Das Modul für generative KI im Vertex AI SDK ist eingestellt und nach dem 24. Juni 2026 nicht mehr verfügbar. Das Google Gen AI SDK enthält alle Funktionen des Vertex AI SDK und unterstützt viele zusätzliche Funktionen.
Mit dieser Migrationsanleitung können Sie Python-, Java-, JavaScript- und Go-Code, der das Vertex AI SDK verwendet, in das Google Gen AI SDK konvertieren.
Wichtigste Änderungen
Die folgenden Namespaces im Vertex AI SDK befinden sich in der Einstellungsphase. SDK-Releases nach dem 24. Juni 2026 enthalten diese Module nicht mehr. Verwenden Sie die entsprechenden Namespaces aus dem Google Gen AI SDK, das die gleichen Funktionen wie die eingestellten Module und Pakete bietet.
Vertex AI SDK | Betroffener Code | Ersatz für das Google Gen AI SDK |
---|---|---|
google-cloud-aiplatform |
Entfernte Module: |
google-genai |
cloud.google.com/go/vertexai/genai |
Entferntes Paket: |
google.golang.org/genai |
@google-cloud/vertexai |
Entfernte Module: |
@google/genai |
com.google.cloud:google-cloud-vertexai |
Entferntes Paket: |
com.google.genai:google-genai |
Code migration
In den folgenden Abschnitten erfahren Sie, wie Sie bestimmte Code-Snippets vom Vertex AI SDK zum Google Gen AI SDK migrieren.
Installation
Ersetzen Sie die Vertex AI SDK-Abhängigkeit durch die Google Gen AI SDK-Abhängigkeit.
Vorher
Python
pip install -U -q "google-cloud-aiplatform"
Java
Gradle:
gradle:
implementation 'com.google.cloud:google-cloud-vertexai:1.26.0'
maven:
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-vertexai</artifactId>
<version>1.26.0</version>
</dependency>
JavaScript
npm install @google-cloud/vertexai
Go
go get cloud.google.com/go/vertexai/genai
Nach
Python
pip install -U -q "google-genai"
Java
gradle:
implementation 'com.google.genai:google-genai:1.5.0'
maven:
<dependency>
<groupId>com.google.genai</groupId>
<artifactId>google-genai</artifactId>
<version>1.5.0</version>
</dependency>
JavaScript
npm install @google/genai
Go
go get google.golang.org/genai
Kontext-Caching
Beim Kontext-Caching werden häufig verwendete Teile von Modell-Prompts für ähnliche Anfragen gespeichert und wiederverwendet. Ersetzen Sie die Vertex AI SDK-Implementierung durch die Google Gen AI SDK-Abhängigkeit.
Vorher
Python
Importe
from google.cloud import aiplatform
import vertexai
import datetime
Erstellen
vertexai.init(project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION)
cache_content = vertexai.caching.CachedContent.create(
model_name=MODEL_NAME,
system_instruction='Please answer my question formally',
contents=['user content'],
ttl=datetime.timedelta(days=1),
)
Abrufen
vertexai.init(project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION)
cache_content = vertexai.caching.CachedContent.get(cached_content_name="projects/{project}/locations/{location}/cachedContents/{cached_content}")
Löschen
cache_content.delete()
Aktualisieren
cache_content.update(ttl=datetime.timedelta(days=2))
Liste
cache_contents = vertexai.caching.CachedContent.list()
Java
Kontext-Caching wird vom Java Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
JavaScript
Das Zwischenspeichern von Kontext wird vom JavaScript Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
Go
Importe
package contextcaching
// [START generativeaionvertexai_gemini_create_context_cache]
import (
"context"
"fmt"
"io"
"time"
"cloud.google.com/go/vertexai/genai"
)
Erstellen
content := &genai.CachedContent{
Model: modelName,
SystemInstruction: &genai.Content{
Parts: []genai.Part{genai.Text(systemInstruction)},
},
Expiration: genai.ExpireTimeOrTTL{TTL: 60 * time.Minute},
Contents: []*genai.Content{
{
Role: "user",
Parts: []genai.Part{part1, part2},
},
},
}
result, err := client.CreateCachedContent(context, content)
Abrufen
cachedContent, err := client.GetCachedContent(context, contentName)
Löschen
err = client.DeleteCachedContent(context, contentName)
Aktualisieren
newExpireTime := cc.Expiration.ExpireTime.Add(15 * time.Minute)
ccUpdated := client.UpdateCachedContent(context, cc, &genai.CachedContentToUpdate{
Expiration: &genai.ExpireTimeOrTTL{ExpireTime: newExpireTime},
})
Liste
iter, err := client.ListCachedContents(context, contentName)
Nach
Python
Importe
from google import genai
from google.genai.types import Content, CreateCachedContentConfig, HttpOptions, Part
Erstellen
client = genai.Client(http_options=HttpOptions(api_version="v1"))
content_cache = client.caches.create(
model="gemini-2.5-flash",
config=CreateCachedContentConfig(
contents=contents,
system_instruction=system_instruction,
display_name="example-cache",
ttl="86400s",
),
)
Abrufen
content_cache_list = client.caches.list()
# Access individual properties of a ContentCache object(s)
for content_cache in content_cache_list:
print(f"Cache `{content_cache.name}` for model `{content_cache.model}`")
print(f"Last updated at: {content_cache.update_time}")
print(f"Expires at: {content_cache.expire_time}")
Löschen
client.caches.delete(name=cache_name)
Aktualisieren
content_cache = client.caches.update(
name=cache_name, config=UpdateCachedContentConfig(ttl="36000s")
)
Liste
cache_contents = client.caches.list(config={'page_size': 2})
Java
Importe
import com.google.genai.types.CachedContent;
import com.google.genai.types.Content;
import com.google.genai.types.CreateCachedContentConfig;
import com.google.genai.types.DeleteCachedContentResponse;
import com.google.genai.types.ListCachedContentsConfig;
Erstellen
Content content =
Content.fromParts(
fetchPdfPart(
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"));
CreateCachedContentConfig config =
CreateCachedContentConfig.builder()
.systemInstruction(Content.fromParts(Part.fromText("summarize the pdf")))
.expireTime(Instant.now().plus(Duration.ofHours(1)))
.contents(content)
.build();
CachedContent cachedContent1 = client.caches.create("gemini-2.5-flash", config);
Abrufen
CachedContent cachedContent2 = client.caches.get(cachedContent1.name().get(), null);
System.out.println("get cached content: " + cachedContent2);
Löschen
DeleteCachedContentResponse unused = client.caches.delete(cachedContent1.name().get(), null);
System.out.println("Deleted cached content: " + cachedContent1.name().get());
Aktualisieren
CachedContent cachedContentUpdate =
client.caches.update(
cachedContent.name().get(),
UpdateCachedContentConfig.builder().ttl(Duration.ofMinutes(10)).build());
System.out.println("Update cached content: " + cachedContentUpdate);
Liste
System.out.println("List cached contents resrouce names: ");
for (CachedContent cachedContent :
client.caches.list(ListCachedContentsConfig.builder().pageSize(5).build())) {
System.out.println(cachedContent.name().get());
}
JavaScript
Importe
import {GoogleGenAI, Part} from '@google/genai';
Erstellen
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const cachedContent1: Part = {
fileData: {
fileUri: 'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',
mimeType: 'application/pdf',
},
};
const cachedContent2: Part = {
fileData: {
fileUri: 'gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf',
mimeType: 'application/pdf',
},
};
const cache = await ai.caches.create({
model: 'gemini-1.5-pro-002',
config: {contents: [cachedContent1, cachedContent2]},
});
Abrufen
const getResponse = await ai.caches.get({name: cacheName});
Löschen
await ai.caches.delete({name: cacheName});
Aktualisieren
const updateResponse = await ai.caches.update({
name: cacheName,
config: {ttl: '86400s'},
});
Liste
const listResponse = await ai.caches.list();
let i = 1;
for await (const cachedContent of listResponse) {
console.debug(`List response ${i++}: `, JSON.stringify(cachedContent));
}
Go
Importe
import (
"context"
"encoding/json"
"fmt"
"io"
genai "google.golang.org/genai"
)
Erstellen
cacheContents := []*genai.Content{
{
Parts: []*genai.Part{
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
MIMEType: "application/pdf",
}},
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
MIMEType: "application/pdf",
}},
},
Role: "user",
},
}
config := &genai.CreateCachedContentConfig{
Contents: cacheContents,
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: systemInstruction},
},
},
DisplayName: "example-cache",
TTL: "86400s",
}
res, err := client.Caches.Create(ctx, modelName, config)
Abrufen
cachedContent, err := client.GetCachedContent(ctx, contentName)
Löschen
_, err = client.Caches.Delete(ctx, result.Name, &genai.DeleteCachedContentConfig{})
Aktualisieren
result, err = client.Caches.Update(ctx, result.Name, &genai.UpdateCachedContentConfig{
ExpireTime: time.Now().Add(time.Hour),
})
Liste
// List the first page.
