- 1.122.0 (latest)
- 1.121.0
- 1.120.0
- 1.119.0
- 1.118.0
- 1.117.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
EvaluationClassificationMetric(
label_name: typing.Optional[str] = None,
auPrc: typing.Optional[float] = None,
auRoc: typing.Optional[float] = None,
logLoss: typing.Optional[float] = None,
confidenceMetrics: typing.Optional[
typing.List[typing.Dict[str, typing.Any]]
] = None,
confusionMatrix: typing.Optional[typing.Dict[str, typing.Any]] = None,
)The evaluation metric response for classification metrics.
Parameters |
|
|---|---|
| Name | Description |
label_name |
str
Optional. The name of the label associated with the metrics. This is only returned when |
auPrc |
float
Optional. The area under the precision recall curve. |
auRoc |
float
Optional. The area under the receiver operating characteristic curve. |
logLoss |
float
Optional. Logarithmic loss. |
confidenceMetrics |
List[Dict[str, Any]]
Optional. This is only returned when |
confusionMatrix |
Dict[str, Any]
Optional. This is only returned when |
Properties
input_dataset_paths
The Google Cloud Storage paths to the dataset used for this evaluation.
task_name
The type of evaluation task for the evaluation..