Il modulo di AI generativa nell'SDK Vertex AI è deprecato e non sarà più disponibile dopo il 24 giugno 2026. L'SDK Google Gen AI contiene tutte le funzionalità dell'SDK Vertex AI e supporta molte funzionalità aggiuntive.
Utilizza questa guida alla migrazione per convertire il codice Python, Java, JavaScript e Go utilizzando l'SDK Vertex AI nell'SDK Google Gen AI.
Modifiche principali
I seguenti spazi dei nomi nell'SDK Vertex AI sono nella fase di ritiro. Le release dell'SDK successive al 24 giugno 2026 non includeranno questi moduli. Utilizza gli spazi dei nomi equivalenti di Google Gen AI SDK, che offre la stessa parità di funzionalità dei moduli e dei pacchetti ritirati.
SDK Vertex AI | Codice interessato | Sostituzione dell'SDK Google Gen AI |
---|---|---|
google-cloud-aiplatform |
Moduli rimossi: |
google-genai |
cloud.google.com/go/vertexai/genai |
Pacchetto rimosso: |
google.golang.org/genai |
@google-cloud/vertexai |
Moduli rimossi: |
@google/genai |
com.google.cloud:google-cloud-vertexai |
Pacchetto rimosso: |
com.google.genai:google-genai |
Migrazione del codice
Utilizza le sezioni seguenti per eseguire la migrazione di snippet di codice specifici dall'SDK Vertex AI all'SDK Google Gen AI.
Installazione
Sostituisci la dipendenza dell'SDK Vertex AI con la dipendenza dell'SDK Google Gen AI.
Prima
Python
pip install -U -q "google-cloud-aiplatform"
Java
Gradle:
gradle:
implementation 'com.google.cloud:google-cloud-vertexai:1.26.0'
maven:
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-vertexai</artifactId>
<version>1.26.0</version>
</dependency>
JavaScript
npm install @google-cloud/vertexai
Vai
go get cloud.google.com/go/vertexai/genai
Dopo
Python
pip install -U -q "google-genai"
Java
gradle:
implementation 'com.google.genai:google-genai:1.5.0'
maven:
<dependency>
<groupId>com.google.genai</groupId>
<artifactId>google-genai</artifactId>
<version>1.5.0</version>
</dependency>
JavaScript
npm install @google/genai
Vai
go get google.golang.org/genai
Memorizzazione nella cache del contesto
La memorizzazione nella cache del contesto prevede l'archiviazione e il riutilizzo delle parti dei prompt del modello utilizzate di frequente per richieste simili. Sostituisci l'implementazione dell'SDK Vertex AI con la dipendenza dell'SDK Google Gen AI.
Prima
Python
Importazioni
from google.cloud import aiplatform
import vertexai
import datetime
Crea
vertexai.init(project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION)
cache_content = vertexai.caching.CachedContent.create(
model_name=MODEL_NAME,
system_instruction='Please answer my question formally',
contents=['user content'],
ttl=datetime.timedelta(days=1),
)
Scarica
vertexai.init(project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION)
cache_content = vertexai.caching.CachedContent.get(cached_content_name="projects/{project}/locations/{location}/cachedContents/{cached_content}")
Elimina
cache_content.delete()
Aggiorna
cache_content.update(ttl=datetime.timedelta(days=2))
Elenca
cache_contents = vertexai.caching.CachedContent.list()
Java
La memorizzazione nella cache del contesto non è supportata dall'SDK Vertex AI Java, ma è supportata dall'SDK Google Gen AI.
JavaScript
La memorizzazione nella cache del contesto non è supportata dall'SDK Vertex AI JavaScript, ma è supportata dall'SDK Google Gen AI.
Vai
Importazioni
package contextcaching
// [START generativeaionvertexai_gemini_create_context_cache]
import (
"context"
"fmt"
"io"
"time"
"cloud.google.com/go/vertexai/genai"
)
Crea
content := &genai.CachedContent{
Model: modelName,
SystemInstruction: &genai.Content{
Parts: []genai.Part{genai.Text(systemInstruction)},
},
Expiration: genai.ExpireTimeOrTTL{TTL: 60 * time.Minute},
Contents: []*genai.Content{
{
Role: "user",
Parts: []genai.Part{part1, part2},
},
},
}
result, err := client.CreateCachedContent(context, content)
Scarica
cachedContent, err := client.GetCachedContent(context, contentName)
Elimina
err = client.DeleteCachedContent(context, contentName)
Aggiorna
newExpireTime := cc.Expiration.ExpireTime.Add(15 * time.Minute)
ccUpdated := client.UpdateCachedContent(context, cc, &genai.CachedContentToUpdate{
Expiration: &genai.ExpireTimeOrTTL{ExpireTime: newExpireTime},
})
Elenca
iter, err := client.ListCachedContents(context, contentName)
Dopo
Python
Importazioni
from google import genai
from google.genai.types import Content, CreateCachedContentConfig, HttpOptions, Part
Crea
client = genai.Client(http_options=HttpOptions(api_version="v1"))
content_cache = client.caches.create(
model="gemini-2.5-flash",
config=CreateCachedContentConfig(
contents=contents,
system_instruction=system_instruction,
display_name="example-cache",
ttl="86400s",
),
)
Scarica
content_cache_list = client.caches.list()
# Access individual properties of a ContentCache object(s)
for content_cache in content_cache_list:
print(f"Cache `{content_cache.name}` for model `{content_cache.model}`")
print(f"Last updated at: {content_cache.update_time}")
print(f"Expires at: {content_cache.expire_time}")
Elimina
client.caches.delete(name=cache_name)
Aggiorna
content_cache = client.caches.update(
name=cache_name, config=UpdateCachedContentConfig(ttl="36000s")
)
Elenca
cache_contents = client.caches.list(config={'page_size': 2})
Java
Importazioni
import com.google.genai.types.CachedContent;
import com.google.genai.types.Content;
import com.google.genai.types.CreateCachedContentConfig;
import com.google.genai.types.DeleteCachedContentResponse;
import com.google.genai.types.ListCachedContentsConfig;
Crea
Content content =
Content.fromParts(
fetchPdfPart(
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"));
CreateCachedContentConfig config =
CreateCachedContentConfig.builder()
.systemInstruction(Content.fromParts(Part.fromText("summarize the pdf")))
.expireTime(Instant.now().plus(Duration.ofHours(1)))
.contents(content)
.build();
CachedContent cachedContent1 = client.caches.create("gemini-2.5-flash", config);
Scarica
CachedContent cachedContent2 = client.caches.get(cachedContent1.name().get(), null);
System.out.println("get cached content: " + cachedContent2);
Elimina
DeleteCachedContentResponse unused = client.caches.delete(cachedContent1.name().get(), null);
System.out.println("Deleted cached content: " + cachedContent1.name().get());
Aggiorna
CachedContent cachedContentUpdate =
client.caches.update(
cachedContent.name().get(),
UpdateCachedContentConfig.builder().ttl(Duration.ofMinutes(10)).build());
System.out.println("Update cached content: " + cachedContentUpdate);
Elenca
System.out.println("List cached contents resrouce names: ");
for (CachedContent cachedContent :
client.caches.list(ListCachedContentsConfig.builder().pageSize(5).build())) {
System.out.println(cachedContent.name().get());
}
JavaScript
Importazioni
import {GoogleGenAI, Part} from '@google/genai';
Crea
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const cachedContent1: Part = {
fileData: {
fileUri: 'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',
mimeType: 'application/pdf',
},
};
const cachedContent2: Part = {
fileData: {
fileUri: 'gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf',
mimeType: 'application/pdf',
},
};
const cache = await ai.caches.create({
model: 'gemini-1.5-pro-002',
config: {contents: [cachedContent1, cachedContent2]},
});
Scarica
const getResponse = await ai.caches.get({name: cacheName});
Elimina
await ai.caches.delete({name: cacheName});
Aggiorna
const updateResponse = await ai.caches.update({
name: cacheName,
config: {ttl: '86400s'},
});
Elenca
const listResponse = await ai.caches.list();
let i = 1;
for await (const cachedContent of listResponse) {
console.debug(`List response ${i++}: `, JSON.stringify(cachedContent));
}
Vai
Importazioni
import (
"context"
"encoding/json"
"fmt"
"io"
genai "google.golang.org/genai"
)
Crea
cacheContents := []*genai.Content{
{
Parts: []*genai.Part{
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
MIMEType: "application/pdf",
}},
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
MIMEType: "application/pdf",
}},
},
Role: "user",
},
}
config := &genai.CreateCachedContentConfig{
Contents: cacheContents,
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: systemInstruction},
},
},
DisplayName: "example-cache",
TTL: "86400s",
}
res, err := client.Caches.Create(ctx, modelName, config)
Scarica
cachedContent, err := client.GetCachedContent(ctx, contentName)
Elimina
_, err = client.Caches.Delete(ctx, result.Name, &genai.DeleteCachedContentConfig{})
Aggiorna
result, err = client.Caches.Update(ctx, result.Name, &genai.UpdateCachedContentConfig{
ExpireTime: time.Now().Add(time.Hour),
})
Elenca
// List the first page.