page, err := client.Caches.List(ctx, &genai.ListCachedContentsConfig{PageSize: 2})
// Continue to the next page.
page, err = page.Next(ctx)
// Resume the page iteration using the next page token.
page, err = client.Caches.List(ctx, &genai.ListCachedContentsConfig{PageSize: 2, PageToken: page.NextPageToken})
Konfigurations- und Systemanweisungen
Die Konfiguration definiert Parameter, die das Verhalten des Modells steuern. Systemanweisungen enthalten Richtlinien, mit denen die Antworten des Modells auf eine bestimmte Rolle, einen bestimmten Stil oder eine bestimmte Aufgabe ausgerichtet werden. Ersetzen Sie die Konfigurations- und Systemanweisungen aus dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
system_instruction=[
"Talk like a pirate.",
"Don't use rude words.",
],
)
response = model.generate_content(
contents="Why is sky blue?",
generation_config=generative_models.GenerationConfig(
temperature=0,
top_p=0.95,
top_k=20,
candidate_count=1,
max_output_tokens=100,
stop_sequences=["STOP!"],
response_logprobs=True,
logprobs=3,
),
safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_NONE,
},
)
Java
import com.google.cloud.vertexai.api.GenerationConfig;
GenerationConfig generationConfig =
GenerationConfig.newBuilder().setMaxOutputTokens(50).build();
// Use the builder to instantialize the model with the configuration.
GenerativeModel model =
new GenerativeModel.Builder()
.setModelName("gemino-pro")
.setVertexAi(vertexAi)
.setGenerationConfig(generationConfig)
.build();
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const generativeModel = vertexAI.getGenerativeModel({
model: 'gemini-2.5-flash',
systemInstruction: {
parts: [
{text: 'You are a helpful language translator.'},
{text: 'Your mission is to translate text in English to French.'},
],
},
});
const textPart = {
text: `
User input: I like bagels.
Answer:`,
};
const request = {
contents: [{role: 'user', parts: [textPart]}],
};
const resp = await generativeModel.generateContent(request);
const contentResponse = await resp.response;
console.log(JSON.stringify(contentResponse));
Go
import (
"context"
"cloud.google.com/go/vertexai/genai"
)
model := client.GenerativeModel(modelName)
model.GenerationConfig = genai.GenerationConfig{
TopP: proto.Float32(1),
TopK: proto.Int32(32),
Temperature: proto.Float32(0.4),
MaxOutputTokens: proto.Int32(2048),
}
systemInstruction := fmt.Sprintf("Your mission is to translate text from %xs to %s", sourceLanguageCode, targetLanguageCode)
model.SystemInstruction = &genai.Content{
Role: "user",
Parts: []genai.Part{genai.Text(systemInstruction)},
}
Nach
Python
from google.genai import types
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='high',
config=types.GenerateContentConfig(
system_instruction='I say high, you say low',
max_output_tokens=3,
temperature=0.3,
response_logprobs=True,
logprobs=3,
),
)
Java
Importieren Sie GenerateContentConfig
:
import com.google.genai.types.GenerateContentConfig;
Systemanweisung erstellen:
Content systemInstruction = Content.fromParts(Part.fromText("You are a history teacher."));
Fügen Sie die Systemanweisungen der Inhaltskonfiguration hinzu:
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.systemInstruction(systemInstruction)
.build();
Die vollständige Implementierung finden Sie unter GenerateContentWithConfigs.java.
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'high',
config: {systemInstruction: 'I say high you say low.'},
});
console.debug(response.text);
await generateContentFromVertexAI().catch((e) =>
console.error('got error', e),
);
Go
import (
"context"
genai "google.golang.org/genai"
)
config := &genai.GenerateContentConfig{
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: "You're a language translator. Your mission is to translate text in English to French."},
},
},
}
resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
Einbettungen
Einbettungen sind numerische Vektordarstellungen von Text, Bildern oder Videos, die ihre semantische oder visuelle Bedeutung und Beziehungen in einem hochdimensionalen Raum erfassen. Ersetzen Sie die Einbettungsimplementierung aus dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel
model = TextEmbeddingModel.from_pretrained("gemini-embedding-001")
text_input = TextEmbeddingInput(
task_type="RETRIEVAL_DOCUMENT", # Optional
title="Driver's License", # Optional
text="How do I get a driver's license/learner's permit?"
)
response = model.get_embeddings(
[text_input], output_dimensionality=3072
)
Java
Einbettungen werden vom Java Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
JavaScript
Einbettungen werden vom JavaScript Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
Go
Einbettungen werden vom Go Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
Nach
Python
from google.genai.types import EmbedContentConfig
client = genai.Client()
response = client.models.embed_content(
model="gemini-embedding-001",
contents="How do I get a driver's license/learner's permit?",
config=EmbedContentConfig(
task_type="RETRIEVAL_DOCUMENT", # Optional
output_dimensionality=3072, # Optional
title="Driver's License", # Optional
),
)
Java
import com.google.genai.Client;
import com.google.genai.types.EmbedContentResponse;
EmbedContentResponse response =
client.models.embedContent("text-embedding-005", "why is the sky blue?", null);
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.embedContent({
model: 'text-embedding-005',
contents: 'Hello world!',
});
console.debug(JSON.stringify(response));
await embedContentFromVertexAI().catch((e) =>
console.error('got error', e),
);
Go
import (
"context"
"fmt"
"google.golang.org/genai"
)
result, err := client.Models.EmbedContent(ctx, *model, genai.Text("What is your name?"), &genai.EmbedContentConfig{TaskType: "RETRIEVAL_QUERY"})
fmt.Printf("%#v\n", result.Embeddings[0])
fmt.Println("Embed content RETRIEVAL_DOCUMENT task type example.")
