Obtén predicciones a partir de un modelo de clasificación de videos

En esta página, se muestra cómo obtener predicciones por lotes a partir de tus modelos de clasificación de videos mediante la consola de Google Cloud o la API de Vertex AI. Las predicciones por lotes son solicitudes asíncronas. Las predicciones por lotes se solicitan directamente desde el recurso de modelo sin necesidad de implementar el modelo en un extremo.

Los modelos de video de AutoML no admiten predicciones en línea.

Obtén predicciones por lotes

Para realizar una predicción por lotes, especifica una fuente de entrada y un formato de salida en el que Vertex AI almacene los resultados de las predicciones.

Requisitos de los datos de entrada

La entrada para las solicitudes por lotes especifica los elementos que se enviarán a tu modelo para la predicción. Las predicciones por lotes para el tipo de modelo de video de AutoML usan un archivo de líneas JSON a fin de especificar una lista de videos para realizar predicciones y, luego, almacenan el archivo de líneas JSON en un bucket de Cloud Storage. Puedes especificar Infinity para el campo timeSegmentEnd a fin de precisar el final del video. En el siguiente ejemplo, se muestra una sola línea en un archivo de líneas JSON de entrada.

{'content': 'gs://sourcebucket/datasets/videos/source_video.mp4', 'mimeType': 'video/mp4', 'timeSegmentStart': '0.0s', 'timeSegmentEnd': '2.366667s'}

Solicitar una predicción por lotes

Para las solicitudes de predicción por lotes, puedes usar la consola de Google Cloud o la API de Vertex AI. Según la cantidad de elementos de entrada que hayas enviado, una tarea de predicción por lotes puede tardar un tiempo en completarse.

Consola de Google Cloud

Usa la consola de Google Cloud para solicitar una predicción por lotes.

  1. En la consola de Google Cloud, en la sección Vertex AI, ve a la página Predicciones por lotes.

    Ir a la página Batch predictions

  2. Haz clic en Crear para abrir la ventana Nueva predicción por lotes y completa los siguientes pasos:

    1. Ingresa un nombre para la predicción por lotes.
    2. En Nombre del modelo, selecciona el nombre del modelo que usarás para esta predicción por lotes.
    3. En Ruta de acceso de origen, especifica la ubicación de Cloud Storage en la que se encuentra el archivo de entrada de líneas JSONL.
    4. Para la Ruta de acceso destino, especifica una ubicación de Cloud Storage en la que se almacenen los resultados de la predicción por lotes. El objetivo de tu modelo determina el formato de Resultado está determinado por. Los modelos de AutoML para objetivos de imagen generan archivos de líneas JSON.

API

Usa la API de Vertex AI para enviar solicitudes de predicción por lotes.

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION_ID: Región en la que se almacena el modelo y se ejecuta el trabajo de predicción por lotes. Por ejemplo: us-central1.
  • PROJECT_ID: el ID de tu proyecto
  • BATCH_JOB_NAME: el nombre visible del trabajo por lotes
  • MODEL_ID: El ID del modelo que se usará para hacer predicciones.
  • THRESHOLD_VALUE (opcional): El modelo muestra solo predicciones que tienen puntuaciones de confianza con al menos este valor
  • SEGMENT_CLASSIFICATION (opcional): Un valor booleano que determina si se debe solicitar una clasificación a nivel de segmento. Vertex AI muestra etiquetas y sus puntuaciones de confianza para todo el segmento de tiempo del video que especificaste en la instancia de entrada. El valor predeterminado es true.
  • SHOT_CLASSIFICATION (opcional): Un valor booleano que determina si se debe solicitar una clasificación a nivel de toma. Vertex AI determina los límites de cada toma de cámara en todo el segmento de tiempo del video que especificaste en la instancia de entrada. A continuación, Vertex AI muestra etiquetas y sus puntuaciones de confianza para cada toma detectada, junto con la hora de inicio y finalización de la toma. El predeterminado es false.
  • ONE_SEC_INTERVAL_CLASSIFICATION (opcional): Un valor booleano que determina si se debe solicitar clasificación para un video en intervalos de un segundo. Vertex AI muestra etiquetas y sus puntuaciones de confianza para cada segundo de todo el segmento de tiempo del video que especificaste en la instancia de entrada. El predeterminado es false.
  • URI: el URI de Cloud Storage en el que se encuentra el archivo de líneas JSON de entrada.
  • BUCKET: tu bucket de Cloud Storage
  • PROJECT_NUMBER: El número de proyecto de tu proyecto generado de forma automática

Método HTTP y URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs

Cuerpo JSON de la solicitud:

