- 1.29.0 (latest)
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
Summary of entries of Methods for bigframes.
bigframes.ml.metrics.accuracy_score
accuracy_score(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
normalize=True
) -> float
Accuracy classification score.
See more: bigframes.ml.metrics.accuracy_score
bigframes.ml.metrics.auc
auc(
x: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> float
Compute Area Under the Curve (AUC) using the trapezoidal rule.
See more: bigframes.ml.metrics.auc
bigframes.ml.metrics.confusion_matrix
confusion_matrix(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> pandas.core.frame.DataFrame
Compute confusion matrix to evaluate the accuracy of a classification.
See more: bigframes.ml.metrics.confusion_matrix
bigframes.ml.metrics.f1_score
f1_score(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
average: str = "binary"
) -> pandas.core.series.Series
Compute the F1 score, also known as balanced F-score or F-measure.
See more: bigframes.ml.metrics.f1_score
bigframes.ml.metrics.mean_squared_error
mean_squared_error(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> float
Mean squared error regression loss.
See more: bigframes.ml.metrics.mean_squared_error
bigframes.ml.metrics.precision_score
precision_score(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
average: str = "binary"
) -> pandas.core.series.Series
Compute the precision.
See more: bigframes.ml.metrics.precision_score
bigframes.ml.metrics.r2_score
r2_score(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
force_finite=True
) -> float
:math:R^2
(coefficient of determination) regression score function.
See more: bigframes.ml.metrics.r2_score
bigframes.ml.metrics.recall_score
recall_score(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_pred: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
average: str = "binary"
) -> pandas.core.series.Series
Compute the recall.
See more: bigframes.ml.metrics.recall_score
bigframes.ml.metrics.roc_auc_score
roc_auc_score(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_score: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> float
Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
See more: bigframes.ml.metrics.roc_auc_score
bigframes.ml.metrics.roc_curve
roc_curve(
y_true: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y_score: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
drop_intermediate: bool = True
) -> typing.Tuple[
bigframes.series.Series, bigframes.series.Series, bigframes.series.Series
]
Compute Receiver operating characteristic (ROC).
See more: bigframes.ml.metrics.roc_curve
bigframes.ml.metrics.pairwise.paired_cosine_distances
paired_cosine_distances(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
Y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.dataframe.DataFrame
Compute the paired cosine distances between X and Y.
See more: bigframes.ml.metrics.pairwise.paired_cosine_distances
bigframes.ml.metrics.pairwise.paired_euclidean_distances
paired_euclidean_distances(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
Y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.dataframe.DataFrame
Compute the paired euclidean distances between X and Y.
See more: bigframes.ml.metrics.pairwise.paired_euclidean_distances
bigframes.ml.metrics.pairwise.paired_manhattan_distance
paired_manhattan_distance(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
Y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.dataframe.DataFrame
Compute the L1 distances between the vectors in X and Y.
See more: bigframes.ml.metrics.pairwise.paired_manhattan_distance
bigframes.ml.model_selection.train_test_split
train_test_split(
*arrays: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
test_size: typing.Optional[float] = None,
train_size: typing.Optional[float] = None,
random_state: typing.Optional[int] = None
) -> typing.List[typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]]
Splits dataframes or series into random train and test subsets.
bigframes.pandas.concat
Concatenate BigQuery DataFrames objects along a particular axis.
See more: bigframes.pandas.concat
bigframes.pandas.cut
cut(
x: bigframes.series.Series, bins: int, *, labels: typing.Optional[bool] = None
) -> bigframes.series.Series
Bin values into discrete intervals.
See more: bigframes.pandas.cut
bigframes.pandas.get_dummies
get_dummies(
data: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
prefix: typing.Optional[typing.Union[typing.List, dict, str]] = None,
prefix_sep: typing.Optional[typing.Union[typing.List, dict, str]] = "_",
dummy_na: bool = False,
columns: typing.Optional[typing.List] = None,
drop_first: bool = False,
dtype: typing.Optional[typing.Any] = None,
) -> bigframes.dataframe.DataFrame
Convert categorical variable into dummy/indicator variables.
See more: bigframes.pandas.get_dummies
bigframes.pandas.merge
merge(
left: bigframes.dataframe.DataFrame,
right: bigframes.dataframe.DataFrame,
how: typing.Literal["inner", "left", "outer", "right", "cross"] = "inner",
on: typing.Optional[str] = None,
*,
left_on: typing.Optional[str] = None,
right_on: typing.Optional[str] = None,
sort: bool = False,
suffixes: tuple[str, str] = ("_x", "_y")
) -> bigframes.dataframe.DataFrame
Merge DataFrame objects with a database-style join.
See more: bigframes.pandas.merge
bigframes.pandas.qcut
qcut(
x: bigframes.series.Series,
q: int,
*,
labels: typing.Optional[bool] = None,
duplicates: typing.Literal["drop", "error"] = "error"
) -> bigframes.series.Series
Quantile-based discretization function.
See more: bigframes.pandas.qcut
bigframes.pandas.read_csv
read_csv(
filepath_or_buffer: typing.Union[str, typing.IO[bytes]],
*,
sep: typing.Optional[str] = ",",
header: typing.Optional[int] = 0,
names: typing.Optional[
typing.Union[
typing.MutableSequence[typing.Any],
numpy.ndarray[typing.Any, typing.Any],
typing.Tuple[typing.Any, ...],
range,
]
] = None,
index_col: typing.Optional[
typing.Union[
int, str, typing.Sequence[typing.Union[str, int]], typing.Literal[False]
]
] = None,
usecols: typing.Optional[
typing.Union[
typing.MutableSequence[str],
typing.Tuple[str, ...],
typing.Sequence[int],
pandas.core.series.Series,
pandas.core.indexes.base.Index,
numpy.ndarray[typing.Any, typing.Any],
typing.Callable[[typing.Any], bool],
]
] = None,
dtype: typing.Optional[typing.Dict] = None,
engine: typing.Optional[
typing.Literal["c", "python", "pyarrow", "python-fwf", "bigquery"]
] = None,
encoding: typing.Optional[str] = None,
**kwargs
) -> bigframes.dataframe.DataFrame
Loads DataFrame from comma-separated values (csv) file locally or from Cloud Storage.