result, err = client.Models.EmbedContent(ctx, *model, genai.Text("What is your name?"), &genai.EmbedContentConfig{TaskType: "RETRIEVAL_DOCUMENT"})
fmt.Printf("%#v\n", result.Embeddings[0])
Funktionsaufrufe
Mit Funktionsaufrufen kann ein Modell erkennen, wann ein externes Tool oder eine externe API aufgerufen werden muss. Anschließend werden strukturierte Daten mit der erforderlichen Funktion und den erforderlichen Argumenten für die Ausführung generiert. Ersetzen Sie die Implementierung von Funktionsaufrufen mit dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
get_current_weather_func = generative_models.FunctionDeclaration(
name="get_current_weather",
description="Get the current weather in a given location",
parameters=_REQUEST_FUNCTION_PARAMETER_SCHEMA_STRUCT,
)
weather_tool = generative_models.Tool(
function_declarations=[get_current_weather_func],
)
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
tools=[weather_tool],
)
chat = model.start_chat()
response1 = chat.send_message("What is the weather like in Boston?")
assert (
response1.candidates[0].content.parts[0].function_call.name
== "get_current_weather"
)
response2 = chat.send_message(
generative_models.Part.from_function_response(
name="get_current_weather",
response={
"content": {"weather": "super nice"},
},
),
)
assert response2.text
Java
Tool tool =
Tool.newBuilder()
.addFunctionDeclarations(
FunctionDeclarationMaker.fromJsonString(jsonString)
)
.build();
// Start a chat session from a model, with the use of the declared
// function.
GenerativeModel model =
new GenerativeModel.Builder()
.setModelName(MODEL_NAME)
.setVertexAi(vertexAi)
.setTools(Arrays.asList(tool))
.build();
ChatSession chat = model.startChat();
System.out.println(String.format("Ask the question: %s", TEXT));
GenerateContentResponse response = chat.sendMessage(TEXT);
// Provide an answer to the model so that it knows what the result of a
// "function call" is.
Content content =
ContentMaker.fromMultiModalData(
PartMaker.fromFunctionResponse(
"getCurrentWeather", Collections.singletonMap("currentWeather", "snowing")));
response = chat.sendMessage(content);
JavaScript
const {
VertexAI,
FunctionDeclarationSchemaType,
} = require('@google-cloud/vertexai');
const functionDeclarations = [
{
function_declarations: [
{
name: 'get_current_weather',
description: 'get weather in a given location',
parameters: {
type: FunctionDeclarationSchemaType.OBJECT,
properties: {
location: {type: FunctionDeclarationSchemaType.STRING},
unit: {
type: FunctionDeclarationSchemaType.STRING,
enum: ['celsius', 'fahrenheit'],
},
},
required: ['location'],
},
},
],
},
];
async function functionCallingBasic(
projectId = 'PROJECT_ID',
location = 'us-central1',
model = 'gemini-2.5-flash'
) {
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.preview.getGenerativeModel({
model: model,
});
const request = {
contents: [
{role: 'user', parts: [{text: 'What is the weather in Boston?'}]},
],
tools: functionDeclarations,
};
const result = await generativeModel.generateContent(request);
console.log(JSON.stringify(result.response.candidates[0].content));
}
Go
package functioncalling
import (
"context"
"encoding/json"
"errors"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
funcName := "getCurrentWeather"
funcDecl := &genai.FunctionDeclaration{
Name: funcName,
Description: "Get the current weather in a given location",
Parameters: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"location": {
Type: genai.TypeString,
Description: "location",
},
},
Required: []string{"location"},
},
}
// Add the weather function to our model toolbox.
model.Tools = []*genai.Tool{
{
FunctionDeclarations: []*genai.FunctionDeclaration{funcDecl},
},
}
prompt := genai.Text("What's the weather like in Boston?")
resp, err := model.GenerateContent(ctx, prompt)
if len(resp.Candidates) == 0 {
return errors.New("got empty response from model")
} else if len(resp.Candidates[0].FunctionCalls()) == 0 {
return errors.New("got no function call suggestions from model")
}
funcResp := &genai.FunctionResponse{
Name: funcName,
Response: map[string]any{
"content": mockAPIResp,
},
}
// Return the API response to the model allowing it to complete its response.
resp, err = model.GenerateContent(ctx, prompt, funcResp)
if err != nil {
return fmt.Errorf("failed to generate content: %w", err)
}
if len(resp.Candidates) == 0 || len(resp.Candidates[0].Content.Parts) == 0 {
return errors.New("got empty response from model")
}
Nach
Python
from google.genai import types
def get_current_weather(location: str) -> str:
"""Returns the current weather.
Args:
location: The city and state, e.g. San Francisco, CA
"""
return 'sunny'
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='What is the weather like in Boston?',
config=types.GenerateContentConfig(tools=[get_current_weather]),
)
Java
Verwenden Sie entweder die Methode Chat
oder GenerateContent
, um Funktionsaufrufe zu implementieren.
Chat
Deklarieren Sie die Methoden, die zu aufrufbaren Funktionen werden:
Method method1 =
ChatWithFunctionCall.class.getDeclaredMethod("getCurrentWeather", String.class);
Method method2 =
ChatWithFunctionCall.class.getDeclaredMethod("divideTwoIntegers", int.class, int.class);
Fügen Sie die beiden Methoden als aufrufbare Funktionen in der Inhaltskonfiguration des Tools hinzu:
GenerateContentConfig config =
GenerateContentConfig.builder().tools(Tool.builder().functions(method1, method2)).build();
Erstellen Sie eine Chatsitzung mit der Konfiguration:
Chat chatSession = client.chats.create("gemini-2.5-flash", config);
GenerateContentResponse response1 =
chatSession.sendMessage("what is the weather in San Francisco?");
Die vollständige Implementierung finden Sie unter ChatWithFunctionCall.java.
GenerateContent
Deklarieren Sie die Methoden, die zu aufrufbaren Funktionen werden:
Method method1 =
GenerateContentWithFunctionCall.class.getMethod(
"getCurrentWeather", String.class, String.class);
Method method2 =
GenerateContentWithFunctionCall.class.getMethod(
"divideTwoIntegers", Integer.class, Integer.class);
Fügen Sie die beiden Methoden als aufrufbare Funktionen in der Inhaltskonfiguration des Tools hinzu:
GenerateContentConfig config =
GenerateContentConfig.builder().tools(Tool.builder().functions(method1, method2)).build();
Verwenden Sie generateContent
mit der Konfiguration:
GenerateContentResponse response =
client.models.generateContent(
"gemini-2.5-flash",
"What is the weather in Vancouver? And can you divide 10 by 0?",
config);
Die vollständige Implementierung finden Sie unter GenerateContentWithFunctionCall.java.
JavaScript
import {
FunctionCall,
FunctionCallingConfigMode,
FunctionDeclaration,
GoogleGenAI,
Type,
} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const controlLightFunctionDeclaration: FunctionDeclaration = {
name: 'controlLight',
parameters: {
type: Type.OBJECT,
description: 'Set the brightness and color temperature of a room light.',
properties: {
brightness: {
type: Type.NUMBER,
description:
'Light level from 0 to 100. Zero is off and 100 is full brightness.',
},
colorTemperature: {
type: Type.STRING,
description:
'Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.',
},
},
required: ['brightness', 'colorTemperature'],
},
};
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Dim the lights so the room feels cozy and warm.',
config: {
tools: [{functionDeclarations: [controlLightFunctionDeclaration]}],
toolConfig: {
functionCallingConfig: {
mode: FunctionCallingConfigMode.ANY,
allowedFunctionNames: ['controlLight'],
},
},
},
});
console.debug(response.functionCalls);
Go
package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
funcName := "getCurrentWeather"
funcDecl := &genai.FunctionDeclaration{
Name: funcName,
Description: "Get the current weather in a given location",
Parameters: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"location": {
Type: genai.TypeString,
Description: "location",
},
},
Required: []string{"location"},
},
}
// Add the weather function to our model toolbox.
