API documentation for vectorstore
module.
Classes
MySQLVectorStore
MySQLVectorStore(engine: langchain_google_cloud_sql_mysql.engine.MySQLEngine, embedding_service: langchain_core.embeddings.embeddings.Embeddings, table_name: str, content_column: str = 'content', embedding_column: str = 'embedding', metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = 'langchain_id', metadata_json_column: typing.Optional[str] = 'langchain_metadata', k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, query_options: langchain_google_cloud_sql_mysql.indexes.QueryOptions = QueryOptions(num_partitions=None, num_neighbors=10, distance_measure=<DistanceMeasure.L2_SQUARED: 'l2_squared'>, search_type=<SearchType.KNN: 'KNN'>))
Constructor for MySQLVectorStore.
Parameters | |
---|---|
Name | Description |
engine |
MySQLEngine
Connection pool engine for managing connections to Cloud SQL for MySQL database. |
embedding_service |
Embeddings
Text embedding model to use. |
table_name |
str
Name of an existing table or table to be created. |
content_column |
str
Column that represent a Document's page_content. Defaults to "content". |
embedding_column |
str
Column for embedding vectors. The embedding is generated from the document value. Defaults to "embedding". |
metadata_columns |
List[str]
Column(s) that represent a document's metadata. |
ignore_metadata_columns |
List[str]
Column(s) to ignore in pre-existing tables for a document's metadata. Can not be used with metadata_columns. Defaults to None. |
id_column |
str
Column that represents the Document's id. Defaults to "langchain_id". |
metadata_json_column |
str
Column to store metadata as JSON. Defaults to "langchain_metadata". |
k |
int
The number of documents to return as the final result of a similarity search. Defaults to 4. |
fetch_k |
int
The number of documents to initially retrieve from the database during a similarity search. These documents are then re-ranked using MMR to select the final |
lambda_mult |
float
The weight used to balance relevance and diversity in the MMR algorithm. A higher value emphasizes diversity more, while a lower value prioritizes relevance. Defaults to 0.5. |
Modules Functions
cosine_similarity
cosine_similarity(
X: typing.Union[
typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray
],
Y: typing.Union[
typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray
],
) -> numpy.ndarray
Row-wise cosine similarity between two equal-width matrices.
maximal_marginal_relevance
maximal_marginal_relevance(
query_embedding: numpy.ndarray,
embedding_list: list,
lambda_mult: float = 0.5,
k: int = 4,
) -> typing.List[int]
Calculate maximal marginal relevance.