page, err := client.Caches.List(ctx, &genai.ListCachedContentsConfig{PageSize: 2})
// Continue to the next page.
page, err = page.Next(ctx)
// Resume the page iteration using the next page token.
page, err = client.Caches.List(ctx, &genai.ListCachedContentsConfig{PageSize: 2, PageToken: page.NextPageToken})
Configurazione e istruzioni di sistema
La configurazione definisce i parametri che controllano il comportamento del modello, mentre le istruzioni di sistema forniscono indicazioni guida per orientare le risposte del modello verso un ruolo, uno stile o un'attività specifici. Sostituisci la configurazione e le istruzioni di sistema dell'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
system_instruction=[
"Talk like a pirate.",
"Don't use rude words.",
],
)
response = model.generate_content(
contents="Why is sky blue?",
generation_config=generative_models.GenerationConfig(
temperature=0,
top_p=0.95,
top_k=20,
candidate_count=1,
max_output_tokens=100,
stop_sequences=["STOP!"],
response_logprobs=True,
logprobs=3,
),
safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_NONE,
},
)
Java
import com.google.cloud.vertexai.api.GenerationConfig;
GenerationConfig generationConfig =
GenerationConfig.newBuilder().setMaxOutputTokens(50).build();
// Use the builder to instantialize the model with the configuration.
GenerativeModel model =
new GenerativeModel.Builder()
.setModelName("gemino-pro")
.setVertexAi(vertexAi)
.setGenerationConfig(generationConfig)
.build();
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const generativeModel = vertexAI.getGenerativeModel({
model: 'gemini-2.5-flash',
systemInstruction: {
parts: [
{text: 'You are a helpful language translator.'},
{text: 'Your mission is to translate text in English to French.'},
],
},
});
const textPart = {
text: `
User input: I like bagels.
Answer:`,
};
const request = {
contents: [{role: 'user', parts: [textPart]}],
};
const resp = await generativeModel.generateContent(request);
const contentResponse = await resp.response;
console.log(JSON.stringify(contentResponse));
Vai
import (
"context"
"cloud.google.com/go/vertexai/genai"
)
model := client.GenerativeModel(modelName)
model.GenerationConfig = genai.GenerationConfig{
TopP: proto.Float32(1),
TopK: proto.Int32(32),
Temperature: proto.Float32(0.4),
MaxOutputTokens: proto.Int32(2048),
}
systemInstruction := fmt.Sprintf("Your mission is to translate text from %xs to %s", sourceLanguageCode, targetLanguageCode)
model.SystemInstruction = &genai.Content{
Role: "user",
Parts: []genai.Part{genai.Text(systemInstruction)},
}
Dopo
Python
from google.genai import types
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='high',
config=types.GenerateContentConfig(
system_instruction='I say high, you say low',
max_output_tokens=3,
temperature=0.3,
response_logprobs=True,
logprobs=3,
),
)
Java
Importa GenerateContentConfig
:
import com.google.genai.types.GenerateContentConfig;
Crea l'istruzione di sistema:
Content systemInstruction = Content.fromParts(Part.fromText("You are a history teacher."));
Aggiungi le istruzioni di sistema alla configurazione dei contenuti:
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.systemInstruction(systemInstruction)
.build();
Per l'implementazione completa, vedi GenerateContentWithConfigs.java.
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'high',
config: {systemInstruction: 'I say high you say low.'},
});
console.debug(response.text);
await generateContentFromVertexAI().catch((e) =>
console.error('got error', e),
);
Vai
import (
"context"
genai "google.golang.org/genai"
)
config := &genai.GenerateContentConfig{
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: "You're a language translator. Your mission is to translate text in English to French."},
},
},
}
resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
Incorporamenti
Gli incorporamenti sono rappresentazioni vettoriali numeriche di testo, immagini o video che acquisiscono il loro significato e le loro relazioni semantiche o visive in uno spazio ad alta dimensione. Sostituisci l'implementazione dell'incorporamento dall'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel
model = TextEmbeddingModel.from_pretrained("gemini-embedding-001")
text_input = TextEmbeddingInput(
task_type="RETRIEVAL_DOCUMENT", # Optional
title="Driver's License", # Optional
text="How do I get a driver's license/learner's permit?"
)
response = model.get_embeddings(
[text_input], output_dimensionality=3072
)
Java
Gli incorporamenti non sono supportati dall'SDK Vertex AI per Java, ma sono supportati dall'SDK Google Gen AI.
JavaScript
Gli incorporamenti non sono supportati dall'SDK Vertex AI JavaScript, ma sono supportati dall'SDK Google Gen AI.
Vai
Gli incorporamenti non sono supportati dall'SDK Vertex AI per Go, ma sono supportati dall'SDK Google Gen AI.