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{
FunctionDeclarations: []*genai.FunctionDeclaration{funcDecl},
},
},
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What's the weather like in Boston?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Candidates[0].Content.Parts[0].FunctionCall.Name)
// Use synthetic data to simulate a response from the external API.
// In a real application, this would come from an actual weather API.
mockAPIResp, err := json.Marshal(map[string]string{
"location": "Boston",
"temperature": "38",
"temperature_unit": "F",
"description": "Cold and cloudy",
"humidity": "65",
"wind": `{"speed": "10", "direction": "NW"}`,
})
if err != nil {
log.Fatal(err)
}
funcResp := &genai.FunctionResponse{
Name: funcName,
Response: map[string]any{
"content": mockAPIResp,
},
}
// Return the API response to the model allowing it to complete its response.
mockedFunctionResponse := []*genai.Content{
&genai.Content{
Role: "user",
Parts: []*genai.Part{
&genai.Part{Text: "What's the weather like in Boston?"},
},
},
result.Candidates[0].Content,
&genai.Content{
Role: "tool",
Parts: []*genai.Part{
&genai.Part{FunctionResponse: funcResp},
},
},
}
result, err = client.Models.GenerateContent(ctx, *model, mockedFunctionResponse, config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
Fundierung
Bei der Fundierung werden Modelle mit externen, domänenspezifischen Informationen versorgt, um die Genauigkeit, Relevanz und Konsistenz der Antworten zu verbessern. Ersetzen Sie die Fundierungsimplementierung mit dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
model = generative_models.GenerativeModel(GEMINI_MODEL_NAME)
google_search_retriever_tool = (
generative_models.Tool.from_google_search_retrieval(
generative_models.grounding.GoogleSearchRetrieval()
)
)
response = model.generate_content(
"Why is sky blue?",
tools=[google_search_retriever_tool],
generation_config=generative_models.GenerationConfig(temperature=0),
)
Java
import com.google.cloud.vertexai.api.GroundingMetadata;
Tool googleSearchTool =
Tool.newBuilder()
.setGoogleSearch(GoogleSearch.newBuilder())
.build();
GenerativeModel model =
new GenerativeModel(modelName, vertexAI)
.withTools(Collections.singletonList(googleSearchTool));
GenerateContentResponse response = model.generateContent("Why is the sky blue?");
GroundingMetadata groundingMetadata = response.getCandidates(0).getGroundingMetadata();
String answer = ResponseHandler.getText(response);
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({project: projectId, location: location});
const generativeModelPreview = vertexAI.preview.getGenerativeModel({
model: model,
generationConfig: {maxOutputTokens: 256},
});
const googleSearchTool = {
googleSearch: {},
};
const request = {
contents: [{role: 'user', parts: [{text: 'Why is the sky blue?'}]}],
tools: [googleSearchTool],
};
const result = await generativeModelPreview.generateContent(request);
const response = await result.response;
const groundingMetadata = response.candidates[0].groundingMetadata;
console.log(
'Response: ',
JSON.stringify(response.candidates[0].content.parts[0].text)
);
console.log('GroundingMetadata is: ', JSON.stringify(groundingMetadata));
Go
Grounding wird vom Go Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
Nach
Python
from google.genai import types
from google.genai import Client
client = Client(
vertexai=True,
project=GOOGLE_CLOUD_PROJECT,
location=GOOGLE_CLOUD_LOCATION
)
response = client.models.generate_content(
model='gemini-2.5-flash-exp',
contents='Why is the sky blue?',
config=types.GenerateContentConfig(
tools=[types.Tool(google_search=types.GoogleSearch())]),
)
Java
Importieren Sie das Tool
-Modul:
import com.google.genai.types.Tool;
Legen Sie das Google Suche-Tool in der Konfiguration fest:
Tool googleSearchTool = Tool.builder().googleSearch(GoogleSearch.builder()).build();
Fügen Sie das Tool der Inhaltskonfiguration hinzu:
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.tools(googleSearchTool)
.build();
Die vollständige Implementierung finden Sie unter GenerateContentWithConfigs.java.
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents:
'What is the sum of the first 50 prime numbers? Generate and run code for the calculation, and make sure you get all 50.',
config: {
tools: [{googleSearch: {}}],
},
});
console.debug(JSON.stringify(response?.candidates?.[0]?.groundingMetadata));
Go
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
// Add the Google Search grounding tool to the GenerateContentConfig.
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{
GoogleSearch: &genai.GoogleSearch{},
},
},
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("Why is the sky blue?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
Sicherheitseinstellungen
Sicherheitseinstellungen sind konfigurierbare Parameter, mit denen Nutzer Modellantworten verwalten können, indem sie Inhalte filtern oder blockieren, die sich auf bestimmte schädliche Kategorien wie Hassrede, sexuelle Inhalte oder Gewalt beziehen. Ersetzen Sie die Implementierung der Sicherheitseinstellungen mit dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
system_instruction=[
"Talk like a pirate.",
"Don't use rude words.",
],
)
response = model.generate_content(
contents="Why is sky blue?",
generation_config=generative_models.GenerationConfig(
temperature=0,
top_p=0.95,
top_k=20,
candidate_count=1,
max_output_tokens=100,
stop_sequences=["STOP!"],
response_logprobs=True,
logprobs=3,
),
safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_NONE,
},
)
Java
import com.google.cloud.vertexai.api.SafetySetting;
import com.google.cloud.vertexai.api.SafetySetting.HarmBlockThreshold;
SafetySetting safetySetting =
SafetySetting.newBuilder()
.setCategory(HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT)
.setThreshold(HarmBlockThreshold.BLOCK_LOW_AND_ABOVE)
.build();
GenerateContentResponse response =
model
.withSafetySetting(Arrays.asList(SafetySetting))
.generateContent("Please explain LLM?");
JavaScript
const {
VertexAI,
HarmCategory,
HarmBlockThreshold,
} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: PROJECT_ID, location: LOCATION});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: MODEL,
safetySettings: [
{
category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
{
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
});
const request = {
contents: [{role: 'user', parts: [{text: 'Tell me something dangerous.'}]}],
};
console.log('Prompt:');
console.log(request.contents[0].parts[0].text);
console.log('Streaming Response Text:');
// Create the response stream
const responseStream = await generativeModel.generateContentStream(request);
// Log the text response as it streams
for await (const item of responseStream.stream) {
if (item.candidates[0].finishReason === 'SAFETY') {
console.log('This response stream terminated due to safety concerns.');
break;
} else {
process.stdout.write(item.candidates[0].content.parts[0].text);
}
}
console.log('This response stream terminated due to safety concerns.');
Go
package safetysettings
import (
"context"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
// generateContent generates text from prompt and configurations provided.
func generateContent(w io.Writer, projectID, location, modelName string) error {
// location := "us-central1"
// model := "gemini-2.5-flash"
ctx := context.Background()
client, err := genai.NewClient(ctx, projectID, location)
if err != nil {
return err
}
defer client.Close()
model := client.GenerativeModel(modelName)
model.SetTemperature(0.8)
// configure the safety settings thresholds
model.SafetySettings = []*genai.SafetySetting{
{
Category: genai.HarmCategoryHarassment,
Threshold: genai.HarmBlockLowAndAbove,
},
{
Category: genai.HarmCategoryDangerousContent,
Threshold: genai.HarmBlockLowAndAbove,
},
}
res, err := model.GenerateContent(ctx, genai.Text("Hello, say something mean to me."))
