Video an die Gemini API in Vertex AI senden

    Mit dem folgenden Code senden Sie einen Prompt mit Text, Audio und Video an die Gemini API in Vertex AI. Dieses Beispiel gibt eine Beschreibung des bereitgestellten Videos zurück, einschließlich wichtiger Informationen aus dem Audiotrack.

    Sie können diese Prompts über die Befehlszeile, über Ihre IDE oder durch Einbinden des REST-Aufrufs in Ihre Anwendung senden.

    Gen AI SDK for Python

    Installieren

    pip install --upgrade google-genai

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    from google import genai
    from google.genai.types import HttpOptions, Part
    
    client = genai.Client(http_options=HttpOptions(api_version="v1"))
    prompt = """
    Analyze the provided video file, including its audio.
    Summarize the main points of the video concisely.
    Create a chapter breakdown with timestamps for key sections or topics discussed.
    """
    response = client.models.generate_content(
        model="gemini-2.5-flash",
        contents=[
            Part.from_uri(
                file_uri="gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
                mime_type="video/mp4",
            ),
            prompt,
        ],
    )
    
    print(response.text)
    # Example response:
    # Here's a breakdown of the video:
    #
    # **Summary:**
    #
    # Saeka Shimada, a photographer in Tokyo, uses the Google Pixel 8 Pro's "Video Boost" feature to ...
    #
    # **Chapter Breakdown with Timestamps:**
    #
    # * **[00:00-00:12] Introduction & Tokyo at Night:** Saeka Shimada introduces herself ...
    # ...

    Gen AI SDK for Go

    Informationen zum Installieren oder Aktualisieren von Gen AI SDK for Go

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    import (
    	"context"
    	"fmt"
    	"io"
    
    	genai "google.golang.org/genai"
    )
    
    // generateWithVideo shows how to generate text using a video input.
    func generateWithVideo(w io.Writer) error {
    	ctx := context.Background()
    
    	client, err := genai.NewClient(ctx, &genai.ClientConfig{
    		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
    	})
    	if err != nil {
    		return fmt.Errorf("failed to create genai client: %w", err)
    	}
    
    	modelName := "gemini-2.0-flash-001"
    	contents := []*genai.Content{
    		{Parts: []*genai.Part{
    			{Text: `Analyze the provided video file, including its audio.
    Summarize the main points of the video concisely.
    Create a chapter breakdown with timestamps for key sections or topics discussed.`},
    			{FileData: &genai.FileData{
    				FileURI:  "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
    				MIMEType: "video/mp4",
    			}},
    		}},
    	}
    
    	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
    	if err != nil {
    		return fmt.Errorf("failed to generate content: %w", err)
    	}
    
    	respText, err := resp.Text()
    	if err != nil {
    		return fmt.Errorf("failed to convert model response to text: %w", err)
    	}
    	fmt.Fprintln(w, respText)
    
    	// Example response:
    	// Here's an analysis of the provided video file:
    	//
    	// **Summary**
    	//
    	// The video features Saeka Shimada, a photographer in Tokyo, who uses the new Pixel phone ...
    	//
    	// **Chapter Breakdown**
    	//
    	// *   **0:00-0:05**: Introduction to Saeka Shimada and her work as a photographer in Tokyo.
    	// ...
    
    	return nil
    }
    

    Gen AI SDK for Node.js

    Installieren

    npm install @google/genai

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    const {GoogleGenAI} = require('@google/genai');
    
    const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
    const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';
    
    async function generateContent(
      projectId = GOOGLE_CLOUD_PROJECT,
      location = GOOGLE_CLOUD_LOCATION
    ) {
      const ai = new GoogleGenAI({
        vertexai: true,
        project: projectId,
        location: location,
      });
    
      const prompt = `
      Analyze the provided video file, including its audio.
      Summarize the main points of the video concisely.
      Create a chapter breakdown with timestamps for key sections or topics discussed.
     `;
    
      const video = {
        fileData: {
          fileUri: 'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
          mimeType: 'video/mp4',
        },
      };
    
      const response = await ai.models.generateContent({
        model: 'gemini-2.0-flash',
        contents: [video, prompt],
      });
    
      console.log(response.text);
    
      return response.text;
    }

    Gen AI SDK for Java

    Informationen zum Installieren oder Aktualisieren von Gen AI SDK for Java

    Weitere Informationen finden Sie in der SDK-Referenzdokumentation.