{
    "displayName": "BATCH_JOB_NAME",
    "model": "projects/PROJECT_ID/locations/LOCATION_ID/models/MODEL_ID",
    "modelParameters": {
      "confidenceThreshold": THRESHOLD_VALUE,
      "segmentClassification": SEGMENT_CLASSIFICATION,
      "shotClassification": SHOT_CLASSIFICATION,
      "oneSecIntervalClassification": ONE_SEC_INTERVAL_CLASSIFICATION
    },
    "inputConfig": {
        "instancesFormat": "jsonl",
        "gcsSource": {
            "uris": ["URI"],
        },
    },
    "outputConfig": {
        "predictionsFormat": "jsonl",
        "gcsDestination": {
            "outputUriPrefix": "OUTPUT_BUCKET",
        },
    },
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs" | Select-Object -Expand Content

Deberías recibir una respuesta JSON similar a la que se muestra a continuación:

{
  "name": "projects/PROJECT_NUMBER/locations/us-central1/batchPredictionJobs/BATCH_JOB_ID",
  "displayName": "BATCH_JOB_NAME",
  "model": "projects/PROJECT_NUMBER/locations/us-central1/models/MODEL_ID",
  "inputConfig": {
    "instancesFormat": "jsonl",
    "gcsSource": {
      "uris": [
        "CONTENT"
      ]
    }
  },
  "outputConfig": {
    "predictionsFormat": "jsonl",
    "gcsDestination": {
      "outputUriPrefix": "BUCKET"
    }
  },
  "state": "JOB_STATE_PENDING",
  "createTime": "2020-05-30T02:58:44.341643Z",
  "updateTime": "2020-05-30T02:58:44.341643Z",
  "modelDisplayName": "MODEL_NAME",
  "modelObjective": "MODEL_OBJECTIVE"
}

Puedes consultar el estado del trabajo por lotes mediante BATCH_JOB_ID hasta que el state sea JOB_STATE_SUCCEEDED.

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.BatchDedicatedResources;
import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputInfo;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.CompletionStats;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.MachineSpec;
import com.google.cloud.aiplatform.v1.ManualBatchTuningParameters;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.cloud.aiplatform.v1.ResourcesConsumed;
import com.google.cloud.aiplatform.v1.schema.predict.params.VideoClassificationPredictionParams;
import com.google.protobuf.Any;
import com.google.protobuf.Value;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.List;

public class CreateBatchPredictionJobVideoClassificationSample {

  public static void main(String[] args) throws IOException {
    String batchPredictionDisplayName = "YOUR_VIDEO_CLASSIFICATION_DISPLAY_NAME";
    String modelId = "YOUR_MODEL_ID";
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_video_source/[file.csv/file.jsonl]";
    String gcsDestinationOutputUriPrefix =
        "gs://YOUR_GCS_SOURCE_BUCKET/destination_output_uri_prefix/";
    String project = "YOUR_PROJECT_ID";
    createBatchPredictionJobVideoClassification(
        batchPredictionDisplayName, modelId, gcsSourceUri, gcsDestinationOutputUriPrefix, project);
  }

  static void createBatchPredictionJobVideoClassification(
      String batchPredictionDisplayName,
      String modelId,
      String gcsSourceUri,
      String gcsDestinationOutputUriPrefix,
      String project)
      throws IOException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";
      LocationName locationName = LocationName.of(project, location);

      VideoClassificationPredictionParams modelParamsObj =
          VideoClassificationPredictionParams.newBuilder()
              .setConfidenceThreshold(((float) 0.5))
              .setMaxPredictions(10000)
              .setSegmentClassification(true)
              .setShotClassification(true)
              .setOneSecIntervalClassification(true)
              .build();

      Value modelParameters = ValueConverter.toValue(modelParamsObj);

      ModelName modelName = ModelName.of(project, location, modelId);
      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      InputConfig inputConfig =
          InputConfig.newBuilder().setInstancesFormat("jsonl").setGcsSource(gcsSource).build();

      GcsDestination gcsDestination =
          GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
      OutputConfig outputConfig =
          OutputConfig.newBuilder()
              .setPredictionsFormat("jsonl")
              .setGcsDestination(gcsDestination)
              .build();

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName(batchPredictionDisplayName)
              .setModel(modelName.toString())
              .setModelParameters(modelParameters)
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();
      BatchPredictionJob batchPredictionJobResponse =
          jobServiceClient.createBatchPredictionJob(locationName, batchPredictionJob);

      System.out.println("Create Batch Prediction Job Video Classification Response");
      System.out.format("\tName: %s\n", batchPredictionJobResponse.getName());
      System.out.format("\tDisplay Name: %s\n", batchPredictionJobResponse.getDisplayName());
      System.out.format("\tModel %s\n", batchPredictionJobResponse.getModel());
      System.out.format(
          "\tModel Parameters: %s\n", batchPredictionJobResponse.getModelParameters());