if err != nil {
return fmt.Errorf("unable to generate content: %v", err)
}
fmt.Fprintf(w, "generate-content response: %v\n", res.Candidates[0].Content.Parts[0])
fmt.Fprintf(w, "safety ratings:\n")
for _, r := range res.Candidates[0].SafetyRatings {
fmt.Fprintf(w, "\t%+v\n", r)
}
return nil
}
Nach
Python
from google.genai import types
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='Say something bad.',
config=types.GenerateContentConfig(
safety_settings=[
types.SafetySetting(
category='HARM_CATEGORY_HATE_SPEECH',
threshold='BLOCK_ONLY_HIGH',
)
]
),
)
Java
Importieren Sie die Module HarmBlockThreshold
, HarmCategory
und SafetySetting
:
import com.google.genai.types.HarmBlockThreshold;
import com.google.genai.types.HarmCategory;
import com.google.genai.types.SafetySetting;
Legen Sie die Sicherheitseinstellungen in der Konfiguration fest:
ImmutableList<SafetySetting> safetySettings =
ImmutableList.of(
SafetySetting.builder()
.category(HarmCategory.Known.HARM_CATEGORY_HATE_SPEECH)
.threshold(HarmBlockThreshold.Known.BLOCK_ONLY_HIGH)
.build(),
SafetySetting.builder()
.category(HarmCategory.Known.HARM_CATEGORY_DANGEROUS_CONTENT)
.threshold(HarmBlockThreshold.Known.BLOCK_LOW_AND_ABOVE)
.build());
Fügen Sie die Sicherheitseinstellungen der Inhaltskonfiguration hinzu:
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.safetySettings(safetySettings)
.build();
Die vollständige Implementierung finden Sie unter GenerateContentWithConfigs.java.
JavaScript
import {
GoogleGenAI,
HarmBlockMethod,
HarmBlockThreshold,
HarmCategory,
} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'say something bad',
config: {
safetySettings: [
{
method: HarmBlockMethod.SEVERITY,
category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
{
method: HarmBlockMethod.SEVERITY,
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
},
});
console.debug(JSON.stringify(response?.candidates?.[0]?.safetyRatings));
Go
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
var safetySettings []*genai.SafetySetting = []*genai.SafetySetting{
{
Category: genai.HarmCategoryHarassment,
Threshold: genai.HarmBlockThresholdBlockMediumAndAbove,
},
{
Category: genai.HarmCategoryDangerousContent,
Threshold: genai.HarmBlockThresholdBlockMediumAndAbove,
},
}
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
SafetySettings: safetySettings,
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What is your name?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
Chatsitzungen
Chats sind Unterhaltungen, in denen das Modell den Kontext über mehrere Turns hinweg beibehält, indem es sich an frühere Nachrichten erinnert und diese verwendet, um aktuelle Antworten zu formulieren. Ersetzen Sie die Implementierung aus dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
model = GenerativeModel(
"gemini-2.5-flash",
# You can specify tools when creating a model to avoid having to send them with every request.
tools=[weather_tool],
tool_config=tool_config,
)
chat = model.start_chat()
print(chat.send_message("What is the weather like in Boston?"))
print(chat.send_message(
Part.from_function_response(
name="get_current_weather",
response={
"content": {"weather_there": "super nice"},
}
),
))
Java
import com.google.cloud.vertexai.generativeai.ChatSession;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ChatSession chat = model.startChat();
ResponseStream<GenerateContentResponse> response = chat
.sendMessageStream("Can you tell me a story about cheese in 100 words?");
ResponseStream<GenerateContentResponse> anotherResponse = chat
.sendMessageStream("Can you modify the story to be written for a 5 year old?");
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const chat = generativeModel.startChat({});
const result1 = await chat.sendMessage('Hello');
const response1 = await result1.response;
console.log('Chat response 1: ', JSON.stringify(response1));
const result2 = await chat.sendMessage(
'Can you tell me a scientific fun fact?'
);
const response2 = await result2.response;
console.log('Chat response 2: ', JSON.stringify(response2));
Go
import (
"context"
"errors"
"fmt"
"cloud.google.com/go/vertexai/genai"
)
prompt := "Do you have the Pixel 8 Pro in stock?"
fmt.Fprintf(w, "Question: %s\n", prompt)
resp, err := chat.SendMessage(ctx, genai.Text(prompt))
Nach
Python
Synchron
chat = client.chats.create(model='gemini-2.5-flash')
response = chat.send_message('tell me a story')
print(response.text)
response = chat.send_message('summarize the story you told me in 1 sentence')
print(response.text)
Asynchron
chat = client.aio.chats.create(model='gemini-2.5-flash')
response = await chat.send_message('tell me a story')
print(response.text)
Synchrones Streaming
chat = client.chats.create(model='gemini-2.5-flash')
for chunk in chat.send_message_stream('tell me a story'):
print(chunk.text, end='')
Asynchrones Streaming
chat = client.aio.chats.create(model='gemini-2.5-flash')
async for chunk in await chat.send_message_stream('tell me a story'):
print(chunk.text, end='') # end='' is optional, for demo purposes.
Java
Importieren Sie die Module Chat
und GenerateContentResponse
:
import com.google.genai.Chat;
import com.google.genai.types.GenerateContentResponse;
Chatsitzung erstellen:
Chat chatSession = client.chats.create("gemini-2.5-flash");
Verwenden Sie GenerateContentResponse
, um Prompts anzugeben:
GenerateContentResponse response =
chatSession
.sendMessage("Can you tell me a story about cheese in 100 words?");
// Gets the text string from the response by the quick accessor method `text()`.
System.out.println("Unary response: " + response.text());
GenerateContentResponse response2 =
chatSession
.sendMessage("Can you modify the story to be written for a 5 year old?");
// Gets the text string from the second response.
System.out.println("Unary response: " + response2.text());
Die vollständige Implementierung finden Sie unter ChatWithHistory.java.
JavaScript
import {GoogleGenAI} from '@google/genai';
const chat = ai.chats.create({model: 'gemini-2.5-flash'});
const response = await chat.sendMessage({message: 'Why is the sky blue?'});
console.debug('chat response 1: ', response.text);
const response2 = await chat.sendMessage({message: 'Why is the sunset red?'});
console.debug('chat response 2: ', response2.text);
const history = chat.getHistory();
for (const content of history) {
console.debug('chat history: ', JSON.stringify(content, null, 2));
}
Go
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{Temperature: genai.Ptr[float32](0.5)}
// Create a new Chat.
chat, err := client.Chats.Create(ctx, *model, config, nil)
// Send first chat message.
result, err := chat.SendMessage(ctx, genai.Part{Text: "What's the weather in San Francisco?"})
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
// Send second chat message.
result, err = chat.SendMessage(ctx, genai.Part{Text: "How about New York?"})
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
Multimodale Eingaben
Multimodale Eingaben beziehen sich auf die Fähigkeit eines Modells, Informationen aus Datentypen, die über Text hinausgehen, wie Bilder, Audio und Video, zu verarbeiten und zu verstehen. Ersetzen Sie die Implementierung mit dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
from vertexai.generative_models import GenerativeModel, Image
vision_model = GenerativeModel("gemini-2.5-flash-vision")
# Local image
image = Image.load_from_file("image.jpg")
print(vision_model.generate_content(["What is shown in this image?", image]))
# Image from Cloud Storage
image_part = generative_models.Part.from_uri("gs://download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg", mime_type="image/jpeg")
print(vision_model.generate_content([image_part, "Describe this image?"]))
