Class AutotuningConfig (5.21.0)
Stay organized with collections
Save and categorize content based on your preferences.
AutotuningConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Autotuning configuration of the workload.
Classes
Scenario
Scenario represents a specific goal that autotuning will
attempt to achieve by modifying workloads.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2025-08-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-07 UTC."],[],[],null,["# Class AutotuningConfig (5.21.0)\n\nVersion latestkeyboard_arrow_down\n\n- [5.21.0 (latest)](/python/docs/reference/dataproc/latest/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.20.0](/python/docs/reference/dataproc/5.20.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.18.1](/python/docs/reference/dataproc/5.18.1/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.17.1](/python/docs/reference/dataproc/5.17.1/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.16.0](/python/docs/reference/dataproc/5.16.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.15.1](/python/docs/reference/dataproc/5.15.1/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.14.0](/python/docs/reference/dataproc/5.14.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.13.0](/python/docs/reference/dataproc/5.13.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.12.0](/python/docs/reference/dataproc/5.12.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.10.2](/python/docs/reference/dataproc/5.10.2/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.9.3](/python/docs/reference/dataproc/5.9.3/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.8.0](/python/docs/reference/dataproc/5.8.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.7.0](/python/docs/reference/dataproc/5.7.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.6.0](/python/docs/reference/dataproc/5.6.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.5.1](/python/docs/reference/dataproc/5.5.1/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.4.3](/python/docs/reference/dataproc/5.4.3/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.3.0](/python/docs/reference/dataproc/5.3.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.2.0](/python/docs/reference/dataproc/5.2.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.1.0](/python/docs/reference/dataproc/5.1.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [5.0.3](/python/docs/reference/dataproc/5.0.3/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [4.0.3](/python/docs/reference/dataproc/4.0.3/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [3.3.2](/python/docs/reference/dataproc/3.3.2/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [3.2.0](/python/docs/reference/dataproc/3.2.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [3.1.1](/python/docs/reference/dataproc/3.1.1/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [3.0.0](/python/docs/reference/dataproc/3.0.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [2.6.2](/python/docs/reference/dataproc/2.6.2/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [2.5.0](/python/docs/reference/dataproc/2.5.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [2.4.0](/python/docs/reference/dataproc/2.4.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [2.3.1](/python/docs/reference/dataproc/2.3.1/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [2.2.0](/python/docs/reference/dataproc/2.2.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [2.0.2](/python/docs/reference/dataproc/2.0.2/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [1.1.3](/python/docs/reference/dataproc/1.1.3/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [1.0.1](/python/docs/reference/dataproc/1.0.1/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [0.8.2](/python/docs/reference/dataproc/0.8.2/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [0.7.0](/python/docs/reference/dataproc/0.7.0/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [0.6.1](/python/docs/reference/dataproc/0.6.1/google.cloud.dataproc_v1.types.AutotuningConfig)\n- [0.5.0](/python/docs/reference/dataproc/0.5.0/google.cloud.dataproc_v1.types.AutotuningConfig) \n\n AutotuningConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)\n\nAutotuning configuration of the workload.\n\nClasses\n-------\n\n### Scenario\n\n Scenario(value)\n\nScenario represents a specific goal that autotuning will\nattempt to achieve by modifying workloads."]]