Dopo
Python
from google.genai.types import EmbedContentConfig
client = genai.Client()
response = client.models.embed_content(
model="gemini-embedding-001",
contents="How do I get a driver's license/learner's permit?",
config=EmbedContentConfig(
task_type="RETRIEVAL_DOCUMENT", # Optional
output_dimensionality=3072, # Optional
title="Driver's License", # Optional
),
)
Java
import com.google.genai.Client;
import com.google.genai.types.EmbedContentResponse;
EmbedContentResponse response =
client.models.embedContent("text-embedding-005", "why is the sky blue?", null);
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.embedContent({
model: 'text-embedding-005',
contents: 'Hello world!',
});
console.debug(JSON.stringify(response));
await embedContentFromVertexAI().catch((e) =>
console.error('got error', e),
);
Vai
import (
"context"
"fmt"
"google.golang.org/genai"
)
result, err := client.Models.EmbedContent(ctx, *model, genai.Text("What is your name?"), &genai.EmbedContentConfig{TaskType: "RETRIEVAL_QUERY"})
fmt.Printf("%#v\n", result.Embeddings[0])
fmt.Println("Embed content RETRIEVAL_DOCUMENT task type example.")
result, err = client.Models.EmbedContent(ctx, *model, genai.Text("What is your name?"), &genai.EmbedContentConfig{TaskType: "RETRIEVAL_DOCUMENT"})
fmt.Printf("%#v\n", result.Embeddings[0])
Chiamata di funzione
La chiamata di funzione consente a un modello di identificare quando richiamare uno strumento esterno o un'API e quindi generare dati strutturati contenenti la funzione e gli argomenti necessari per l'esecuzione. Sostituisci l'implementazione della chiamata di funzione con l'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
get_current_weather_func = generative_models.FunctionDeclaration(
name="get_current_weather",
description="Get the current weather in a given location",
parameters=_REQUEST_FUNCTION_PARAMETER_SCHEMA_STRUCT,
)
weather_tool = generative_models.Tool(
function_declarations=[get_current_weather_func],
)
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
tools=[weather_tool],
)
chat = model.start_chat()
response1 = chat.send_message("What is the weather like in Boston?")
assert (
response1.candidates[0].content.parts[0].function_call.name
== "get_current_weather"
)
response2 = chat.send_message(
generative_models.Part.from_function_response(
name="get_current_weather",
response={
"content": {"weather": "super nice"},
},
),
)
assert response2.text
Java
Tool tool =
Tool.newBuilder()
.addFunctionDeclarations(
FunctionDeclarationMaker.fromJsonString(jsonString)
)
.build();
// Start a chat session from a model, with the use of the declared
// function.
GenerativeModel model =
new GenerativeModel.Builder()
.setModelName(MODEL_NAME)
.setVertexAi(vertexAi)
.setTools(Arrays.asList(tool))
.build();
ChatSession chat = model.startChat();
System.out.println(String.format("Ask the question: %s", TEXT));
GenerateContentResponse response = chat.sendMessage(TEXT);
// Provide an answer to the model so that it knows what the result of a
// "function call" is.
Content content =
ContentMaker.fromMultiModalData(
PartMaker.fromFunctionResponse(
"getCurrentWeather", Collections.singletonMap("currentWeather", "snowing")));
response = chat.sendMessage(content);
JavaScript
const {
VertexAI,
FunctionDeclarationSchemaType,
} = require('@google-cloud/vertexai');
const functionDeclarations = [
{
function_declarations: [
{
name: 'get_current_weather',
description: 'get weather in a given location',
parameters: {
type: FunctionDeclarationSchemaType.OBJECT,
properties: {
location: {type: FunctionDeclarationSchemaType.STRING},
unit: {
type: FunctionDeclarationSchemaType.STRING,
enum: ['celsius', 'fahrenheit'],
},
},
required: ['location'],
},
},
],
},
];
async function functionCallingBasic(
projectId = 'PROJECT_ID',
location = 'us-central1',
model = 'gemini-2.5-flash'
) {
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.preview.getGenerativeModel({
model: model,
});
const request = {
contents: [
{role: 'user', parts: [{text: 'What is the weather in Boston?'}]},
],
tools: functionDeclarations,
};
const result = await generativeModel.generateContent(request);
console.log(JSON.stringify(result.response.candidates[0].content));
}
Vai
package functioncalling
import (
"context"
"encoding/json"
"errors"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
funcName := "getCurrentWeather"
funcDecl := &genai.FunctionDeclaration{
Name: funcName,
Description: "Get the current weather in a given location",
Parameters: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"location": {
Type: genai.TypeString,
Description: "location",
},
},
Required: []string{"location"},
},
}
// Add the weather function to our model toolbox.
model.Tools = []*genai.Tool{
{
FunctionDeclarations: []*genai.FunctionDeclaration{funcDecl},
},
}
prompt := genai.Text("What's the weather like in Boston?")
resp, err := model.GenerateContent(ctx, prompt)
if len(resp.Candidates) == 0 {
return errors.New("got empty response from model")
} else if len(resp.Candidates[0].FunctionCalls()) == 0 {
return errors.New("got no function call suggestions from model")
}
funcResp := &genai.FunctionResponse{
Name: funcName,
Response: map[string]any{
"content": mockAPIResp,
},
}
// Return the API response to the model allowing it to complete its response.
resp, err = model.GenerateContent(ctx, prompt, funcResp)
if err != nil {
return fmt.Errorf("failed to generate content: %w", err)
}
if len(resp.Candidates) == 0 || len(resp.Candidates[0].Content.Parts) == 0 {
return errors.New("got empty response from model")
}
Dopo
Python
from google.genai import types
def get_current_weather(location: str) -> str:
"""Returns the current weather.
Args:
location: The city and state, e.g. San Francisco, CA
"""
return 'sunny'
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='What is the weather like in Boston?',
config=types.GenerateContentConfig(tools=[get_current_weather]),
)
Java
Utilizza i metodi Chat
o GenerateContent
per implementare la chiamata di funzioni.
Utilizzo di Chat
Dichiara i metodi che diventeranno funzioni chiamabili:
Method method1 =
ChatWithFunctionCall.class.getDeclaredMethod("getCurrentWeather", String.class);
Method method2 =
ChatWithFunctionCall.class.getDeclaredMethod("divideTwoIntegers", int.class, int.class);
Aggiungi i due metodi come funzioni richiamabili allo strumento all'interno della configurazione dei contenuti:
GenerateContentConfig config =
GenerateContentConfig.builder().tools(Tool.builder().functions(method1, method2)).build();
Crea una sessione di chat con la configurazione:
Chat chatSession = client.chats.create("gemini-2.5-flash", config);
GenerateContentResponse response1 =
chatSession.sendMessage("what is the weather in San Francisco?");
Per l'implementazione completa, vedi ChatWithFunctionCall.java.
Utilizzo di GenerateContent
Dichiara i metodi che diventeranno funzioni chiamabili:
Method method1 =
GenerateContentWithFunctionCall.class.getMethod(
"getCurrentWeather", String.class, String.class);
Method method2 =
GenerateContentWithFunctionCall.class.getMethod(
"divideTwoIntegers", Integer.class, Integer.class);
Aggiungi i due metodi come funzioni richiamabili allo strumento all'interno della configurazione dei contenuti:
GenerateContentConfig config =
GenerateContentConfig.builder().tools(Tool.builder().functions(method1, method2)).build();
Utilizza generateContent
con la configurazione:
GenerateContentResponse response =
client.models.generateContent(
"gemini-2.5-flash",
"What is the weather in Vancouver? And can you divide 10 by 0?",
config);
Per l'implementazione completa, vedi GenerateContentWithFunctionCall.java.
JavaScript
import {
FunctionCall,
FunctionCallingConfigMode,
FunctionDeclaration,
GoogleGenAI,
Type,
} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const controlLightFunctionDeclaration: FunctionDeclaration = {
name: 'controlLight',
parameters: {
type: Type.OBJECT,
description: 'Set the brightness and color temperature of a room light.',
properties: {
brightness: {
type: Type.NUMBER,
description:
'Light level from 0 to 100. Zero is off and 100 is full brightness.',
},
colorTemperature: {
type: Type.STRING,
description:
'Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.',
},
},
required: ['brightness', 'colorTemperature'],
},
};
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Dim the lights so the room feels cozy and warm.',
config: {
tools: [{functionDeclarations: [controlLightFunctionDeclaration]}],
toolConfig: {
functionCallingConfig: {
mode: FunctionCallingConfigMode.ANY,
allowedFunctionNames: ['controlLight'],
},
},
},
});
console.debug(response.functionCalls);
Vai
package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
funcName := "getCurrentWeather"
funcDecl := &genai.FunctionDeclaration{
Name: funcName,
Description: "Get the current weather in a given location",
Parameters: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"location": {
Type: genai.TypeString,
Description: "location",
},
},
Required: []string{"location"},
},
}
// Add the weather function to our model toolbox.