      System.out.format("\tState: %s\n", batchPredictionJobResponse.getState());
      System.out.format("\tCreate Time: %s\n", batchPredictionJobResponse.getCreateTime());
      System.out.format("\tStart Time: %s\n", batchPredictionJobResponse.getStartTime());
      System.out.format("\tEnd Time: %s\n", batchPredictionJobResponse.getEndTime());
      System.out.format("\tUpdate Time: %s\n", batchPredictionJobResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", batchPredictionJobResponse.getLabelsMap());

      InputConfig inputConfigResponse = batchPredictionJobResponse.getInputConfig();
      System.out.println("\tInput Config");
      System.out.format("\t\tInstances Format: %s\n", inputConfigResponse.getInstancesFormat());

      GcsSource gcsSourceResponse = inputConfigResponse.getGcsSource();
      System.out.println("\t\tGcs Source");
      System.out.format("\t\t\tUris %s\n", gcsSourceResponse.getUrisList());

      BigQuerySource bigQuerySource = inputConfigResponse.getBigquerySource();
      System.out.println("\t\tBigquery Source");
      System.out.format("\t\t\tInput_uri: %s\n", bigQuerySource.getInputUri());

      OutputConfig outputConfigResponse = batchPredictionJobResponse.getOutputConfig();
      System.out.println("\tOutput Config");
      System.out.format(
          "\t\tPredictions Format: %s\n", outputConfigResponse.getPredictionsFormat());

      GcsDestination gcsDestinationResponse = outputConfigResponse.getGcsDestination();
      System.out.println("\t\tGcs Destination");
      System.out.format(
          "\t\t\tOutput Uri Prefix: %s\n", gcsDestinationResponse.getOutputUriPrefix());

      BigQueryDestination bigQueryDestination = outputConfigResponse.getBigqueryDestination();
      System.out.println("\t\tBig Query Destination");
      System.out.format("\t\t\tOutput Uri: %s\n", bigQueryDestination.getOutputUri());

      BatchDedicatedResources batchDedicatedResources =
          batchPredictionJobResponse.getDedicatedResources();
      System.out.println("\tBatch Dedicated Resources");
      System.out.format(
          "\t\tStarting Replica Count: %s\n", batchDedicatedResources.getStartingReplicaCount());
      System.out.format(
          "\t\tMax Replica Count: %s\n", batchDedicatedResources.getMaxReplicaCount());

      MachineSpec machineSpec = batchDedicatedResources.getMachineSpec();
      System.out.println("\t\tMachine Spec");
      System.out.format("\t\t\tMachine Type: %s\n", machineSpec.getMachineType());
      System.out.format("\t\t\tAccelerator Type: %s\n", machineSpec.getAcceleratorType());
      System.out.format("\t\t\tAccelerator Count: %s\n", machineSpec.getAcceleratorCount());

      ManualBatchTuningParameters manualBatchTuningParameters =
          batchPredictionJobResponse.getManualBatchTuningParameters();
      System.out.println("\tManual Batch Tuning Parameters");
      System.out.format("\t\tBatch Size: %s\n", manualBatchTuningParameters.getBatchSize());

      OutputInfo outputInfo = batchPredictionJobResponse.getOutputInfo();
      System.out.println("\tOutput Info");
      System.out.format("\t\tGcs Output Directory: %s\n", outputInfo.getGcsOutputDirectory());
      System.out.format("\t\tBigquery Output Dataset: %s\n", outputInfo.getBigqueryOutputDataset());

      Status status = batchPredictionJobResponse.getError();
      System.out.println("\tError");
      System.out.format("\t\tCode: %s\n", status.getCode());
      System.out.format("\t\tMessage: %s\n", status.getMessage());
      List<Any> details = status.getDetailsList();

      for (Status partialFailure : batchPredictionJobResponse.getPartialFailuresList()) {
        System.out.println("\tPartial Failure");
        System.out.format("\t\tCode: %s\n", partialFailure.getCode());
        System.out.format("\t\tMessage: %s\n", partialFailure.getMessage());
        List<Any> partialFailureDetailsList = partialFailure.getDetailsList();
      }

      ResourcesConsumed resourcesConsumed = batchPredictionJobResponse.getResourcesConsumed();
      System.out.println("\tResources Consumed");
      System.out.format("\t\tReplica Hours: %s\n", resourcesConsumed.getReplicaHours());