# Text and video
video_part = Part.from_uri("gs://cloud-samples-data/video/animals.mp4", mime_type="video/mp4")
print(vision_model.generate_content(["What is in the video? ", video_part]))
Java
import com.google.cloud.vertexai.generativeai.ContentMaker;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash-vision", vertexAi);
ResponseStream<GenerateContentResponse> stream =
model.generateContentStream(ContentMaker.fromMultiModalData(
"Please describe this image",
PartMaker.fromMimeTypeAndData("image/jpeg", IMAGE_URI)
));
JavaScript
const {VertexAI, HarmBlockThreshold, HarmCategory} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertex_ai = new VertexAI({project: project, location: location});
// Instantiate the model
const generativeVisionModel = vertex_ai.getGenerativeModel({
model: 'gemini-ultra-vision',
});
async function multiPartContent() {
const filePart = {file_data: {file_uri: "gs://sararob_imagegeneration_test/kitten.jpeg", mime_type: "image/jpeg"}};
const textPart = {text: 'What is this picture about?'};
const request = {
contents: [{role: 'user', parts: [textPart, filePart]}],
};
const resp = await generativeVisionModel.generateContentStream(request);
const contentResponse = await resp.response;
console.log(JSON.stringify(contentResponse));
}
multiPartContent();
Go
Bilder
import (
"context"
"encoding/json"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
img := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://generativeai-downloads/images/scones.jpg",
}
prompt := genai.Text("What is in this image?")
resp, err := gemini.GenerateContent(ctx, img, prompt)
if err != nil {
return fmt.Errorf("error generating content: %w", err)
}
Video
package multimodalvideoaudio
import (
"context"
"errors"
"fmt"
"io"
"mime"
"path/filepath"
"cloud.google.com/go/vertexai/genai"
)
part := genai.FileData{
MIMEType: mime.TypeByExtension(filepath.Ext("pixel8.mp4")),
FileURI: "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
}
res, err := model.GenerateContent(ctx, part, genai.Text(`
Provide a description of the video.
The description should also contain anything important which people say in the video.
`))
Nach
Python
from google import genai
from google.genai.types import HttpOptions, Part
client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
Part.from_uri(
file_uri="gs://cloud-samples-data/generative-ai/video/ad_copy_from_video.mp4",
mime_type="video/mp4",
),
"What is in the video?",
],
)
print(response.text)
Java
Importieren Sie das GenerateContentResponse
-Modul:
import com.google.genai.types.GenerateContentResponse;
Kombinieren Sie Text, Bilder und Videos für multimodale Prompts:
Content content =
Content.fromParts(
Part.fromText("describe the image"),
Part.fromUri("gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg"));
Geben Sie den kombinierten Prompt für das Modell an:
GenerateContentResponse response =
client.models.generateContent("gemini-2.5-flash", content, null);
Die vollständige Implementierung finden Sie unter GenerateContentWithImageInput.java.
JavaScript
const filePart = {file_data: {file_uri: "gs://sararob_imagegeneration_test/kitten.jpeg", mime_type: "image/jpeg"}};
const textPart = {text: 'What is this picture about?'};
const contents = [{role: 'user', parts: [textPart, filePart]}];
const response = await ai.models.generateContentStream({
model: 'gemini-2.5-flash-exp',
contents: contents,
});
let i = 0;
for await (const chunk of response) {
const text = chunk.text;
if (text) {
console.debug(text);
}
}
Go
Bilder
package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
config := &genai.GenerateContentConfig{}
config.ResponseModalities = []string{"IMAGE", "TEXT"}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("Generate a story about a cute baby turtle in a 3d digital art style. For each scene, generate an image."), config)
if err != nil {
log.Fatal(err)
}
Video und Audio
package multimodalvideoaudio
import (
"context"
"errors"
"fmt"
"io"
"mime"
"path/filepath"
"cloud.google.com/go/vertexai/genai"
)
part := genai.FileData{
MIMEType: mime.TypeByExtension(filepath.Ext("pixel8.mp4")),
FileURI: "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
}
res, err := model.GenerateContent(ctx, part, genai.Text(`
Provide a description of the video.
The description should also contain anything important which people say in the video.
`))
Textgenerierung
Bei der Textgenerierung erstellt ein Modell auf Grundlage eines bestimmten Prompts menschenähnliche schriftliche Inhalte. Ersetzen Sie die Implementierung mit dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Synchrone Generierung
Vorher
Python
response = model.generate_content(
"Why is sky blue?",
generation_config=generative_models.GenerationConfig(temperature=0),
)
assert response.text
Java
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
GenerateContentResponse response = model.generateContent("How are you?");
JavaScript
Sowohl das Vertex AI SDK als auch das Google Gen AI SDK unterstützen nur die asynchrone Texterstellung für JavaScript.
Go
gemini := client.GenerativeModel(modelName)
prompt := genai.Text(
"What's a good name for a flower shop that specializes in selling bouquets of dried flowers?")
resp, err := gemini.GenerateContent(ctx, prompt)
Nach
Python
response = client.models.generate_content(
model='gemini-2.5-flash', contents='Why is the sky blue?'
)
print(response.text)
Java
Importieren Sie das GenerateContentResponse
-Modul:
import com.google.genai.types.GenerateContentResponse;
Text mit generateContent
generieren:
GenerateContentResponse response =
client.models.generateContent("gemini-2.5-flash", "What is your name?", null);
Die vollständige Implementierung finden Sie unter GenerateContent.java.
JavaScript
Sowohl das Vertex AI SDK als auch das Google Gen AI SDK unterstützen nur die asynchrone Texterstellung für JavaScript.
Go
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{Temperature: genai.Ptr[float32](0)}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What is your name?"), config)
Asynchrone Generierung
Vorher
Python
response = await model.generate_content_async(
"Why is sky blue?",
generation_config=generative_models.GenerationConfig(temperature=0),
)
Java
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ApiFuture<GenerateContentResponse> future = model.generateContentAsync("How are you?");
GenerateContentResponse response = future.get();
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: model,
});
const request = {
contents: [
{
role: 'user',
parts: [
{
text: 'Write a story about a magic backpack.',
},
],
},
],
};
console.log(JSON.stringify(request));
const result = await generativeModel.generateContent(request);
console.log(result.response.text);
Go
Nicht zutreffend: In Go werden gleichzeitige Aufgaben ohne asynchrone Vorgänge verwaltet.
Nach
Python
response = await client.aio.models.generate_content(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
)
print(response.text)
Java
Importieren Sie das GenerateContentResponse
-Modul:
import com.google.genai.types.GenerateContentResponse;
Text asynchron generieren:
CompletableFuture<GenerateContentResponse> responseFuture =
client.async.models.generateContent(
"gemini-2.5-flash", "Introduce Google AI Studio.", null);
responseFuture
.thenAccept(
response -> {
System.out.println("Async response: " + response.text());
})
.join();
Die vollständige Implementierung finden Sie unter GenerateContentAsync.java.
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'why is the sky blue?',
});
console.debug(response.text);
Go
Nicht zutreffend: In Go werden gleichzeitige Aufgaben ohne asynchrone Vorgänge verwaltet.