See more: bigframes.pandas.read_csv
bigframes.pandas.read_gbq
read_gbq(
query_or_table: str,
*,
index_col: typing.Union[typing.Iterable[str], str] = (),
columns: typing.Iterable[str] = (),
configuration: typing.Optional[typing.Dict] = None,
max_results: typing.Optional[int] = None,
filters: typing.Union[
typing.Iterable[
typing.Tuple[
str,
typing.Literal[
"in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE"
],
typing.Any,
]
],
typing.Iterable[
typing.Iterable[
typing.Tuple[
str,
typing.Literal[
"in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE"
],
typing.Any,
]
]
],
] = (),
use_cache: typing.Optional[bool] = None,
col_order: typing.Iterable[str] = ()
) -> bigframes.dataframe.DataFrame
Loads a DataFrame from BigQuery.
See more: bigframes.pandas.read_gbq
bigframes.pandas.read_gbq_function
read_gbq_function(function_name: str)
Loads a BigQuery function from BigQuery.
See more: bigframes.pandas.read_gbq_function
bigframes.pandas.read_gbq_model
read_gbq_model(model_name: str)
Loads a BigQuery ML model from BigQuery.
See more: bigframes.pandas.read_gbq_model
bigframes.pandas.read_gbq_query
read_gbq_query(
query: str,
*,
index_col: typing.Union[typing.Iterable[str], str] = (),
columns: typing.Iterable[str] = (),
configuration: typing.Optional[typing.Dict] = None,
max_results: typing.Optional[int] = None,
use_cache: typing.Optional[bool] = None,
col_order: typing.Iterable[str] = ()
) -> bigframes.dataframe.DataFrame
Turn a SQL query into a DataFrame.
See more: bigframes.pandas.read_gbq_query
bigframes.pandas.read_gbq_table
read_gbq_table(
query: str,
*,
index_col: typing.Union[typing.Iterable[str], str] = (),
columns: typing.Iterable[str] = (),
max_results: typing.Optional[int] = None,
filters: typing.Union[
typing.Iterable[
typing.Tuple[
str,
typing.Literal[
"in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE"
],
typing.Any,
]
],
typing.Iterable[
typing.Iterable[
typing.Tuple[
str,
typing.Literal[
"in", "not in", "<",><=", "="=" ,"="" "!=", ">=", ">", "LIKE"
],
typing.Any,
]
]
],
] = (),
use_cache: bool = True,
col_order: typing.Iterable[str] = ()
) -> bigframes.dataframe.DataFrame
Turn a BigQuery table into a DataFrame.
See more: bigframes.pandas.read_gbq_table
bigframes.pandas.read_json
read_json(
path_or_buf: typing.Union[str, typing.IO[bytes]],
*,
orient: typing.Literal[
"split", "records", "index", "columns", "values", "table"
] = "columns",
dtype: typing.Optional[typing.Dict] = None,
encoding: typing.Optional[str] = None,
lines: bool = False,
engine: typing.Literal["ujson", "pyarrow", "bigquery"] = "ujson",
**kwargs
) -> bigframes.dataframe.DataFrame
Convert a JSON string to DataFrame object.
See more: bigframes.pandas.read_json
bigframes.pandas.read_pandas
Loads DataFrame from a pandas DataFrame.
See more: bigframes.pandas.read_pandas
bigframes.pandas.read_parquet
read_parquet(
path: typing.Union[str, typing.IO[bytes]], *, engine: str = "auto"
) -> bigframes.dataframe.DataFrame
Load a Parquet object from the file path (local or Cloud Storage), returning a DataFrame.
See more: bigframes.pandas.read_parquet
bigframes.pandas.read_pickle
read_pickle(
filepath_or_buffer: FilePath | ReadPickleBuffer,
compression: CompressionOptions = "infer",
storage_options: StorageOptions = None,
)
Load pickled BigFrames object (or any object) from file.
See more: bigframes.pandas.read_pickle
bigframes.pandas.remote_function
remote_function(
input_types: typing.List[type],
output_type: type,
dataset: typing.Optional[str] = None,
bigquery_connection: typing.Optional[str] = None,
reuse: bool = True,
name: typing.Optional[str] = None,
packages: typing.Optional[typing.Sequence[str]] = None,
cloud_function_service_account: typing.Optional[str] = None,
cloud_function_kms_key_name: typing.Optional[str] = None,
cloud_function_docker_repository: typing.Optional[str] = None,
)
Decorator to turn a user defined function into a BigQuery remote function.
See more: bigframes.pandas.remote_function
bigframes.pandas.to_datetime
to_datetime(
arg: typing.Union[
int,
float,
str,
datetime.datetime,
typing.Iterable,
pandas.core.series.Series,
pandas.core.frame.DataFrame,
typing.Mapping,
bigframes.series.Series,
bigframes.dataframe.DataFrame,
],
*,
utc: bool = False,
format: typing.Optional[str] = None,
unit: typing.Optional[str] = None
) -> typing.Union[
pandas._libs.tslibs.timestamps.Timestamp, datetime.datetime, bigframes.series.Series
]
This function converts a scalar, array-like or Series to a datetime object.
See more: bigframes.pandas.to_datetime
bigframes.core.groupby.DataFrameGroupBy.agg
agg(func=None, **kwargs) -> bigframes.dataframe.DataFrame
Aggregate using one or more operations.
bigframes.core.groupby.DataFrameGroupBy.aggregate
aggregate(func=None, **kwargs) -> bigframes.dataframe.DataFrame
API documentation for aggregate
method.
bigframes.core.groupby.DataFrameGroupBy.all
all() -> bigframes.dataframe.DataFrame
Return True if all values in the group are true, else False.
bigframes.core.groupby.DataFrameGroupBy.any
any() -> bigframes.dataframe.DataFrame
Return True if any value in the group is true, else False.
bigframes.core.groupby.DataFrameGroupBy.count
count() -> bigframes.dataframe.DataFrame
Compute count of group, excluding missing values.
bigframes.core.groupby.DataFrameGroupBy.cumcount
cumcount(ascending: bool = True)
Number each item in each group from 0 to the length of that group - 1.
bigframes.core.groupby.DataFrameGroupBy.cummax
cummax(
*args, numeric_only: bool = False, **kwargs
) -> bigframes.dataframe.DataFrame
Cumulative max for each group.
bigframes.core.groupby.DataFrameGroupBy.cummin
cummin(
*args, numeric_only: bool = False, **kwargs
) -> bigframes.dataframe.DataFrame
Cumulative min for each group.
bigframes.core.groupby.DataFrameGroupBy.cumprod
cumprod(*args, **kwargs) -> bigframes.dataframe.DataFrame
Cumulative product for each group.
bigframes.core.groupby.DataFrameGroupBy.cumsum
cumsum(
*args, numeric_only: bool = False, **kwargs
) -> bigframes.dataframe.DataFrame
Cumulative sum for each group.