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{
FunctionDeclarations: []*genai.FunctionDeclaration{funcDecl},
},
},
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What's the weather like in Boston?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Candidates[0].Content.Parts[0].FunctionCall.Name)
// Use synthetic data to simulate a response from the external API.
// In a real application, this would come from an actual weather API.
mockAPIResp, err := json.Marshal(map[string]string{
"location": "Boston",
"temperature": "38",
"temperature_unit": "F",
"description": "Cold and cloudy",
"humidity": "65",
"wind": `{"speed": "10", "direction": "NW"}`,
})
if err != nil {
log.Fatal(err)
}
funcResp := &genai.FunctionResponse{
Name: funcName,
Response: map[string]any{
"content": mockAPIResp,
},
}
// Return the API response to the model allowing it to complete its response.
mockedFunctionResponse := []*genai.Content{
&genai.Content{
Role: "user",
Parts: []*genai.Part{
&genai.Part{Text: "What's the weather like in Boston?"},
},
},
result.Candidates[0].Content,
&genai.Content{
Role: "tool",
Parts: []*genai.Part{
&genai.Part{FunctionResponse: funcResp},
},
},
}
result, err = client.Models.GenerateContent(ctx, *model, mockedFunctionResponse, config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
Grounding
La fondatezza è il processo di fornitura a un modello di informazioni esterne e specifiche del dominio per migliorare l'accuratezza, la pertinenza e la coerenza delle risposte. Sostituisci l'implementazione del grounding con l'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
model = generative_models.GenerativeModel(GEMINI_MODEL_NAME)
google_search_retriever_tool = (
generative_models.Tool.from_google_search_retrieval(
generative_models.grounding.GoogleSearchRetrieval()
)
)
response = model.generate_content(
"Why is sky blue?",
tools=[google_search_retriever_tool],
generation_config=generative_models.GenerationConfig(temperature=0),
)
Java
import com.google.cloud.vertexai.api.GroundingMetadata;
Tool googleSearchTool =
Tool.newBuilder()
.setGoogleSearch(GoogleSearch.newBuilder())
.build();
GenerativeModel model =
new GenerativeModel(modelName, vertexAI)
.withTools(Collections.singletonList(googleSearchTool));
GenerateContentResponse response = model.generateContent("Why is the sky blue?");
GroundingMetadata groundingMetadata = response.getCandidates(0).getGroundingMetadata();
String answer = ResponseHandler.getText(response);
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({project: projectId, location: location});
const generativeModelPreview = vertexAI.preview.getGenerativeModel({
model: model,
generationConfig: {maxOutputTokens: 256},
});
const googleSearchTool = {
googleSearch: {},
};
const request = {
contents: [{role: 'user', parts: [{text: 'Why is the sky blue?'}]}],
tools: [googleSearchTool],
};
const result = await generativeModelPreview.generateContent(request);
const response = await result.response;
const groundingMetadata = response.candidates[0].groundingMetadata;
console.log(
'Response: ',
JSON.stringify(response.candidates[0].content.parts[0].text)
);
console.log('GroundingMetadata is: ', JSON.stringify(groundingMetadata));
Vai
La grounding non è supportata dall'SDK Go Vertex AI, ma è supportata dall'SDK Google Gen AI.
Dopo
Python
from google.genai import types
from google.genai import Client
client = Client(
vertexai=True,
project=GOOGLE_CLOUD_PROJECT,
location=GOOGLE_CLOUD_LOCATION
)
response = client.models.generate_content(
model='gemini-2.5-flash-exp',
contents='Why is the sky blue?',
config=types.GenerateContentConfig(
tools=[types.Tool(google_search=types.GoogleSearch())]),
)
Java
Importa il modulo Tool
:
import com.google.genai.types.Tool;
Imposta lo strumento Ricerca Google nella configurazione:
Tool googleSearchTool = Tool.builder().googleSearch(GoogleSearch.builder()).build();
Aggiungi lo strumento alla configurazione dei contenuti:
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.tools(googleSearchTool)
.build();
Per l'implementazione completa, vedi GenerateContentWithConfigs.java.
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents:
'What is the sum of the first 50 prime numbers? Generate and run code for the calculation, and make sure you get all 50.',
config: {
tools: [{googleSearch: {}}],
},
});
console.debug(JSON.stringify(response?.candidates?.[0]?.groundingMetadata));
Vai
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
// Add the Google Search grounding tool to the GenerateContentConfig.
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{
GoogleSearch: &genai.GoogleSearch{},
},
},
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("Why is the sky blue?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
Impostazioni di sicurezza
Le impostazioni di sicurezza sono parametri configurabili che consentono agli utenti di gestire le risposte del modello filtrando o bloccando i contenuti correlati a categorie dannose specifiche, come incitamento all'odio, contenuti di natura sessuale o violenza. Sostituisci l'implementazione delle impostazioni di sicurezza con l'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
system_instruction=[
"Talk like a pirate.",
"Don't use rude words.",
],
)
response = model.generate_content(
contents="Why is sky blue?",
generation_config=generative_models.GenerationConfig(
temperature=0,
top_p=0.95,
top_k=20,
candidate_count=1,
max_output_tokens=100,
stop_sequences=["STOP!"],
response_logprobs=True,
logprobs=3,
),
safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_NONE,
},
)
Java
import com.google.cloud.vertexai.api.SafetySetting;
import com.google.cloud.vertexai.api.SafetySetting.HarmBlockThreshold;
SafetySetting safetySetting =
SafetySetting.newBuilder()
.setCategory(HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT)
.setThreshold(HarmBlockThreshold.BLOCK_LOW_AND_ABOVE)
.build();
GenerateContentResponse response =
model
.withSafetySetting(Arrays.asList(SafetySetting))
.generateContent("Please explain LLM?");
JavaScript
const {
VertexAI,
HarmCategory,
HarmBlockThreshold,
} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: PROJECT_ID, location: LOCATION});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: MODEL,
safetySettings: [
{
category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
{
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
});
const request = {
contents: [{role: 'user', parts: [{text: 'Tell me something dangerous.'}]}],
};
console.log('Prompt:');
console.log(request.contents[0].parts[0].text);
console.log('Streaming Response Text:');
// Create the response stream
const responseStream = await generativeModel.generateContentStream(request);
// Log the text response as it streams
for await (const item of responseStream.stream) {
if (item.candidates[0].finishReason === 'SAFETY') {
console.log('This response stream terminated due to safety concerns.');
break;
} else {
process.stdout.write(item.candidates[0].content.parts[0].text);
}
}
console.log('This response stream terminated due to safety concerns.');
Vai
package safetysettings
import (
"context"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
// generateContent generates text from prompt and configurations provided.
