- 3.29.0 (latest)
- 3.27.0
- 3.26.0
- 3.25.0
- 3.24.0
- 3.23.1
- 3.22.0
- 3.21.0
- 3.20.1
- 3.19.0
- 3.18.0
- 3.17.2
- 3.16.0
- 3.15.0
- 3.14.1
- 3.13.0
- 3.12.0
- 3.11.4
- 3.4.0
- 3.3.6
- 3.2.0
- 3.1.0
- 3.0.1
- 2.34.4
- 2.33.0
- 2.32.0
- 2.31.0
- 2.30.1
- 2.29.0
- 2.28.1
- 2.27.1
- 2.26.0
- 2.25.2
- 2.24.1
- 2.23.3
- 2.22.1
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.1
- 2.15.0
- 2.14.0
- 2.13.1
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.2
- 2.5.0
- 2.4.0
- 2.3.1
- 2.2.0
- 2.1.0
- 2.0.0
- 1.28.2
- 1.27.2
- 1.26.1
- 1.25.0
- 1.24.0
- 1.23.1
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
EvaluationMetrics(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Evaluation metrics of a model. These are either computed on all training data or just the eval data based on whether eval data was used during training. These are not present for imported models.
Attributes
Name | Description |
regression_metrics |
google.cloud.bigquery_v2.types.Model.RegressionMetrics
Populated for regression models and explicit feedback type matrix factorization models. |
binary_classification_metrics |
google.cloud.bigquery_v2.types.Model.BinaryClassificationMetrics
Populated for binary classification/classifier models. |
multi_class_classification_metrics |
google.cloud.bigquery_v2.types.Model.MultiClassClassificationMetrics
Populated for multi-class classification/classifier models. |
clustering_metrics |
google.cloud.bigquery_v2.types.Model.ClusteringMetrics
Populated for clustering models. |
ranking_metrics |
google.cloud.bigquery_v2.types.Model.RankingMetrics
Populated for implicit feedback type matrix factorization models. |
arima_forecasting_metrics |
google.cloud.bigquery_v2.types.Model.ArimaForecastingMetrics
Populated for ARIMA models. |
Inheritance
builtins.object > proto.message.Message > EvaluationMetricsMethods
__delattr__
__delattr__(key)
Delete the value on the given field.
This is generally equivalent to setting a falsy value.
__eq__
__eq__(other)
Return True if the messages are equal, False otherwise.
__ne__
__ne__(other)
Return True if the messages are unequal, False otherwise.
__setattr__
__setattr__(key, value)
Set the value on the given field.
For well-known protocol buffer types which are marshalled, either the protocol buffer object or the Python equivalent is accepted.