- 3.27.0 (latest)
- 3.26.0
- 3.25.0
- 3.24.0
- 3.23.1
- 3.22.0
- 3.21.0
- 3.20.1
- 3.19.0
- 3.18.0
- 3.17.2
- 3.16.0
- 3.15.0
- 3.14.1
- 3.13.0
- 3.12.0
- 3.11.4
- 3.4.0
- 3.3.6
- 3.2.0
- 3.1.0
- 3.0.1
- 2.34.4
- 2.33.0
- 2.32.0
- 2.31.0
- 2.30.1
- 2.29.0
- 2.28.1
- 2.27.1
- 2.26.0
- 2.25.2
- 2.24.1
- 2.23.3
- 2.22.1
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.1
- 2.15.0
- 2.14.0
- 2.13.1
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.2
- 2.5.0
- 2.4.0
- 2.3.1
- 2.2.0
- 2.1.0
- 2.0.0
- 1.28.2
- 1.27.2
- 1.26.1
- 1.25.0
- 1.24.0
- 1.23.1
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
ArimaModelInfo(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Arima model information.
Attributes |
|
---|---|
Name | Description |
non_seasonal_order |
google.cloud.bigquery_v2.types.Model.ArimaOrder
Non-seasonal order. |
arima_coefficients |
google.cloud.bigquery_v2.types.Model.TrainingRun.IterationResult.ArimaResult.ArimaCoefficients
Arima coefficients. |
arima_fitting_metrics |
google.cloud.bigquery_v2.types.Model.ArimaFittingMetrics
Arima fitting metrics. |
has_drift |
bool
Whether Arima model fitted with drift or not. It is always false when d is not 1. |
time_series_id |
str
The time_series_id value for this time series. It will be one of the unique values from the time_series_id_column specified during ARIMA model training. Only present when time_series_id_column training option was used. |
time_series_ids |
Sequence[str]
The tuple of time_series_ids identifying this time series. It will be one of the unique tuples of values present in the time_series_id_columns specified during ARIMA model training. Only present when time_series_id_columns training option was used and the order of values here are same as the order of time_series_id_columns. |
seasonal_periods |
Sequence[google.cloud.bigquery_v2.types.Model.SeasonalPeriod.SeasonalPeriodType]
Seasonal periods. Repeated because multiple periods are supported for one time series. |
has_holiday_effect |
google.protobuf.wrappers_pb2.BoolValue
If true, holiday_effect is a part of time series decomposition result. |
has_spikes_and_dips |
google.protobuf.wrappers_pb2.BoolValue
If true, spikes_and_dips is a part of time series decomposition result. |
has_step_changes |
google.protobuf.wrappers_pb2.BoolValue
If true, step_changes is a part of time series decomposition result. |
Methods
__delattr__
__delattr__(key)
Delete the value on the given field.
This is generally equivalent to setting a falsy value.
__eq__
__eq__(other)
Return True if the messages are equal, False otherwise.
__ne__
__ne__(other)
Return True if the messages are unequal, False otherwise.
__setattr__
__setattr__(key, value)
Set the value on the given field.
For well-known protocol buffer types which are marshalled, either the protocol buffer object or the Python equivalent is accepted.