func generateContent(w io.Writer, projectID, location, modelName string) error {
// location := "us-central1"
// model := "gemini-2.5-flash"
ctx := context.Background()
client, err := genai.NewClient(ctx, projectID, location)
if err != nil {
return err
}
defer client.Close()
model := client.GenerativeModel(modelName)
model.SetTemperature(0.8)
// configure the safety settings thresholds
model.SafetySettings = []*genai.SafetySetting{
{
Category: genai.HarmCategoryHarassment,
Threshold: genai.HarmBlockLowAndAbove,
},
{
Category: genai.HarmCategoryDangerousContent,
Threshold: genai.HarmBlockLowAndAbove,
},
}
res, err := model.GenerateContent(ctx, genai.Text("Hello, say something mean to me."))
if err != nil {
return fmt.Errorf("unable to generate content: %v", err)
}
fmt.Fprintf(w, "generate-content response: %v\n", res.Candidates[0].Content.Parts[0])
fmt.Fprintf(w, "safety ratings:\n")
for _, r := range res.Candidates[0].SafetyRatings {
fmt.Fprintf(w, "\t%+v\n", r)
}
return nil
}
Dopo
Python
from google.genai import types
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='Say something bad.',
config=types.GenerateContentConfig(
safety_settings=[
types.SafetySetting(
category='HARM_CATEGORY_HATE_SPEECH',
threshold='BLOCK_ONLY_HIGH',
)
]
),
)
Java
Importa i moduli HarmBlockThreshold
, HarmCategory
e SafetySetting
:
import com.google.genai.types.HarmBlockThreshold;
import com.google.genai.types.HarmCategory;
import com.google.genai.types.SafetySetting;
Imposta le impostazioni di sicurezza nella configurazione:
ImmutableList<SafetySetting> safetySettings =
ImmutableList.of(
SafetySetting.builder()
.category(HarmCategory.Known.HARM_CATEGORY_HATE_SPEECH)
.threshold(HarmBlockThreshold.Known.BLOCK_ONLY_HIGH)
.build(),
SafetySetting.builder()
.category(HarmCategory.Known.HARM_CATEGORY_DANGEROUS_CONTENT)
.threshold(HarmBlockThreshold.Known.BLOCK_LOW_AND_ABOVE)
.build());
Aggiungi le impostazioni di sicurezza alla configurazione dei contenuti:
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.safetySettings(safetySettings)
.build();
Per l'implementazione completa, vedi GenerateContentWithConfigs.java.
JavaScript
import {
GoogleGenAI,
HarmBlockMethod,
HarmBlockThreshold,
HarmCategory,
} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'say something bad',
config: {
safetySettings: [
{
method: HarmBlockMethod.SEVERITY,
category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
{
method: HarmBlockMethod.SEVERITY,
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
},
});
console.debug(JSON.stringify(response?.candidates?.[0]?.safetyRatings));
Vai
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
var safetySettings []*genai.SafetySetting = []*genai.SafetySetting{
{
Category: genai.HarmCategoryHarassment,
Threshold: genai.HarmBlockThresholdBlockMediumAndAbove,
},
{
Category: genai.HarmCategoryDangerousContent,
Threshold: genai.HarmBlockThresholdBlockMediumAndAbove,
},
}
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
SafetySettings: safetySettings,
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What is your name?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
Sessioni di chat
Le sessioni di chat sono interazioni conversazionali in cui il modello mantiene il contesto su più turni richiamando i messaggi precedenti e utilizzandoli per definire le risposte attuali. Sostituisci l'implementazione dell'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
model = GenerativeModel(
"gemini-2.5-flash",
# You can specify tools when creating a model to avoid having to send them with every request.
tools=[weather_tool],
tool_config=tool_config,
)
chat = model.start_chat()
print(chat.send_message("What is the weather like in Boston?"))
print(chat.send_message(
Part.from_function_response(
name="get_current_weather",
response={
"content": {"weather_there": "super nice"},
}
),
))
Java
import com.google.cloud.vertexai.generativeai.ChatSession;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ChatSession chat = model.startChat();
ResponseStream<GenerateContentResponse> response = chat
.sendMessageStream("Can you tell me a story about cheese in 100 words?");
ResponseStream<GenerateContentResponse> anotherResponse = chat
.sendMessageStream("Can you modify the story to be written for a 5 year old?");
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const chat = generativeModel.startChat({});
const result1 = await chat.sendMessage('Hello');
const response1 = await result1.response;
console.log('Chat response 1: ', JSON.stringify(response1));
const result2 = await chat.sendMessage(
'Can you tell me a scientific fun fact?'
);
const response2 = await result2.response;
console.log('Chat response 2: ', JSON.stringify(response2));
Vai
import (
"context"
"errors"
"fmt"
"cloud.google.com/go/vertexai/genai"
)
prompt := "Do you have the Pixel 8 Pro in stock?"
fmt.Fprintf(w, "Question: %s\n", prompt)
resp, err := chat.SendMessage(ctx, genai.Text(prompt))
Dopo
Python
Sincrono
chat = client.chats.create(model='gemini-2.5-flash')
response = chat.send_message('tell me a story')
print(response.text)
response = chat.send_message('summarize the story you told me in 1 sentence')
print(response.text)
Asincrono
chat = client.aio.chats.create(model='gemini-2.5-flash')
response = await chat.send_message('tell me a story')
print(response.text)
Streaming sincrono
chat = client.chats.create(model='gemini-2.5-flash')
for chunk in chat.send_message_stream('tell me a story'):
print(chunk.text, end='')
Streaming asincrono
chat = client.aio.chats.create(model='gemini-2.5-flash')
async for chunk in await chat.send_message_stream('tell me a story'):
print(chunk.text, end='') # end='' is optional, for demo purposes.
Java
Importa i moduli Chat
e GenerateContentResponse
:
import com.google.genai.Chat;
import com.google.genai.types.GenerateContentResponse;
Creare una sessione di chat:
Chat chatSession = client.chats.create("gemini-2.5-flash");
Utilizza GenerateContentResponse
per fornire prompt:
GenerateContentResponse response =
chatSession
.sendMessage("Can you tell me a story about cheese in 100 words?");
// Gets the text string from the response by the quick accessor method `text()`.
System.out.println("Unary response: " + response.text());
GenerateContentResponse response2 =
chatSession
.sendMessage("Can you modify the story to be written for a 5 year old?");
// Gets the text string from the second response.
System.out.println("Unary response: " + response2.text());
Per l'implementazione completa, vedi ChatWithHistory.java.
JavaScript
import {GoogleGenAI} from '@google/genai';
const chat = ai.chats.create({model: 'gemini-2.5-flash'});
const response = await chat.sendMessage({message: 'Why is the sky blue?'});
console.debug('chat response 1: ', response.text);
const response2 = await chat.sendMessage({message: 'Why is the sunset red?'});
console.debug('chat response 2: ', response2.text);
const history = chat.getHistory();
for (const content of history) {
console.debug('chat history: ', JSON.stringify(content, null, 2));
}
Vai
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{Temperature: genai.Ptr[float32](0.5)}
// Create a new Chat.
chat, err := client.Chats.Create(ctx, *model, config, nil)
// Send first chat message.
result, err := chat.SendMessage(ctx, genai.Part{Text: "What's the weather in San Francisco?"})
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
// Send second chat message.
result, err = chat.SendMessage(ctx, genai.Part{Text: "How about New York?"})
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
Input multimodali
Gli input multimodali si riferiscono alla capacità di un modello di elaborare e comprendere informazioni da tipi di dati diversi dal testo, come immagini, audio e video. Sostituisci l'implementazione con l'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
from vertexai.generative_models import GenerativeModel, Image
vision_model = GenerativeModel("gemini-2.5-flash-vision")
# Local image
image = Image.load_from_file("image.jpg")
print(vision_model.generate_content(["What is shown in this image?", image]))
# Image from Cloud Storage
image_part = generative_models.Part.from_uri("gs://download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg", mime_type="image/jpeg")
print(vision_model.generate_content([image_part, "Describe this image?"]))