bigframes.core.groupby.DataFrameGroupBy.diff
diff(periods=1) -> bigframes.series.Series
First discrete difference of element.
bigframes.core.groupby.DataFrameGroupBy.expanding
expanding(min_periods: int = 1) -> bigframes.core.window.Window
Provides expanding functionality.
bigframes.core.groupby.DataFrameGroupBy.kurt
kurt(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame
Return unbiased kurtosis over requested axis.
bigframes.core.groupby.DataFrameGroupBy.kurtosis
kurtosis(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame
API documentation for kurtosis
method.
bigframes.core.groupby.DataFrameGroupBy.max
max(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrame
Compute max of group values.
bigframes.core.groupby.DataFrameGroupBy.mean
mean(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrame
Compute mean of groups, excluding missing values.
bigframes.core.groupby.DataFrameGroupBy.median
median(
numeric_only: bool = False, *, exact: bool = False
) -> bigframes.dataframe.DataFrame
Compute median of groups, excluding missing values.
bigframes.core.groupby.DataFrameGroupBy.min
min(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrame
Compute min of group values.
bigframes.core.groupby.DataFrameGroupBy.nunique
nunique() -> bigframes.dataframe.DataFrame
Return DataFrame with counts of unique elements in each position.
bigframes.core.groupby.DataFrameGroupBy.prod
prod(numeric_only: bool = False, min_count: int = 0)
Compute prod of group values.
bigframes.core.groupby.DataFrameGroupBy.rolling
rolling(window: int, min_periods=None) -> bigframes.core.window.Window
Returns a rolling grouper, providing rolling functionality per group.
bigframes.core.groupby.DataFrameGroupBy.shift
shift(periods=1) -> bigframes.series.Series
Shift each group by periods observations.
bigframes.core.groupby.DataFrameGroupBy.skew
skew(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame
Return unbiased skew within groups.
bigframes.core.groupby.DataFrameGroupBy.std
std(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame
Compute standard deviation of groups, excluding missing values.
bigframes.core.groupby.DataFrameGroupBy.sum
sum(numeric_only: bool = False, *args) -> bigframes.dataframe.DataFrame
Compute sum of group values.
bigframes.core.groupby.DataFrameGroupBy.var
var(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame
Compute variance of groups, excluding missing values.
bigframes.core.groupby.SeriesGroupBy.agg
agg(
func=None,
) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
Aggregate using one or more operations.
See more: bigframes.core.groupby.SeriesGroupBy.agg
bigframes.core.groupby.SeriesGroupBy.aggregate
aggregate(
func=None,
) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
API documentation for aggregate
method.
bigframes.core.groupby.SeriesGroupBy.all
all() -> bigframes.series.Series
Return True if all values in the group are true, else False.
See more: bigframes.core.groupby.SeriesGroupBy.all
bigframes.core.groupby.SeriesGroupBy.any
any() -> bigframes.series.Series
Return True if any value in the group is true, else False.
See more: bigframes.core.groupby.SeriesGroupBy.any
bigframes.core.groupby.SeriesGroupBy.count
count() -> bigframes.series.Series
Compute count of group, excluding missing values.
bigframes.core.groupby.SeriesGroupBy.cumcount
cumcount(*args, **kwargs) -> bigframes.series.Series
Number each item in each group from 0 to the length of that group - 1.
bigframes.core.groupby.SeriesGroupBy.cummax
cummax(*args, **kwargs) -> bigframes.series.Series
Cumulative max for each group.
bigframes.core.groupby.SeriesGroupBy.cummin
cummin(*args, **kwargs) -> bigframes.series.Series
Cumulative min for each group.
bigframes.core.groupby.SeriesGroupBy.cumprod
cumprod(*args, **kwargs) -> bigframes.series.Series
Cumulative product for each group.
bigframes.core.groupby.SeriesGroupBy.cumsum
cumsum(*args, **kwargs) -> bigframes.series.Series
Cumulative sum for each group.
bigframes.core.groupby.SeriesGroupBy.diff
diff(periods=1) -> bigframes.series.Series
First discrete difference of element.
bigframes.core.groupby.SeriesGroupBy.expanding
expanding(min_periods: int = 1) -> bigframes.core.window.Window
Provides expanding functionality.
bigframes.core.groupby.SeriesGroupBy.kurt
kurt(*args, **kwargs) -> bigframes.series.Series
Return unbiased kurtosis over requested axis.
bigframes.core.groupby.SeriesGroupBy.kurtosis
kurtosis(*args, **kwargs) -> bigframes.series.Series
API documentation for kurtosis
method.
bigframes.core.groupby.SeriesGroupBy.max
max(*args) -> bigframes.series.Series
Compute max of group values.
See more: bigframes.core.groupby.SeriesGroupBy.max
bigframes.core.groupby.SeriesGroupBy.mean
mean(*args) -> bigframes.series.Series
Compute mean of groups, excluding missing values.
bigframes.core.groupby.SeriesGroupBy.median
median(*args, **kwargs) -> bigframes.series.Series
Compute median of groups, excluding missing values.
bigframes.core.groupby.SeriesGroupBy.min
min(*args) -> bigframes.series.Series
Compute min of group values.
See more: bigframes.core.groupby.SeriesGroupBy.min
bigframes.core.groupby.SeriesGroupBy.nunique
nunique() -> bigframes.series.Series
Return number of unique elements in the group.
bigframes.core.groupby.SeriesGroupBy.prod
prod(*args) -> bigframes.series.Series
Compute prod of group values.
bigframes.core.groupby.SeriesGroupBy.rolling
rolling(window: int, min_periods=None) -> bigframes.core.window.Window
Returns a rolling grouper, providing rolling functionality per group.
bigframes.core.groupby.SeriesGroupBy.shift
shift(periods=1) -> bigframes.series.Series
Shift index by desired number of periods.
bigframes.core.groupby.SeriesGroupBy.skew
skew(*args, **kwargs) -> bigframes.series.Series
Return unbiased skew within groups.
bigframes.core.groupby.SeriesGroupBy.std
std(*args, **kwargs) -> bigframes.series.Series
Compute standard deviation of groups, excluding missing values.
See more: bigframes.core.groupby.SeriesGroupBy.std
bigframes.core.groupby.SeriesGroupBy.sum
sum(*args) -> bigframes.series.Series
Compute sum of group values.
See more: bigframes.core.groupby.SeriesGroupBy.sum
bigframes.core.groupby.SeriesGroupBy.var
var(*args, **kwargs) -> bigframes.series.Series
Compute variance of groups, excluding missing values.
