Vorhersageergebnisse von Textklassifizierungsmodellen interpretieren
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
.
Nach der Anforderung einer Vorhersage gibt Vertex AI Ergebnisse basierend auf dem Ziel Ihres Modells zurück. Vorhersagen aus Modellen mit mehreren Labels geben ein oder mehrere Labels für jedes Dokument und einen Konfidenzwert für jedes Label zurück. Bei Klassifizierungsmodellen mit einem einzigen Label geben Vorhersagen nur ein Label und einen Konfidenzwert pro Dokument zurück.
Der Konfidenzwert gibt an, wie stark Ihr Modell die einzelnen Klassen oder Labels mit einem Testelement verknüpft. Je höher die Zahl, desto höher die Konfidenz des Modells, dass das Label auf dieses Element angewendet werden sollte. Sie entscheiden, wie hoch der Konfidenzwert für die Annahme der Ergebnisse des Modells sein muss.
Schieberegler für Punktzahl-Schwellenwert
In der Google Cloud Console bietet Vertex AI einen Schieberegler, mit dem der Konfidenschwellenzwert für alle Klassen oder Labels oder für eine einzelne Klasse oder ein einzelnes Label angepasst wird. Der Schieberegler ist auf der Detailseite eines Modells im Tab Bewerten verfügbar. Der Konfidenzschwellenwert ist das Konfidenzniveau, das das Modell haben muss, um einem Testelement eine Klasse oder ein Label zuzuweisen. Wenn Sie den Schwellenwert anpassen, können Sie sehen, wie sich die Genauigkeit und die Trefferquote des Modells ändern. Höhere Schwellenwerte erhöhen normalerweise die einzelne und verringern den Recall.
Beispielausgabe für eine Batchvorhersage
Das folgende Beispiel ist das vorhergesagte Ergebnis für ein Klassifizierungsmodell mit mehreren Labels. Das Modell hat die Labels GreatService, Suggestion und InfoRequest auf das gesendete Dokument angewendet. Die Konfidenzwerte gelten für jedes der Labels in der angegebenen Reihenfolge. In diesem Beispiel hat das Modell GreatService als das wichtigste Label vorhergesagt.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-08-28 (UTC)."],[],[],null,["# Interpret prediction results from text classification models\n\n| Starting on September 15, 2024, you can only customize classification, entity extraction, and sentiment analysis objectives by moving to Vertex AI Gemini prompts and tuning. Training or updating models for Vertex AI AutoML for Text classification, entity extraction, and sentiment analysis objectives will no longer be available. You can continue using existing Vertex AI AutoML Text models until June 15, 2025. For a comparison of AutoML text and Gemini, see [Gemini for AutoML text users](/vertex-ai/docs/start/automl-gemini-comparison). For more information about how Gemini offers enhanced user experience through improved prompting capabilities, see [Introduction to tuning](/vertex-ai/generative-ai/docs/models/tune-gemini-overview). To get started with tuning, see [Model tuning for Gemini text models](/vertex-ai/generative-ai/docs/models/tune_gemini/tune-gemini-learn)\n\nAfter requesting a prediction, Vertex AI returns results based on your\nmodel's objective. Predictions from multi-label classification models return one\nor more labels for each document and a confidence score for each label. For\nsingle-label classification models, predictions return only one label and\nconfidence score per document.\n\n\nThe confidence score communicates how strongly your model associates each\nclass or label with a test item. The higher the number, the higher the model's\nconfidence that the label should be applied to that item. You decide how high\nthe confidence score must be for you to accept the model's results.\n\n\u003cbr /\u003e\n\nScore threshold slider\n----------------------\n\n\nIn the Google Cloud console, Vertex AI provides a slider that's\nused to adjust the confidence threshold for all classes or labels, or an\nindividual class or label. The slider is available on a model's detail page in\nthe **Evaluate** tab. The confidence threshold is the confidence level that\nthe model must have for it to assign a class or label to a test item. As you\nadjust the threshold, you can see how your model's precision and recall\nchanges. Higher thresholds typically increase precision and lower recall.\n\n\u003cbr /\u003e\n\nExample batch prediction output\n-------------------------------\n\nThe following sample is the predicted result for a multi-label classification\nmodel. The model applied the `GreatService`, `Suggestion`, and `InfoRequest`\nlabels to the submitted document. The confidence values apply to each of the\nlabels in order. In this example, the model predicted `GreatService` as the most\nrelevant label.\n\n\n| **Note**: The following JSON Lines example includes line breaks for\n| readability. In your JSON Lines files, line breaks are included only after each\n| each JSON object.\n\n\u003cbr /\u003e\n\n\n```\n{\n \"instance\": {\"content\": \"gs://bucket/text.txt\", \"mimeType\": \"text/plain\"},\n \"predictions\": [\n {\n \"ids\": [\n \"1234567890123456789\",\n \"2234567890123456789\",\n \"3234567890123456789\"\n ],\n \"displayNames\": [\n \"GreatService\",\n \"Suggestion\",\n \"InfoRequest\"\n ],\n \"confidences\": [\n 0.8986392080783844,\n 0.81984345316886902,\n 0.7722353458404541\n ]\n }\n ]\n}\n```"]]