# Text and video
video_part = Part.from_uri("gs://cloud-samples-data/video/animals.mp4", mime_type="video/mp4")
print(vision_model.generate_content(["What is in the video? ", video_part]))
Java
import com.google.cloud.vertexai.generativeai.ContentMaker;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash-vision", vertexAi);
ResponseStream<GenerateContentResponse> stream =
model.generateContentStream(ContentMaker.fromMultiModalData(
"Please describe this image",
PartMaker.fromMimeTypeAndData("image/jpeg", IMAGE_URI)
));
JavaScript
const {VertexAI, HarmBlockThreshold, HarmCategory} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertex_ai = new VertexAI({project: project, location: location});
// Instantiate the model
const generativeVisionModel = vertex_ai.getGenerativeModel({
model: 'gemini-ultra-vision',
});
async function multiPartContent() {
const filePart = {file_data: {file_uri: "gs://sararob_imagegeneration_test/kitten.jpeg", mime_type: "image/jpeg"}};
const textPart = {text: 'What is this picture about?'};
const request = {
contents: [{role: 'user', parts: [textPart, filePart]}],
};
const resp = await generativeVisionModel.generateContentStream(request);
const contentResponse = await resp.response;
console.log(JSON.stringify(contentResponse));
}
multiPartContent();
Vai
Immagini
import (
"context"
"encoding/json"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
img := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://generativeai-downloads/images/scones.jpg",
}
prompt := genai.Text("What is in this image?")
resp, err := gemini.GenerateContent(ctx, img, prompt)
if err != nil {
return fmt.Errorf("error generating content: %w", err)
}
Video
package multimodalvideoaudio
import (
"context"
"errors"
"fmt"
"io"
"mime"
"path/filepath"
"cloud.google.com/go/vertexai/genai"
)
part := genai.FileData{
MIMEType: mime.TypeByExtension(filepath.Ext("pixel8.mp4")),
FileURI: "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
}
res, err := model.GenerateContent(ctx, part, genai.Text(`
Provide a description of the video.
The description should also contain anything important which people say in the video.
`))
Dopo
Python
from google import genai
from google.genai.types import HttpOptions, Part
client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
Part.from_uri(
file_uri="gs://cloud-samples-data/generative-ai/video/ad_copy_from_video.mp4",
mime_type="video/mp4",
),
"What is in the video?",
],
)
print(response.text)
Java
Importa il modulo GenerateContentResponse
:
import com.google.genai.types.GenerateContentResponse;
Fornisci una combinazione di testo, immagini e video per i prompt multimodali:
Content content =
Content.fromParts(
Part.fromText("describe the image"),
Part.fromUri("gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg"));
Fornisci il prompt combinato al modello:
GenerateContentResponse response =
client.models.generateContent("gemini-2.5-flash", content, null);
Per l'implementazione completa, vedi GenerateContentWithImageInput.java.
JavaScript
const filePart = {file_data: {file_uri: "gs://sararob_imagegeneration_test/kitten.jpeg", mime_type: "image/jpeg"}};
const textPart = {text: 'What is this picture about?'};
const contents = [{role: 'user', parts: [textPart, filePart]}];
const response = await ai.models.generateContentStream({
model: 'gemini-2.5-flash-exp',
contents: contents,
});
let i = 0;
for await (const chunk of response) {
const text = chunk.text;
if (text) {
console.debug(text);
}
}
Vai
Immagini
package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
config := &genai.GenerateContentConfig{}
config.ResponseModalities = []string{"IMAGE", "TEXT"}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("Generate a story about a cute baby turtle in a 3d digital art style. For each scene, generate an image."), config)
if err != nil {
log.Fatal(err)
}
Video e audio
package multimodalvideoaudio
import (
"context"
"errors"
"fmt"
"io"
"mime"
"path/filepath"
"cloud.google.com/go/vertexai/genai"
)
part := genai.FileData{
MIMEType: mime.TypeByExtension(filepath.Ext("pixel8.mp4")),
FileURI: "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
}
res, err := model.GenerateContent(ctx, part, genai.Text(`
Provide a description of the video.
The description should also contain anything important which people say in the video.
`))
Generazione di testo
La generazione di testo è il processo mediante il quale un modello produce contenuti scritti simili a quelli umani in base a un prompt specificato. Sostituisci l'implementazione con l'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Generazione sincrona
Prima
Python
response = model.generate_content(
"Why is sky blue?",
generation_config=generative_models.GenerationConfig(temperature=0),
)
assert response.text
Java
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
GenerateContentResponse response = model.generateContent("How are you?");
JavaScript
Sia l'SDK Vertex AI sia Google Gen AI SDK supportano solo la generazione di testo asincrona per JavaScript.
Vai
gemini := client.GenerativeModel(modelName)
prompt := genai.Text(
"What's a good name for a flower shop that specializes in selling bouquets of dried flowers?")
resp, err := gemini.GenerateContent(ctx, prompt)
Dopo
Python
response = client.models.generate_content(
model='gemini-2.5-flash', contents='Why is the sky blue?'
)
print(response.text)
Java
Importa il modulo GenerateContentResponse
:
import com.google.genai.types.GenerateContentResponse;
Genera testo con generateContent
:
GenerateContentResponse response =
client.models.generateContent("gemini-2.5-flash", "What is your name?", null);
Per l'implementazione completa, vedi GenerateContent.java.
JavaScript
Sia l'SDK Vertex AI sia Google Gen AI SDK supportano solo la generazione di testo asincrona per JavaScript.
Vai
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{Temperature: genai.Ptr[float32](0)}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What is your name?"), config)
Generazione asincrona
Prima
Python
response = await model.generate_content_async(
"Why is sky blue?",
generation_config=generative_models.GenerationConfig(temperature=0),
)
Java
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ApiFuture<GenerateContentResponse> future = model.generateContentAsync("How are you?");
GenerateContentResponse response = future.get();
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: model,
});
const request = {
contents: [
{
role: 'user',
parts: [
{
text: 'Write a story about a magic backpack.',
},
],
},
],
};
console.log(JSON.stringify(request));
const result = await generativeModel.generateContent(request);
console.log(result.response.text);
Vai
Non applicabile: Go gestisce le attività simultanee senza operazioni asincrone.
Dopo
Python
response = await client.aio.models.generate_content(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
)
print(response.text)
Java
Importa il modulo GenerateContentResponse
:
import com.google.genai.types.GenerateContentResponse;
Genera testo in modo asincrono:
CompletableFuture<GenerateContentResponse> responseFuture =
client.async.models.generateContent(
"gemini-2.5-flash", "Introduce Google AI Studio.", null);
responseFuture
.thenAccept(
response -> {
System.out.println("Async response: " + response.text());
})
.join();
Per l'implementazione completa, vedi GenerateContentAsync.java.
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'why is the sky blue?',
});
console.debug(response.text);
Vai
Non applicabile: Go gestisce le attività simultanee senza operazioni asincrone.