See more: bigframes.core.groupby.SeriesGroupBy.var
bigframes.core.indexers.ILocDataFrameIndexer.__getitem__
__getitem__(
key,
) -> typing.Union[bigframes.dataframe.DataFrame, pandas.core.series.Series]
Index dataframe using integer offsets.
See more: bigframes.core.indexers.ILocDataFrameIndexer.getitem
bigframes.core.indexers.IlocSeriesIndexer.__getitem__
__getitem__(key) -> typing.Union[typing.Any, bigframes.series.Series]
Index series using integer offsets.
bigframes.core.indexes.base.Index.all
all() -> bool
Return whether all elements are Truthy.
See more: bigframes.core.indexes.base.Index.all
bigframes.core.indexes.base.Index.any
any() -> bool
Return whether any element is Truthy.
See more: bigframes.core.indexes.base.Index.any
bigframes.core.indexes.base.Index.argmax
argmax() -> int
Return int position of the largest value in the Series.
See more: bigframes.core.indexes.base.Index.argmax
bigframes.core.indexes.base.Index.argmin
argmin() -> int
Return int position of the smallest value in the Series.
See more: bigframes.core.indexes.base.Index.argmin
bigframes.core.indexes.base.Index.astype
astype(
dtype: typing.Union[
typing.Literal[
"boolean",
"Float64",
"Int64",
"int64[pyarrow]",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
"decimal128(38, 9)[pyarrow]",
"decimal256(76, 38)[pyarrow]",
"binary[pyarrow]",
],
pandas.core.arrays.boolean.BooleanDtype,
pandas.core.arrays.floating.Float64Dtype,
pandas.core.arrays.integer.Int64Dtype,
pandas.core.arrays.string_.StringDtype,
pandas.core.dtypes.dtypes.ArrowDtype,
geopandas.array.GeometryDtype,
]
) -> bigframes.core.indexes.base.Index
Create an Index with values cast to dtypes.
See more: bigframes.core.indexes.base.Index.astype
bigframes.core.indexes.base.Index.copy
copy(name: typing.Optional[typing.Hashable] = None)
Make a copy of this object.
See more: bigframes.core.indexes.base.Index.copy
bigframes.core.indexes.base.Index.drop
drop(labels: typing.Any) -> bigframes.core.indexes.base.Index
Make new Index with passed list of labels deleted.
See more: bigframes.core.indexes.base.Index.drop
bigframes.core.indexes.base.Index.drop_duplicates
drop_duplicates(*, keep: str = "first") -> bigframes.core.indexes.base.Index
Return Index with duplicate values removed.
bigframes.core.indexes.base.Index.dropna
dropna(how: str = "any") -> bigframes.core.indexes.base.Index
Return Index without NA/NaN values.
See more: bigframes.core.indexes.base.Index.dropna
bigframes.core.indexes.base.Index.fillna
fillna(value=None) -> bigframes.core.indexes.base.Index
Fill NA/NaN values with the specified value.
See more: bigframes.core.indexes.base.Index.fillna
bigframes.core.indexes.base.Index.from_frame
from_frame(
frame: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame]
) -> bigframes.core.indexes.base.Index
API documentation for from_frame
method.
bigframes.core.indexes.base.Index.get_level_values
get_level_values(level) -> bigframes.core.indexes.base.Index
Return an Index of values for requested level.
See more: bigframes.core.indexes.base.Index.get_level_values
bigframes.core.indexes.base.Index.isin
isin(values) -> bigframes.core.indexes.base.Index
Return a boolean array where the index values are in values
.
See more: bigframes.core.indexes.base.Index.isin
bigframes.core.indexes.base.Index.max
max() -> typing.Any
Return the maximum value of the Index.
See more: bigframes.core.indexes.base.Index.max
bigframes.core.indexes.base.Index.min
min() -> typing.Any
Return the minimum value of the Index.
See more: bigframes.core.indexes.base.Index.min
bigframes.core.indexes.base.Index.nunique
nunique() -> int
Return number of unique elements in the object.
bigframes.core.indexes.base.Index.rename
rename(
name: typing.Union[str, typing.Sequence[str]]
) -> bigframes.core.indexes.base.Index
Alter Index or MultiIndex name.
See more: bigframes.core.indexes.base.Index.rename
bigframes.core.indexes.base.Index.sort_values
sort_values(*, ascending: bool = True, na_position: str = "last")
Return a sorted copy of the index.
bigframes.core.indexes.base.Index.to_numpy
to_numpy(dtype=None, **kwargs) -> numpy.ndarray
A NumPy ndarray representing the values in this Series or Index.
bigframes.core.indexes.base.Index.to_pandas
to_pandas() -> pandas.core.indexes.base.Index
Gets the Index as a pandas Index.
bigframes.core.indexes.base.Index.to_series
to_series(
index: typing.Optional[bigframes.core.indexes.base.Index] = None,
name: typing.Optional[typing.Hashable] = None,
) -> bigframes.series.Series
Create a Series with both index and values equal to the index keys.
bigframes.core.indexes.base.Index.transpose
transpose() -> bigframes.core.indexes.base.Index
Return the transpose, which is by definition self.
bigframes.core.indexes.base.Index.value_counts
value_counts(
normalize: bool = False,
sort: bool = True,
ascending: bool = False,
*,
dropna: bool = True
)
Return a Series containing counts of unique values.
bigframes.core.window.Window.count
count()
Calculate the window count of non-NULL observations.
See more: bigframes.core.window.Window.count
bigframes.core.window.Window.max
max()
Calculate the weighted window maximum.
See more: bigframes.core.window.Window.max
bigframes.core.window.Window.mean
mean()
Calculate the weighted window mean.
See more: bigframes.core.window.Window.mean
bigframes.core.window.Window.min
min()
Calculate the weighted window minimum.
See more: bigframes.core.window.Window.min
bigframes.core.window.Window.std
std()
Calculate the weighted window standard deviation.
See more: bigframes.core.window.Window.std
bigframes.core.window.Window.sum
sum()
Calculate the weighted window sum.
See more: bigframes.core.window.Window.sum
bigframes.core.window.Window.var
var()
Calculate the weighted window variance.
See more: bigframes.core.window.Window.var
bigframes.dataframe.DataFrame.__array_ufunc__
__array_ufunc__(
ufunc: numpy.ufunc, method: str, *inputs, **kwargs
) -> bigframes.dataframe.DataFrame
Used to support numpy ufuncs.
bigframes.dataframe.DataFrame.__getitem__
__getitem__(
key: typing.Union[
typing.Hashable,
typing.Sequence[typing.Hashable],
pandas.core.indexes.base.Index,
bigframes.series.Series,
]
)
Gets the specified column(s) from the DataFrame.