Streaming
Vorher
Python
Synchrones Streaming
stream = model.generate_content(
"Why is sky blue?",
stream=True,
generation_config=generative_models.GenerationConfig(temperature=0),
)
for chunk in stream:
assert (
chunk.text
or chunk.candidates[0].finish_reason
is generative_models.FinishReason.STOP
)
Asynchrones Streaming
async_stream = await model.generate_content_async(
"Why is sky blue?",
stream=True,
generation_config=generative_models.GenerationConfig(temperature=0),
)
async for chunk in async_stream:
assert (
chunk.text
or chunk.candidates[0].finish_reason
is generative_models.FinishReason.STOP
)
Java
import com.google.cloud.vertexai.generativeai.ResponseStream;
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ResponseStream<GenerateContentResponse> responseStream = model.generateContentStream("How are you?");
JavaScript
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: model,
});
const request = {
contents: [{role: 'user', parts: [{text: 'What is Node.js?'}]}],
};
console.log('Prompt:');
console.log(request.contents[0].parts[0].text);
console.log('Streaming Response Text:');
// Create the response stream
const responseStream = await generativeModel.generateContentStream(request);
// Log the text response as it streams
for await (const item of responseStream.stream) {
process.stdout.write(item.candidates[0].content.parts[0].text);
}
Go
package streamtextbasic
import (
"context"
"errors"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
"google.golang.org/api/iterator"
)
model := client.GenerativeModel(modelName)
iter := model.GenerateContentStream(
ctx,
genai.Text("Write a story about a magic backpack."),
)
for {
resp, err := iter.Next()
fmt.Fprint(w, "generated response: ")
for _, c := range resp.Candidates {
for _, p := range c.Content.Parts {
fmt.Fprintf(w, "%s ", p)
}
}
}
Nach
Python
Synchrones Streaming
for chunk in client.models.generate_content_stream(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
):
print(chunk.text, end='')
Asynchrones Streaming
async for chunk in await client.aio.models.generate_content_stream(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
):
print(chunk.text, end='')
Java
Importieren Sie die Module ResponseStream
und GenerateContentResponse
:
import com.google.genai.ResponseStream;
import com.google.genai.types.GenerateContentResponse;
Geben Sie dem Modell einen Prompt und streamen Sie die Ergebnisse:
ResponseStream<GenerateContentResponse> responseStream =
client.models.generateContentStream(
"gemini-2.5-flash", "Tell me a story in 300 words.", null);
System.out.println("Streaming response: ");
for (GenerateContentResponse res : responseStream) {
System.out.print(res.text());
}
Die vollständige Implementierung finden Sie unter GenerateContentAsync.java.
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContentStream({
model: 'gemini-2.5-flash-exp',
contents:
'Generate a story about a cute baby turtle in a 3d digital art style. For each scene, generate an image.',
config: {
responseModalities: [Modality.IMAGE, Modality.TEXT],
},
});
let i = 0;
for await (const chunk of response) {
const text = chunk.text;
const data = chunk.data;
if (text) {
console.debug(text);
} else if (data) {
const fileName = `generate_content_streaming_image_${i++}.png`;
console.debug(`Writing response image to file: ${fileName}.`);
fs.writeFileSync(fileName, data);
}
}
Go
client, err := genai.NewClient(ctx, nil)
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{SystemInstruction: &genai.Content{Parts: []*genai.Part{&genai.Part{Text: "You are a story writer."}}}}
// Call the GenerateContent method.
for result, err := range client.Models.GenerateContentStream(ctx, *model, genai.Text("Tell me a story in 300 words."), config) {
if err != nil {
log.Fatal(err)
}
fmt.Print(result.Text())
}
Bildgenerierung
Bei der Bilderstellung werden Bilder aus Textbeschreibungen oder anderen Eingabemodalitäten generiert. Ersetzen Sie die Implementierung mit dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
model = ImageGenerationModel.from_pretrained("imagegeneration@002")
response = model.generate_images(
prompt="Astronaut riding a horse",
# Optional:
number_of_images=1,
seed=0,
)
response[0].show()
response[0].save("image1.png")
Java
Die Bilderstellung wird vom Java Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
JavaScript
Die Bilderstellung wird vom JavaScript Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
Go
Die Bildgenerierung wird vom Go Vertex AI SDK nicht unterstützt, aber vom Google Gen AI SDK.
Nach
Python
from google.genai import types
# Generate Image
response1 = client.models.generate_images(
model='imagen-3.0-generate-002',
prompt='An umbrella in the foreground, and a rainy night sky in the background',
config=types.GenerateImagesConfig(
number_of_images=1,
include_rai_reason=True,
output_mime_type='image/jpeg',
),
)
response1.generated_images[0].image.show()
Java
import com.google.genai.types.GenerateImagesConfig;
import com.google.genai.types.GenerateImagesResponse;
import com.google.genai.types.Image;
GenerateImagesConfig generateImagesConfig =
GenerateImagesConfig.builder()
.numberOfImages(1)
.outputMimeType("image/jpeg")
.includeSafetyAttributes(true)
.build();
GenerateImagesResponse generatedImagesResponse =
client.models.generateImages(
"imagen-3.0-generate-002", "Robot holding a red skateboard", generateImagesConfig);
Image generatedImage = generatedImagesResponse.generatedImages().get().get(0).image().get();
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateImages({
model: 'imagen-3.0-generate-002',
prompt: 'Robot holding a red skateboard',
config: {
numberOfImages: 1,
includeRaiReason: true,
},
});
console.debug(response?.generatedImages?.[0]?.image?.imageBytes);
Go
import (
"encoding/json"
"google.golang.org/genai"
)
fmt.Println("Generate image example.")
response1, err := client.Models.GenerateImages(
ctx, "imagen-3.0-generate-002",
/*prompt=*/ "An umbrella in the foreground, and a rainy night sky in the background",
&genai.GenerateImagesConfig{
IncludeRAIReason: true,
IncludeSafetyAttributes: true,
OutputMIMEType: "image/jpeg",
},
)
Kontrollierte Ausgabe
Die kontrollierte Ausgabe bezieht sich auf den Prozess, bei dem die Modellausgabe so gesteuert wird, dass sie bestimmten Einschränkungen, Formaten, Stilen oder Attributen entspricht, anstatt Freiformtext zu generieren. Ersetzen Sie die Implementierung mit dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
_RESPONSE_SCHEMA_STRUCT = {
"type": "object",
"properties": {
"location": {
"type": "string",
},
},
"required": ["location"],
}
response = model.generate_content(
contents="Why is sky blue? Respond in JSON Format.",
generation_config=generative_models.GenerationConfig(
...
response_schema=_RESPONSE_SCHEMA_STRUCT,
),
)
Java
import com.google.cloud.vertexai.api.Schema;
import com.google.cloud.vertexai.api.Type;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.PartMaker;
GenerationConfig generationConfig = GenerationConfig.newBuilder()
.setResponseMimeType("application/json")
.setResponseSchema(Schema.newBuilder()
.setType(Type.ARRAY)
.setItems(Schema.newBuilder()
.setType(Type.OBJECT)
.putProperties("object", Schema.newBuilder().setType(Type.STRING).build())
.build())
.build())
.build();
GenerativeModel model = new GenerativeModel(modelName, vertexAI)
.withGenerationConfig(generationConfig);
GenerateContentResponse response = model.generateContent(
ContentMaker.fromMultiModalData(
PartMaker.fromMimeTypeAndData("image/jpeg",
"gs://cloud-samples-data/generative-ai/image/office-desk.jpeg"),
PartMaker.fromMimeTypeAndData("image/jpeg",
"gs://cloud-samples-data/generative-ai/image/gardening-tools.jpeg"),
"Generate a list of objects in the images."