Streaming
Prima
Python
Streaming sincrono
stream = model.generate_content(
"Why is sky blue?",
stream=True,
generation_config=generative_models.GenerationConfig(temperature=0),
)
for chunk in stream:
assert (
chunk.text
or chunk.candidates[0].finish_reason
is generative_models.FinishReason.STOP
)
Streaming asincrono
async_stream = await model.generate_content_async(
"Why is sky blue?",
stream=True,
generation_config=generative_models.GenerationConfig(temperature=0),
)
async for chunk in async_stream:
assert (
chunk.text
or chunk.candidates[0].finish_reason
is generative_models.FinishReason.STOP
)
Java
import com.google.cloud.vertexai.generativeai.ResponseStream;
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ResponseStream<GenerateContentResponse> responseStream = model.generateContentStream("How are you?");
JavaScript
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: model,
});
const request = {
contents: [{role: 'user', parts: [{text: 'What is Node.js?'}]}],
};
console.log('Prompt:');
console.log(request.contents[0].parts[0].text);
console.log('Streaming Response Text:');
// Create the response stream
const responseStream = await generativeModel.generateContentStream(request);
// Log the text response as it streams
for await (const item of responseStream.stream) {
process.stdout.write(item.candidates[0].content.parts[0].text);
}
Vai
package streamtextbasic
import (
"context"
"errors"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
"google.golang.org/api/iterator"
)
model := client.GenerativeModel(modelName)
iter := model.GenerateContentStream(
ctx,
genai.Text("Write a story about a magic backpack."),
)
for {
resp, err := iter.Next()
fmt.Fprint(w, "generated response: ")
for _, c := range resp.Candidates {
for _, p := range c.Content.Parts {
fmt.Fprintf(w, "%s ", p)
}
}
}
Dopo
Python
Streaming sincrono
for chunk in client.models.generate_content_stream(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
):
print(chunk.text, end='')
Streaming asincrono
async for chunk in await client.aio.models.generate_content_stream(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
):
print(chunk.text, end='')
Java
Importa i moduli ResponseStream
e GenerateContentResponse
:
import com.google.genai.ResponseStream;
import com.google.genai.types.GenerateContentResponse;
Fornisci un prompt al modello e trasmetti in streaming i risultati:
ResponseStream<GenerateContentResponse> responseStream =
client.models.generateContentStream(
"gemini-2.5-flash", "Tell me a story in 300 words.", null);
System.out.println("Streaming response: ");
for (GenerateContentResponse res : responseStream) {
System.out.print(res.text());
}
Per l'implementazione completa, vedi GenerateContentAsync.java.
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContentStream({
model: 'gemini-2.5-flash-exp',
contents:
'Generate a story about a cute baby turtle in a 3d digital art style. For each scene, generate an image.',
config: {
responseModalities: [Modality.IMAGE, Modality.TEXT],
},
});
let i = 0;
for await (const chunk of response) {
const text = chunk.text;
const data = chunk.data;
if (text) {
console.debug(text);
} else if (data) {
const fileName = `generate_content_streaming_image_${i++}.png`;
console.debug(`Writing response image to file: ${fileName}.`);
fs.writeFileSync(fileName, data);
}
}
Vai
client, err := genai.NewClient(ctx, nil)
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{SystemInstruction: &genai.Content{Parts: []*genai.Part{&genai.Part{Text: "You are a story writer."}}}}
// Call the GenerateContent method.
for result, err := range client.Models.GenerateContentStream(ctx, *model, genai.Text("Tell me a story in 300 words."), config) {
if err != nil {
log.Fatal(err)
}
fmt.Print(result.Text())
}
Generazione di immagini
La generazione di immagini è il processo mediante il quale un modello crea immagini da descrizioni testuali o altre modalità di input. Sostituisci l'implementazione con l'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
model = ImageGenerationModel.from_pretrained("imagegeneration@002")
response = model.generate_images(
prompt="Astronaut riding a horse",
# Optional:
number_of_images=1,
seed=0,
)
response[0].show()
response[0].save("image1.png")
Java
La generazione di immagini non è supportata dall'SDK Vertex AI per Java, ma è supportata dall'SDK Google Gen AI.
JavaScript
La generazione di immagini non è supportata dall'SDK Vertex AI JavaScript, ma è supportata dall'SDK Google Gen AI.
Vai
La generazione di immagini non è supportata dall'SDK Go Vertex AI, ma è supportata dall'SDK Google Gen AI.
Dopo
Python
from google.genai import types
# Generate Image
response1 = client.models.generate_images(
model='imagen-3.0-generate-002',
prompt='An umbrella in the foreground, and a rainy night sky in the background',
config=types.GenerateImagesConfig(
number_of_images=1,
include_rai_reason=True,
output_mime_type='image/jpeg',
),
)
response1.generated_images[0].image.show()
Java
import com.google.genai.types.GenerateImagesConfig;
import com.google.genai.types.GenerateImagesResponse;
import com.google.genai.types.Image;
GenerateImagesConfig generateImagesConfig =
GenerateImagesConfig.builder()
.numberOfImages(1)
.outputMimeType("image/jpeg")
.includeSafetyAttributes(true)
.build();
GenerateImagesResponse generatedImagesResponse =
client.models.generateImages(
"imagen-3.0-generate-002", "Robot holding a red skateboard", generateImagesConfig);
Image generatedImage = generatedImagesResponse.generatedImages().get().get(0).image().get();
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateImages({
model: 'imagen-3.0-generate-002',
prompt: 'Robot holding a red skateboard',
config: {
numberOfImages: 1,
includeRaiReason: true,
},
});
console.debug(response?.generatedImages?.[0]?.image?.imageBytes);
Vai
import (
"encoding/json"
"google.golang.org/genai"
)
fmt.Println("Generate image example.")
response1, err := client.Models.GenerateImages(
ctx, "imagen-3.0-generate-002",
/*prompt=*/ "An umbrella in the foreground, and a rainy night sky in the background",
&genai.GenerateImagesConfig{
IncludeRAIReason: true,
IncludeSafetyAttributes: true,
OutputMIMEType: "image/jpeg",
},
)
Generazione controllata
La generazione controllata si riferisce al processo di guida dell'output del modello in modo che rispetti vincoli, formati, stili o attributi specifici, anziché generare testo in formato libero. Sostituisci l'implementazione con l'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
_RESPONSE_SCHEMA_STRUCT = {
"type": "object",
"properties": {
"location": {
"type": "string",
},
},
"required": ["location"],
}
response = model.generate_content(
contents="Why is sky blue? Respond in JSON Format.",
generation_config=generative_models.GenerationConfig(
...
response_schema=_RESPONSE_SCHEMA_STRUCT,
),
)
Java
import com.google.cloud.vertexai.api.Schema;
import com.google.cloud.vertexai.api.Type;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.PartMaker;
GenerationConfig generationConfig = GenerationConfig.newBuilder()
.setResponseMimeType("application/json")
.setResponseSchema(Schema.newBuilder()
.setType(Type.ARRAY)
.setItems(Schema.newBuilder()
.setType(Type.OBJECT)
.putProperties("object", Schema.newBuilder().setType(Type.STRING).build())
.build())
.build())
.build();
GenerativeModel model = new GenerativeModel(modelName, vertexAI)
.withGenerationConfig(generationConfig);
GenerateContentResponse response = model.generateContent(
ContentMaker.fromMultiModalData(
PartMaker.fromMimeTypeAndData("image/jpeg",
"gs://cloud-samples-data/generative-ai/image/office-desk.jpeg"),
PartMaker.fromMimeTypeAndData("image/jpeg",
"gs://cloud-samples-data/generative-ai/image/gardening-tools.jpeg"),
"Generate a list of objects in the images."