See more: bigframes.dataframe.DataFrame.getitem
bigframes.dataframe.DataFrame.__repr__
__repr__() -> str
Converts a DataFrame to a string.
See more: bigframes.dataframe.DataFrame.repr
bigframes.dataframe.DataFrame.__setitem__
__setitem__(key: str, value: SingleItemValue)
Modify or insert a column into the DataFrame.
See more: bigframes.dataframe.DataFrame.setitem
bigframes.dataframe.DataFrame.abs
abs() -> bigframes.dataframe.DataFrame
Return a Series/DataFrame with absolute numeric value of each element.
See more: bigframes.dataframe.DataFrame.abs
bigframes.dataframe.DataFrame.add
add(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get addition of DataFrame and other, element-wise (binary operator +
).
See more: bigframes.dataframe.DataFrame.add
bigframes.dataframe.DataFrame.add_prefix
add_prefix(
prefix: str, axis: int | str | None = None
) -> bigframes.dataframe.DataFrame
Prefix labels with string prefix
.
See more: bigframes.dataframe.DataFrame.add_prefix
bigframes.dataframe.DataFrame.add_suffix
add_suffix(
suffix: str, axis: int | str | None = None
) -> bigframes.dataframe.DataFrame
Suffix labels with string suffix
.
See more: bigframes.dataframe.DataFrame.add_suffix
bigframes.dataframe.DataFrame.agg
agg(
func: typing.Union[str, typing.Sequence[str]]
) -> bigframes.dataframe.DataFrame | bigframes.series.Series
Aggregate using one or more operations over columns.
See more: bigframes.dataframe.DataFrame.agg
bigframes.dataframe.DataFrame.aggregate
aggregate(
func: typing.Union[str, typing.Sequence[str]]
) -> bigframes.dataframe.DataFrame | bigframes.series.Series
API documentation for aggregate
method.
See more: bigframes.dataframe.DataFrame.aggregate
bigframes.dataframe.DataFrame.align
align(
other: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
join: str = "outer",
axis: typing.Optional[typing.Union[str, int]] = None,
) -> typing.Tuple[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
]
Align two objects on their axes with the specified join method.
See more: bigframes.dataframe.DataFrame.align
bigframes.dataframe.DataFrame.all
all(
axis: typing.Union[str, int] = 0, *, bool_only: bool = False
) -> bigframes.series.Series
Return whether all elements are True, potentially over an axis.
See more: bigframes.dataframe.DataFrame.all
bigframes.dataframe.DataFrame.any
any(
*, axis: typing.Union[str, int] = 0, bool_only: bool = False
) -> bigframes.series.Series
Return whether any element is True, potentially over an axis.
See more: bigframes.dataframe.DataFrame.any
bigframes.dataframe.DataFrame.apply
apply(func, *, args: typing.Tuple = (), **kwargs)
Apply a function along an axis of the DataFrame.
See more: bigframes.dataframe.DataFrame.apply
bigframes.dataframe.DataFrame.applymap
applymap(
func, na_action: typing.Optional[str] = None
) -> bigframes.dataframe.DataFrame
Apply a function to a Dataframe elementwise.
See more: bigframes.dataframe.DataFrame.applymap
bigframes.dataframe.DataFrame.assign
assign(**kwargs) -> bigframes.dataframe.DataFrame
Assign new columns to a DataFrame.
See more: bigframes.dataframe.DataFrame.assign
bigframes.dataframe.DataFrame.astype
astype(
dtype: typing.Union[
typing.Literal[
"boolean",
"Float64",
"Int64",
"int64[pyarrow]",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
"decimal128(38, 9)[pyarrow]",
"decimal256(76, 38)[pyarrow]",
"binary[pyarrow]",
],
pandas.core.arrays.boolean.BooleanDtype,
pandas.core.arrays.floating.Float64Dtype,
pandas.core.arrays.integer.Int64Dtype,
pandas.core.arrays.string_.StringDtype,
pandas.core.dtypes.dtypes.ArrowDtype,
geopandas.array.GeometryDtype,
]
) -> bigframes.dataframe.DataFrame
Cast a pandas object to a specified dtype dtype
.
See more: bigframes.dataframe.DataFrame.astype
bigframes.dataframe.DataFrame.bfill
bfill(*, limit: typing.Optional[int] = None) -> bigframes.dataframe.DataFrame
Fill NA/NaN values by using the next valid observation to fill the gap.
See more: bigframes.dataframe.DataFrame.bfill
bigframes.dataframe.DataFrame.combine
combine(
other: bigframes.dataframe.DataFrame,
func: typing.Callable[
[bigframes.series.Series, bigframes.series.Series], bigframes.series.Series
],
fill_value=None,
overwrite: bool = True,
*,
how: str = "outer"
) -> bigframes.dataframe.DataFrame
Perform column-wise combine with another DataFrame.
See more: bigframes.dataframe.DataFrame.combine
bigframes.dataframe.DataFrame.combine_first
combine_first(other: bigframes.dataframe.DataFrame)
Update null elements with value in the same location in other
.
bigframes.dataframe.DataFrame.copy
copy() -> bigframes.dataframe.DataFrame
Make a copy of this object's indices and data.
See more: bigframes.dataframe.DataFrame.copy
bigframes.dataframe.DataFrame.corr
corr(
method="pearson", min_periods=None, numeric_only=False
) -> bigframes.dataframe.DataFrame
Compute pairwise correlation of columns, excluding NA/null values.
See more: bigframes.dataframe.DataFrame.corr
bigframes.dataframe.DataFrame.count
count(*, numeric_only: bool = False) -> bigframes.series.Series
Count non-NA cells for each column.
See more: bigframes.dataframe.DataFrame.count
bigframes.dataframe.DataFrame.cov
cov(*, numeric_only: bool = False) -> bigframes.dataframe.DataFrame
Compute pairwise covariance of columns, excluding NA/null values.
See more: bigframes.dataframe.DataFrame.cov
bigframes.dataframe.DataFrame.cummax
cummax() -> bigframes.dataframe.DataFrame
Return cumulative maximum over columns.
See more: bigframes.dataframe.DataFrame.cummax
bigframes.dataframe.DataFrame.cummin
cummin() -> bigframes.dataframe.DataFrame
Return cumulative minimum over columns.