      CompletionStats completionStats = batchPredictionJobResponse.getCompletionStats();
      System.out.println("\tCompletion Stats");
      System.out.format("\t\tSuccessful Count: %s\n", completionStats.getSuccessfulCount());
      System.out.format("\t\tFailed Count: %s\n", completionStats.getFailedCount());
      System.out.format("\t\tIncomplete Count: %s\n", completionStats.getIncompleteCount());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const batchPredictionDisplayName = 'YOUR_BATCH_PREDICTION_DISPLAY_NAME';
// const modelId = 'YOUR_MODEL_ID';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const gcsDestinationOutputUriPrefix = 'YOUR_GCS_DEST_OUTPUT_URI_PREFIX';
//    eg. "gs://<your-gcs-bucket>/destination_path"
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {params} = aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Job Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function createBatchPredictionJobVideoClassification() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const modelName = `projects/${project}/locations/${location}/models/${modelId}`;

  // For more information on how to configure the model parameters object, see
  // https://cloud.google.com/ai-platform-unified/docs/predictions/batch-predictions
  const modelParamsObj = new params.VideoClassificationPredictionParams({
    confidenceThreshold: 0.5,
    maxPredictions: 1000,
    segmentClassification: true,
    shotClassification: true,
    oneSecIntervalClassification: true,
  });

  const modelParameters = modelParamsObj.toValue();

  const inputConfig = {
    instancesFormat: 'jsonl',
    gcsSource: {uris: [gcsSourceUri]},
  };
  const outputConfig = {
    predictionsFormat: 'jsonl',
    gcsDestination: {outputUriPrefix: gcsDestinationOutputUriPrefix},
  };
  const batchPredictionJob = {
    displayName: batchPredictionDisplayName,
    model: modelName,
    modelParameters,
    inputConfig,
    outputConfig,
  };
  const request = {
    parent,
    batchPredictionJob,
  };

  // Create batch prediction job request
  const [response] = await jobServiceClient.createBatchPredictionJob(request);

  console.log('Create batch prediction job video classification response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createBatchPredictionJobVideoClassification();

Python

Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia de la API de Python.

def create_batch_prediction_job_sample(
    project: str,
    location: str,
    model_resource_name: str,
    job_display_name: str,
    gcs_source: Union[str, Sequence[str]],
    gcs_destination: str,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    my_model = aiplatform.Model(model_resource_name)

    batch_prediction_job = my_model.batch_predict(
        job_display_name=job_display_name,
        gcs_source=gcs_source,
        gcs_destination_prefix=gcs_destination,
        sync=sync,
    )

    batch_prediction_job.wait()

    print(batch_prediction_job.display_name)
    print(batch_prediction_job.resource_name)
    print(batch_prediction_job.state)
    return batch_prediction_job

Recupera los resultados de las predicciones por lotes

Vertex AI envía el resultado de la predicción por lotes al destino especificado.

Cuando se completa una tarea de predicción por lotes, el resultado de la predicción se almacena en el bucket de Cloud Storage que especificaste en tu solicitud.

Ejemplos de resultados de predicción por lotes

El siguiente es un ejemplo de predicción por lotes de un modelo de clasificación de videos.

{
  "instance": {
   "content": "gs://bucket/video.mp4",
    "mimeType": "video/mp4",
    "timeSegmentStart": "1s",
    "timeSegmentEnd": "5s"
  }
  "prediction": [{
    "id": "1",
    "displayName": "cat",
    "type": "segment-classification",
    "timeSegmentStart": "1s",
    "timeSegmentEnd": "5s",
    "confidence": 0.7
  }, {
    "id": "1",
    "displayName": "cat",
    "type": "shot-classification",
    "timeSegmentStart": "1s",
    "timeSegmentEnd": "4s",
    "confidence": 0.9
  }, {
    "id": "2",
    "displayName": "dog",
    "type": "shot-classification",
    "timeSegmentStart": "4s",
    "timeSegmentEnd": "5s",
    "confidence": 0.6
  }, {
    "id": "1",
    "displayName": "cat",
    "type": "one-sec-interval-classification",
    "timeSegmentStart": "1s",
    "timeSegmentEnd": "1s",
    "confidence": 0.95
  }, {
    "id": "1",
    "displayName": "cat",
    "type": "one-sec-interval-classification",
    "timeSegmentStart": "2s",
    "timeSegmentEnd": "2s",
    "confidence": 0.9
  }, {
    "id": "1",
    "displayName": "cat",
    "type": "one-sec-interval-classification",
    "timeSegmentStart": "3s",
    "timeSegmentEnd": "3s",
    "confidence": 0.85
  }, {
    "id": "2",
    "displayName": "dog",
    "type": "one-sec-interval-classification",
    "timeSegmentStart": "4s",
    "timeSegmentEnd": "4s",
    "confidence": 0.6
  }]
}