    Umgebungsvariablen für die Verwendung des Gen AI SDK mit Vertex AI festlegen:

    # Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
    # with appropriate values for your project.
    export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
    export GOOGLE_CLOUD_LOCATION=global
    export GOOGLE_GENAI_USE_VERTEXAI=True

    
    import com.google.genai.Client;
    import com.google.genai.types.Content;
    import com.google.genai.types.GenerateContentResponse;
    import com.google.genai.types.HttpOptions;
    import com.google.genai.types.Part;
    
    public class GenerateContentWithVideo {
    
      public static void main(String[] args) {
        // TODO(developer): Replace these variables before running the sample.
        String modelId = "gemini-2.0-flash";
        String prompt = " Analyze the provided video file, including its audio.\n"
            + "    Summarize the main points of the video concisely.\n"
            + "    Create a chapter breakdown with timestamps for key sections or topics discussed.";
        generateContent(modelId, prompt);
      }
    
      public static String generateContent(String modelId, String prompt) {
        // Initialize client that will be used to send requests. This client only needs to be created
        // once, and can be reused for multiple requests.
        try (Client client = Client.builder()
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {
    
          GenerateContentResponse response =
              client.models.generateContent(modelId, Content.fromParts(
                      Part.fromText(prompt),
                      Part.fromUri("gs://cloud-samples-data/generative-ai/video/pixel8.mp4", "video/mp4")),
                  null);
    
          System.out.print(response.text());
          // Example response:
          // Here's a breakdown of the video:
          //
          // **Summary:**
          //
          // Saeka Shimada, a photographer in Tokyo, uses the Google Pixel 8 Pro's "Video Boost" feature
          // to ...
          //
          // **Chapter Breakdown with Timestamps:**
          //
          // * **[00:00-00:12] Introduction & Tokyo at Night:** Saeka Shimada introduces herself ...
          return response.text();
        }
      }
    }

    C#

    Um eine Aufforderungsanfrage zu senden, erstellen Sie eine C#-Datei (.cs) und kopieren Sie den folgenden Code in die Datei. Legen Sie your-project-id auf Ihre Google Cloud Projekt-ID fest. Führen Sie den Code nach dem Aktualisieren der Werte aus.

    
    using Google.Cloud.AIPlatform.V1;
    using System;
    using System.Threading.Tasks;
    
    public class VideoInputWithAudio
    {
        public async Task<string> DescribeVideo(
            string projectId = "your-project-id",
            string location = "us-central1",
            string publisher = "google",
            string model = "gemini-2.0-flash-001")
        {
    
            var predictionServiceClient = new PredictionServiceClientBuilder
            {
                Endpoint = $"{location}-aiplatform.googleapis.com"
            }.Build();
    
            string prompt = @"Provide a description of the video.
    The description should also contain anything important which people say in the video.";
    
            var generateContentRequest = new GenerateContentRequest
            {
                Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
                Contents =
                {
                    new Content
                    {
                        Role = "USER",
                        Parts =
                        {
                            new Part { Text = prompt },
                            new Part { FileData = new() { MimeType = "video/mp4", FileUri = "gs://cloud-samples-data/generative-ai/video/pixel8.mp4" }}
                        }
                    }
                }
            };
    
            GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);
    
            string responseText = response.Candidates[0].Content.Parts[0].Text;
            Console.WriteLine(responseText);
    
            return responseText;
        }
    }
    

    REST

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    https://aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/global/publishers/google/models/${MODEL_ID}:generateContent -d \
    $'{
      "contents": {
        "role": "user",
        "parts": [
          {
          "fileData": {
            "mimeType": "video/mp4",
            "fileUri": "gs://cloud-samples-data/generative-ai/video/pixel8.mp4"
            }
          },
          {
            "text": "Provide a description of the video. The description should also contain anything important which people say in the video."
          }
        ]
      }
    }'

    Das Modell gibt eine Antwort zurück. Die Antwort wird in Abschnitten generiert, die jeweils separat auf Sicherheit geprüft werden.

    Nächste Schritte