See more: bigframes.dataframe.DataFrame.cummin
bigframes.dataframe.DataFrame.cumprod
cumprod() -> bigframes.dataframe.DataFrame
Return cumulative product over columns.
See more: bigframes.dataframe.DataFrame.cumprod
bigframes.dataframe.DataFrame.cumsum
cumsum()
Return cumulative sum over columns.
See more: bigframes.dataframe.DataFrame.cumsum
bigframes.dataframe.DataFrame.describe
describe() -> bigframes.dataframe.DataFrame
Generate descriptive statistics.
See more: bigframes.dataframe.DataFrame.describe
bigframes.dataframe.DataFrame.diff
diff(periods: int = 1) -> bigframes.dataframe.DataFrame
First discrete difference of element.
See more: bigframes.dataframe.DataFrame.diff
bigframes.dataframe.DataFrame.div
div(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
API documentation for div
method.
See more: bigframes.dataframe.DataFrame.div
bigframes.dataframe.DataFrame.divide
divide(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
API documentation for divide
method.
See more: bigframes.dataframe.DataFrame.divide
bigframes.dataframe.DataFrame.dot
dot(other: _DataFrameOrSeries) -> _DataFrameOrSeries
Compute the matrix multiplication between the DataFrame and other.
See more: bigframes.dataframe.DataFrame.dot
bigframes.dataframe.DataFrame.drop
drop(
labels: typing.Any = None,
*,
axis: typing.Union[int, str] = 0,
index: typing.Any = None,
columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None,
level: typing.Optional[typing.Hashable] = None
) -> bigframes.dataframe.DataFrame
Drop specified labels from columns.
See more: bigframes.dataframe.DataFrame.drop
bigframes.dataframe.DataFrame.drop_duplicates
drop_duplicates(
subset: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None,
*,
keep: str = "first"
) -> bigframes.dataframe.DataFrame
Return DataFrame with duplicate rows removed.
bigframes.dataframe.DataFrame.droplevel
droplevel(
level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
axis: int | str = 0,
)
Return DataFrame with requested index / column level(s) removed.
See more: bigframes.dataframe.DataFrame.droplevel
bigframes.dataframe.DataFrame.dropna
dropna(
*, axis: int | str = 0, inplace: bool = False, how: str = "any", ignore_index=False
) -> bigframes.dataframe.DataFrame
Remove missing values.
See more: bigframes.dataframe.DataFrame.dropna
bigframes.dataframe.DataFrame.duplicated
duplicated(subset=None, keep: str = "first") -> bigframes.series.Series
Return boolean Series denoting duplicate rows.
See more: bigframes.dataframe.DataFrame.duplicated
bigframes.dataframe.DataFrame.eq
eq(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame
Get equal to of DataFrame and other, element-wise (binary operator eq
).
See more: bigframes.dataframe.DataFrame.eq
bigframes.dataframe.DataFrame.equals
equals(
other: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame]
) -> bool
Test whether two objects contain the same elements.
See more: bigframes.dataframe.DataFrame.equals
bigframes.dataframe.DataFrame.eval
eval(expr: str) -> bigframes.dataframe.DataFrame
Evaluate a string describing operations on DataFrame columns.
See more: bigframes.dataframe.DataFrame.eval
bigframes.dataframe.DataFrame.expanding
expanding(min_periods: int = 1) -> bigframes.core.window.Window
Provide expanding window calculations.
See more: bigframes.dataframe.DataFrame.expanding
bigframes.dataframe.DataFrame.explode
explode(
column: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
*,
ignore_index: typing.Optional[bool] = False
) -> bigframes.dataframe.DataFrame
Transform each element of an array to a row, replicating index values.
See more: bigframes.dataframe.DataFrame.explode
bigframes.dataframe.DataFrame.ffill
ffill(*, limit: typing.Optional[int] = None) -> bigframes.dataframe.DataFrame
Fill NA/NaN values by propagating the last valid observation to next valid.
See more: bigframes.dataframe.DataFrame.ffill
bigframes.dataframe.DataFrame.fillna
fillna(value=None) -> bigframes.dataframe.DataFrame
Fill NA/NaN values using the specified method.
See more: bigframes.dataframe.DataFrame.fillna
bigframes.dataframe.DataFrame.filter
filter(
items: typing.Optional[typing.Iterable] = None,
like: typing.Optional[str] = None,
regex: typing.Optional[str] = None,
axis: int | str | None = None,
) -> bigframes.dataframe.DataFrame
Subset the dataframe rows or columns according to the specified index labels.
See more: bigframes.dataframe.DataFrame.filter
bigframes.dataframe.DataFrame.first_valid_index
first_valid_index()
API documentation for first_valid_index
method.
bigframes.dataframe.DataFrame.floordiv
floordiv(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get integer division of DataFrame and other, element-wise (binary operator //
).
See more: bigframes.dataframe.DataFrame.floordiv
bigframes.dataframe.DataFrame.from_dict
from_dict(
data: dict, orient: str = "columns", dtype=None, columns=None
) -> bigframes.dataframe.DataFrame
Construct DataFrame from dict of array-like or dicts.
See more: bigframes.dataframe.DataFrame.from_dict
bigframes.dataframe.DataFrame.from_records
from_records(
data,
index=None,
exclude=None,
columns=None,
coerce_float: bool = False,
nrows: typing.Optional[int] = None,
) -> bigframes.dataframe.DataFrame
Convert structured or record ndarray to DataFrame.
bigframes.dataframe.DataFrame.ge
ge(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame
Get 'greater than or equal to' of DataFrame and other, element-wise (binary operator >=
).
See more: bigframes.dataframe.DataFrame.ge
bigframes.dataframe.DataFrame.get
get(key, default=None)
Get item from object for given key (ex: DataFrame column).
See more: bigframes.dataframe.DataFrame.get
bigframes.dataframe.DataFrame.groupby
groupby(
by: typing.Optional[
typing.Union[
typing.Hashable,
bigframes.series.Series,
typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]],
]
] = None,
*,
level: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
as_index: bool = True,
dropna: bool = True
) -> bigframes.core.groupby.DataFrameGroupBy
Group DataFrame by columns.
See more: bigframes.dataframe.DataFrame.groupby
bigframes.dataframe.DataFrame.gt
gt(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame
Get 'greater than' of DataFrame and other, element-wise (binary operator >
).
See more: bigframes.dataframe.DataFrame.gt
bigframes.dataframe.DataFrame.head
head(n: int = 5) -> bigframes.dataframe.DataFrame
Return the first n
rows.