)
);
JavaScript
// Initialize Vertex with your Cloud project and location
const vertex_ai = new VertexAI({project: project, location: location});
// Instantiate the model
const responseSchema = {
type: 'ARRAY',
items: {
type: 'OBJECT',
properties: {
'recipeName': {
type: 'STRING',
description: 'Name of the recipe',
nullable: false,
},
},
required: ['recipeName'],
},
};
const generativeModel = vertex_ai.getGenerativeModel({
model: 'gemini-2.5-flash',
generationConfig: {
responseSchema: responseSchema,
responseMimeType: 'application/json',
}
});
async function generateContentControlledOutput() {
const req = {
contents: [{role: 'user', parts: [{text: 'list 3 popular cookie recipe'}]}],
};
const resp = await generativeModel.generateContent(req);
console.log('aggregated response: ', JSON.stringify(resp.response));
};
generateContentControlledOutput();
Go
import (
"context"
"cloud.google.com/go/vertexai/genai"
)
model.GenerationConfig.ResponseMIMEType = "application/json"
// Build an OpenAPI schema, in memory
model.GenerationConfig.ResponseSchema = &genai.Schema{
Type: genai.TypeArray,
Items: &genai.Schema{
Type: genai.TypeArray,
Items: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"object": {
Type: genai.TypeString,
},
},
},
},
}
img1 := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://cloud-samples-data/generative-ai/image/office-desk.jpeg",
}
img2 := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://cloud-samples-data/generative-ai/image/gardening-tools.jpeg",
}
prompt := "Generate a list of objects in the images."
res, err := model.GenerateContent(ctx, img1, img2, genai.Text(prompt))
Nach
Python
response_schema = {
"type": "ARRAY",
"items": {
"type": "OBJECT",
"properties": {
"recipe_name": {"type": "STRING"},
"ingredients": {"type": "ARRAY", "items": {"type": "STRING"}},
},
"required": ["recipe_name", "ingredients"],
},
}
prompt = """
List a few popular cookie recipes.
"""
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=prompt,
config={
"response_mime_type": "application/json",
"response_schema": response_schema,
},
)
Java
Importieren Sie die Module Schema
und Type
:
import com.google.genai.types.Schema;
import com.google.genai.types.Type;
Antwortschema erstellen:
Schema schema =
Schema.builder()
.type(Type.Known.ARRAY)
.items(
Schema.builder()
.type(Type.Known.OBJECT)
.properties(
ImmutableMap.of(
"recipe_name",
Schema.builder().type(Type.Known.STRING).build(),
"ingredients",
Schema.builder()
.type(Type.Known.ARRAY)
.items(Schema.builder().type(Type.Known.STRING))
.build()))
.required("recipe_name", "ingredients"))
.build();
Fügen Sie das Schema der Inhaltskonfiguration hinzu:
GenerateContentConfig config =
GenerateContentConfig.builder()
.responseMimeType("application/json")
.candidateCount(1)
.responseSchema(schema)
.build();
Antworten mit der Konfiguration generieren:
GenerateContentResponse response =
client.models.generateContent(
"gemini-2.5-flash", "List a few popular cookie recipes.", config);
Die vollständige Implementierung finden Sie unter GenerateContentWithResponseSchema.java.
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'List 3 popular cookie recipes.',
config: {
responseMimeType: 'application/json',
responseSchema: {
type: Type.ARRAY,
items: {
type: Type.OBJECT,
properties: {
'recipeName': {
type: Type.STRING,
description: 'Name of the recipe',
nullable: false,
},
},
required: ['recipeName'],
},
},
},
});
console.debug(response.text);
Go
import (
"context"
"encoding/json"
genai "google.golang.org/genai"
)
cacheContents := []*genai.Content{
{
Parts: []*genai.Part{
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
MIMEType: "application/pdf",
}},
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
MIMEType: "application/pdf",
}},
},
Role: "user",
},
}
config := &genai.CreateCachedContentConfig{
Contents: cacheContents,
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: systemInstruction},
},
},
DisplayName: "example-cache",
TTL: "86400s",
}
res, err := client.Caches.Create(ctx, modelName, config)
if err != nil {
return "", fmt.Errorf("failed to create content cache: %w", err)
}
cachedContent, err := json.MarshalIndent(res, "", " ")
if err != nil {
return "", fmt.Errorf("failed to marshal cache info: %w", err)
}
Tokens zählen
Tokens sind die Grundeinheiten von Text (Buchstaben, Wörter, Wortgruppen), die von Modellen verarbeitet, analysiert und generiert werden. Um Tokens in einer Antwort zu zählen oder zu berechnen, ersetzen Sie die Implementierung mit dem Vertex AI SDK durch den folgenden Code, der das Google Gen AI SDK verwendet.
Vorher
Python
content = ["Why is sky blue?", "Explain it like I'm 5."]
response = model.count_tokens(content)
Java
import com.google.cloud.vertexai.api.CountTokensResponse;
CountTokensResponse response = model.countTokens(textPrompt);
int promptTokenCount = response.getTotalTokens();
int promptCharCount = response.getTotalBillableCharacters();
GenerateContentResponse contentResponse = model.generateContent(textPrompt);
int tokenCount = contentResponse.getUsageMetadata().getPromptTokenCount();
int candidateTokenCount = contentResponse.getUsageMetadata().getCandidatesTokenCount();
int totalTokenCount = contentResponse.getUsageMetadata().getTotalTokenCount();
JavaScript
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
};
const response = await generativeModel.countTokens(request);
console.log('count tokens response: ', JSON.stringify(response));
Go
package tokencount
import (
"context"
"fmt"
"cloud.google.com/go/vertexai/genai"
)
resp, err := model.CountTokens(ctx, prompt)
fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp.TotalTokens)
resp2, err := model.GenerateContent(ctx, prompt)
fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp2.UsageMetadata.PromptTokenCount)
fmt.Fprintf(w, "Number of tokens for the candidates: %d\n", resp2.UsageMetadata.CandidatesTokenCount)
fmt.Fprintf(w, "Total number of tokens: %d\n", resp2.UsageMetadata.TotalTokenCount)
Nach
Python
Tokens zählen
response = client.models.count_tokens(
model='gemini-2.5-flash',
contents='why is the sky blue?',
)
print(response)
Tokens berechnen
response = client.models.compute_tokens(
model='gemini-2.5-flash',
contents='why is the sky blue?',
)
print(response)
Java
Importieren Sie die Module CountTokensResponse
und ComputeTokensResponse
:
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.ComputeTokensResponse;
Verwenden Sie countTokens
, um die Anzahl der Tokens zu zählen, die für einen Prompt verwendet werden:
CountTokensResponse response =
client.models.countTokens("gemini-2.5-flash", "What is your name?", null);
Mit computeTokens
können Sie genauer analysieren, wie der Prompt tokenisiert wird:
ComputeTokensResponse response =
client.models.computeTokens("gemini-2.5-flash", "What is your name?", null);
Die vollständige Implementierung finden Sie unter CountTokens.java.
JavaScript
const response = await ai.models.countTokens({
model: 'gemini-2.5-flash',
contents: 'The quick brown fox jumps over the lazy dog.',
});
Go
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
client, err := genai.NewClient(ctx, &genai.ClientConfig{Backend: genai.BackendVertexAI})
fmt.Println("Count tokens example.")
countTokensResult, err := client.Models.CountTokens(ctx, *model, genai.Text("What is your name?"), nil)
fmt.Println(countTokensResult.TotalTokens)