)
);
JavaScript
// Initialize Vertex with your Cloud project and location
const vertex_ai = new VertexAI({project: project, location: location});
// Instantiate the model
const responseSchema = {
type: 'ARRAY',
items: {
type: 'OBJECT',
properties: {
'recipeName': {
type: 'STRING',
description: 'Name of the recipe',
nullable: false,
},
},
required: ['recipeName'],
},
};
const generativeModel = vertex_ai.getGenerativeModel({
model: 'gemini-2.5-flash',
generationConfig: {
responseSchema: responseSchema,
responseMimeType: 'application/json',
}
});
async function generateContentControlledOutput() {
const req = {
contents: [{role: 'user', parts: [{text: 'list 3 popular cookie recipe'}]}],
};
const resp = await generativeModel.generateContent(req);
console.log('aggregated response: ', JSON.stringify(resp.response));
};
generateContentControlledOutput();
Vai
import (
"context"
"cloud.google.com/go/vertexai/genai"
)
model.GenerationConfig.ResponseMIMEType = "application/json"
// Build an OpenAPI schema, in memory
model.GenerationConfig.ResponseSchema = &genai.Schema{
Type: genai.TypeArray,
Items: &genai.Schema{
Type: genai.TypeArray,
Items: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"object": {
Type: genai.TypeString,
},
},
},
},
}
img1 := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://cloud-samples-data/generative-ai/image/office-desk.jpeg",
}
img2 := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://cloud-samples-data/generative-ai/image/gardening-tools.jpeg",
}
prompt := "Generate a list of objects in the images."
res, err := model.GenerateContent(ctx, img1, img2, genai.Text(prompt))
Dopo
Python
response_schema = {
"type": "ARRAY",
"items": {
"type": "OBJECT",
"properties": {
"recipe_name": {"type": "STRING"},
"ingredients": {"type": "ARRAY", "items": {"type": "STRING"}},
},
"required": ["recipe_name", "ingredients"],
},
}
prompt = """
List a few popular cookie recipes.
"""
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=prompt,
config={
"response_mime_type": "application/json",
"response_schema": response_schema,
},
)
Java
Importa i moduli Schema
e Type
:
import com.google.genai.types.Schema;
import com.google.genai.types.Type;
Crea lo schema della risposta:
Schema schema =
Schema.builder()
.type(Type.Known.ARRAY)
.items(
Schema.builder()
.type(Type.Known.OBJECT)
.properties(
ImmutableMap.of(
"recipe_name",
Schema.builder().type(Type.Known.STRING).build(),
"ingredients",
Schema.builder()
.type(Type.Known.ARRAY)
.items(Schema.builder().type(Type.Known.STRING))
.build()))
.required("recipe_name", "ingredients"))
.build();
Aggiungi lo schema alla configurazione dei contenuti:
GenerateContentConfig config =
GenerateContentConfig.builder()
.responseMimeType("application/json")
.candidateCount(1)
.responseSchema(schema)
.build();
Genera risposte con la configurazione:
GenerateContentResponse response =
client.models.generateContent(
"gemini-2.5-flash", "List a few popular cookie recipes.", config);
Per l'implementazione completa, vedi GenerateContentWithResponseSchema.java.
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'List 3 popular cookie recipes.',
config: {
responseMimeType: 'application/json',
responseSchema: {
type: Type.ARRAY,
items: {
type: Type.OBJECT,
properties: {
'recipeName': {
type: Type.STRING,
description: 'Name of the recipe',
nullable: false,
},
},
required: ['recipeName'],
},
},
},
});
console.debug(response.text);
Vai
import (
"context"
"encoding/json"
genai "google.golang.org/genai"
)
cacheContents := []*genai.Content{
{
Parts: []*genai.Part{
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
MIMEType: "application/pdf",
}},
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
MIMEType: "application/pdf",
}},
},
Role: "user",
},
}
config := &genai.CreateCachedContentConfig{
Contents: cacheContents,
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: systemInstruction},
},
},
DisplayName: "example-cache",
TTL: "86400s",
}
res, err := client.Caches.Create(ctx, modelName, config)
if err != nil {
return "", fmt.Errorf("failed to create content cache: %w", err)
}
cachedContent, err := json.MarshalIndent(res, "", " ")
if err != nil {
return "", fmt.Errorf("failed to marshal cache info: %w", err)
}
Conteggio dei token
I token sono le unità fondamentali di testo (lettere, parole, frasi) che i modelli elaborano, analizzano e generano. Per conteggiare o calcolare i token in una risposta, sostituisci l'implementazione con l'SDK Vertex AI con il seguente codice che utilizza l'SDK Google Gen AI.
Prima
Python
content = ["Why is sky blue?", "Explain it like I'm 5."]
response = model.count_tokens(content)
Java
import com.google.cloud.vertexai.api.CountTokensResponse;
CountTokensResponse response = model.countTokens(textPrompt);
int promptTokenCount = response.getTotalTokens();
int promptCharCount = response.getTotalBillableCharacters();
GenerateContentResponse contentResponse = model.generateContent(textPrompt);
int tokenCount = contentResponse.getUsageMetadata().getPromptTokenCount();
int candidateTokenCount = contentResponse.getUsageMetadata().getCandidatesTokenCount();
int totalTokenCount = contentResponse.getUsageMetadata().getTotalTokenCount();
JavaScript
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
};
const response = await generativeModel.countTokens(request);
console.log('count tokens response: ', JSON.stringify(response));
Vai
package tokencount
import (
"context"
"fmt"
"cloud.google.com/go/vertexai/genai"
)
resp, err := model.CountTokens(ctx, prompt)
fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp.TotalTokens)
resp2, err := model.GenerateContent(ctx, prompt)
fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp2.UsageMetadata.PromptTokenCount)
fmt.Fprintf(w, "Number of tokens for the candidates: %d\n", resp2.UsageMetadata.CandidatesTokenCount)
fmt.Fprintf(w, "Total number of tokens: %d\n", resp2.UsageMetadata.TotalTokenCount)
Dopo
Python
Conteggio token
response = client.models.count_tokens(
model='gemini-2.5-flash',
contents='why is the sky blue?',
)
print(response)
Token di computing
response = client.models.compute_tokens(
model='gemini-2.5-flash',
contents='why is the sky blue?',
)
print(response)
Java
Importa i moduli CountTokensResponse
e ComputeTokensResponse
:
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.ComputeTokensResponse;
Utilizza countTokens
per contare il numero di token utilizzati per un prompt:
CountTokensResponse response =
client.models.countTokens("gemini-2.5-flash", "What is your name?", null);
Utilizza computeTokens
per un'analisi più granulare di come viene suddiviso in token il prompt:
ComputeTokensResponse response =
client.models.computeTokens("gemini-2.5-flash", "What is your name?", null);
Per l'implementazione completa, consulta CountTokens.java.
JavaScript
const response = await ai.models.countTokens({
model: 'gemini-2.5-flash',
contents: 'The quick brown fox jumps over the lazy dog.',
});
Vai
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
client, err := genai.NewClient(ctx, &genai.ClientConfig{Backend: genai.BackendVertexAI})
fmt.Println("Count tokens example.")
countTokensResult, err := client.Models.CountTokens(ctx, *model, genai.Text("What is your name?"), nil)
fmt.Println(countTokensResult.TotalTokens)