See more: bigframes.dataframe.DataFrame.head
bigframes.dataframe.DataFrame.idxmax
idxmax() -> bigframes.series.Series
Return index of first occurrence of maximum over columns.
See more: bigframes.dataframe.DataFrame.idxmax
bigframes.dataframe.DataFrame.idxmin
idxmin() -> bigframes.series.Series
Return index of first occurrence of minimum over columns.
See more: bigframes.dataframe.DataFrame.idxmin
bigframes.dataframe.DataFrame.info
info(
verbose: typing.Optional[bool] = None,
buf=None,
max_cols: typing.Optional[int] = None,
memory_usage: typing.Optional[bool] = None,
show_counts: typing.Optional[bool] = None,
)
Print a concise summary of a DataFrame.
See more: bigframes.dataframe.DataFrame.info
bigframes.dataframe.DataFrame.interpolate
interpolate(method: str = "linear") -> bigframes.dataframe.DataFrame
Fill NaN values using an interpolation method.
bigframes.dataframe.DataFrame.isin
isin(values) -> bigframes.dataframe.DataFrame
Whether each element in the DataFrame is contained in values.
See more: bigframes.dataframe.DataFrame.isin
bigframes.dataframe.DataFrame.isna
isna() -> bigframes.dataframe.DataFrame
Detect missing values.
See more: bigframes.dataframe.DataFrame.isna
bigframes.dataframe.DataFrame.isnull
isnull() -> bigframes.dataframe.DataFrame
Detect missing values.
See more: bigframes.dataframe.DataFrame.isnull
bigframes.dataframe.DataFrame.items
items()
Iterate over (column name, Series) pairs.
See more: bigframes.dataframe.DataFrame.items
bigframes.dataframe.DataFrame.iterrows
iterrows() -> typing.Iterable[tuple[typing.Any, pandas.core.series.Series]]
Iterate over DataFrame rows as (index, Series) pairs.
See more: bigframes.dataframe.DataFrame.iterrows
bigframes.dataframe.DataFrame.itertuples
itertuples(
index: bool = True, name: typing.Optional[str] = "Pandas"
) -> typing.Iterable[tuple[typing.Any, ...]]
Iterate over DataFrame rows as namedtuples.
See more: bigframes.dataframe.DataFrame.itertuples
bigframes.dataframe.DataFrame.join
join(
other: bigframes.dataframe.DataFrame,
*,
on: typing.Optional[str] = None,
how: str = "left"
) -> bigframes.dataframe.DataFrame
Join columns of another DataFrame.
See more: bigframes.dataframe.DataFrame.join
bigframes.dataframe.DataFrame.keys
keys() -> pandas.core.indexes.base.Index
Get the 'info axis'.
See more: bigframes.dataframe.DataFrame.keys
bigframes.dataframe.DataFrame.kurt
kurt(*, numeric_only: bool = False)
Return unbiased kurtosis over columns.
See more: bigframes.dataframe.DataFrame.kurt
bigframes.dataframe.DataFrame.kurtosis
kurtosis(*, numeric_only: bool = False)
API documentation for kurtosis
method.
See more: bigframes.dataframe.DataFrame.kurtosis
bigframes.dataframe.DataFrame.le
le(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame
Get 'less than or equal to' of dataframe and other, element-wise (binary operator <=
).
See more: bigframes.dataframe.DataFrame.le
bigframes.dataframe.DataFrame.lt
lt(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame
Get 'less than' of DataFrame and other, element-wise (binary operator <
).
See more: bigframes.dataframe.DataFrame.lt
bigframes.dataframe.DataFrame.map
map(func, na_action: typing.Optional[str] = None) -> bigframes.dataframe.DataFrame
Apply a function to a Dataframe elementwise.
See more: bigframes.dataframe.DataFrame.map
bigframes.dataframe.DataFrame.max
max(
axis: typing.Union[str, int] = 0, *, numeric_only: bool = False
) -> bigframes.series.Series
Return the maximum of the values over the requested axis.
See more: bigframes.dataframe.DataFrame.max
bigframes.dataframe.DataFrame.mean
mean(
axis: typing.Union[str, int] = 0, *, numeric_only: bool = False
) -> bigframes.series.Series
Return the mean of the values over the requested axis.
See more: bigframes.dataframe.DataFrame.mean
bigframes.dataframe.DataFrame.median
median(
*, numeric_only: bool = False, exact: bool = False
) -> bigframes.series.Series
Return the median of the values over colunms.
See more: bigframes.dataframe.DataFrame.median
bigframes.dataframe.DataFrame.melt
melt(
id_vars: typing.Optional[typing.Iterable[typing.Hashable]] = None,
value_vars: typing.Optional[typing.Iterable[typing.Hashable]] = None,
var_name: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None,
value_name: typing.Hashable = "value",
)
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
See more: bigframes.dataframe.DataFrame.melt
bigframes.dataframe.DataFrame.memory_usage
memory_usage(index: bool = True)
Return the memory usage of each column in bytes.
bigframes.dataframe.DataFrame.merge
merge(
right: bigframes.dataframe.DataFrame,
how: typing.Literal["inner", "left", "outer", "right", "cross"] = "inner",
on: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
*,
left_on: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
right_on: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
sort: bool = False,
suffixes: tuple[str, str] = ("_x", "_y")
) -> bigframes.dataframe.DataFrame
Merge DataFrame objects with a database-style join.
See more: bigframes.dataframe.DataFrame.merge
bigframes.dataframe.DataFrame.min
min(
axis: typing.Union[str, int] = 0, *, numeric_only: bool = False
) -> bigframes.series.Series
Return the minimum of the values over the requested axis.
See more: bigframes.dataframe.DataFrame.min
bigframes.dataframe.DataFrame.mod
mod(
other: int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get modulo of DataFrame and other, element-wise (binary operator %
).
See more: bigframes.dataframe.DataFrame.mod
bigframes.dataframe.DataFrame.mul
mul(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get multiplication of DataFrame and other, element-wise (binary operator *
).
See more: bigframes.dataframe.DataFrame.mul
bigframes.dataframe.DataFrame.multiply
multiply(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
API documentation for multiply
method.
See more: bigframes.dataframe.DataFrame.multiply
bigframes.dataframe.DataFrame.ne
ne(other: typing.Any, axis: str | int = "columns") -> bigframes.dataframe.DataFrame
Get not equal to of DataFrame and other, element-wise (binary operator ne
).
See more: bigframes.dataframe.DataFrame.ne
bigframes.dataframe.DataFrame.nlargest
nlargest(
n: int,
columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
keep: str = "first",
) -> bigframes.dataframe.DataFrame
Return the first n
rows ordered by columns
in descending order.
See more: bigframes.dataframe.DataFrame.nlargest
bigframes.dataframe.DataFrame.notna
notna() -> bigframes.dataframe.DataFrame
Detect existing (non-missing) values.
See more: bigframes.dataframe.DataFrame.notna
bigframes.dataframe.DataFrame.notnull
notnull() -> bigframes.dataframe.DataFrame
Detect existing (non-missing) values.
See more: bigframes.dataframe.DataFrame.notnull
bigframes.dataframe.DataFrame.nsmallest
nsmallest(
n: int,
columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
keep: str = "first",
) -> bigframes.dataframe.DataFrame
Return the first n
rows ordered by columns
in ascending order.
See more: bigframes.dataframe.DataFrame.nsmallest
bigframes.dataframe.DataFrame.nunique
nunique() -> bigframes.series.Series
Count number of distinct elements in each column.
See more: bigframes.dataframe.DataFrame.nunique
bigframes.dataframe.DataFrame.pct_change
pct_change(periods: int = 1) -> bigframes.dataframe.DataFrame
Fractional change between the current and a prior element.
See more: bigframes.dataframe.DataFrame.pct_change
bigframes.dataframe.DataFrame.peek
peek(n: int = 5, *, force: bool = True) -> pandas.core.frame.DataFrame
Preview n arbitrary rows from the dataframe.
See more: bigframes.dataframe.DataFrame.peek
bigframes.dataframe.DataFrame.pipe
pipe(func: Callable[..., T] | tuple[Callable[..., T], str], *args, **kwargs) -> T
Apply chainable functions that expect Series or DataFrames.
See more: bigframes.dataframe.DataFrame.pipe
bigframes.dataframe.DataFrame.pivot
pivot(
*,
columns: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
index: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
values: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None
) -> bigframes.dataframe.DataFrame
Return reshaped DataFrame organized by given index / column values.
See more: bigframes.dataframe.DataFrame.pivot
bigframes.dataframe.DataFrame.pow
pow(
other: int | bigframes.series.Series, axis: str | int = "columns"
) -> bigframes.dataframe.DataFrame
Get Exponential power of dataframe and other, element-wise (binary operator **
).
See more: bigframes.dataframe.DataFrame.pow
bigframes.dataframe.DataFrame.prod
prod(
axis: typing.Union[str, int] = 0, *, numeric_only: bool = False
) -> bigframes.series.Series
Return the product of the values over the requested axis.
See more: bigframes.dataframe.DataFrame.prod
bigframes.dataframe.DataFrame.product
product(
axis: typing.Union[str, int] = 0, *, numeric_only: bool = False
) -> bigframes.series.Series
API documentation for product
method.
See more: bigframes.dataframe.DataFrame.product
bigframes.dataframe.DataFrame.query
query(expr: str) -> bigframes.dataframe.DataFrame
Query the columns of a DataFrame with a boolean expression.
See more: bigframes.dataframe.DataFrame.query
bigframes.dataframe.DataFrame.radd
radd(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
API documentation for radd
method.
See more: bigframes.dataframe.DataFrame.radd
bigframes.dataframe.DataFrame.rank
rank(
axis=0,
method: str = "average",
numeric_only=False,
na_option: str = "keep",
ascending=True,
) -> bigframes.dataframe.DataFrame
Compute numerical data ranks (1 through n) along axis.
See more: bigframes.dataframe.DataFrame.rank
bigframes.dataframe.DataFrame.rdiv
rdiv(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
API documentation for rdiv
method.
See more: bigframes.dataframe.DataFrame.rdiv
bigframes.dataframe.DataFrame.reindex
reindex(
labels=None,
*,
index=None,
columns=None,
axis: typing.Optional[typing.Union[str, int]] = None,
validate: typing.Optional[bool] = None
)
Conform DataFrame to new index with optional filling logic.
See more: bigframes.dataframe.DataFrame.reindex
bigframes.dataframe.DataFrame.reindex_like
reindex_like(
other: bigframes.dataframe.DataFrame, *, validate: typing.Optional[bool] = None
)
Return an object with matching indices as other object.
bigframes.dataframe.DataFrame.rename
rename(
*, columns: typing.Mapping[typing.Hashable, typing.Hashable]
) -> bigframes.dataframe.DataFrame
Rename columns.
See more: bigframes.dataframe.DataFrame.rename
bigframes.dataframe.DataFrame.rename_axis
rename_axis(
mapper: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], **kwargs
) -> bigframes.dataframe.DataFrame
Set the name of the axis for the index.
bigframes.dataframe.DataFrame.reorder_levels
reorder_levels(
order: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
axis: int | str = 0,
)
Rearrange index levels using input order.
bigframes.dataframe.DataFrame.replace
replace(to_replace: typing.Any, value: typing.Any = None, *, regex: bool = False)
Replace values given in to_replace
with value
.
See more: bigframes.dataframe.DataFrame.replace
bigframes.dataframe.DataFrame.reset_index
reset_index(*, drop: bool = False) -> bigframes.dataframe.DataFrame
Reset the index.
bigframes.dataframe.DataFrame.rfloordiv
rfloordiv(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get integer division of DataFrame and other, element-wise (binary operator //
).
See more: bigframes.dataframe.DataFrame.rfloordiv
bigframes.dataframe.DataFrame.rmod
rmod(
other: int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get modulo of DataFrame and other, element-wise (binary operator %
).
See more: bigframes.dataframe.DataFrame.rmod
bigframes.dataframe.DataFrame.rmul
rmul(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
API documentation for rmul
method.
See more: bigframes.dataframe.DataFrame.rmul
bigframes.dataframe.DataFrame.rolling
rolling(window: int, min_periods=None) -> bigframes.core.window.Window
Provide rolling window calculations.
See more: bigframes.dataframe.DataFrame.rolling
bigframes.dataframe.DataFrame.rpow
rpow(
other: int | bigframes.series.Series, axis: str | int = "columns"
) -> bigframes.dataframe.DataFrame
Get Exponential power of dataframe and other, element-wise (binary operator rpow
).
See more: bigframes.dataframe.DataFrame.rpow
bigframes.dataframe.DataFrame.rsub
rsub(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get subtraction of DataFrame and other, element-wise (binary operator -
).
See more: bigframes.dataframe.DataFrame.rsub
bigframes.dataframe.DataFrame.rtruediv
rtruediv(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get floating division of DataFrame and other, element-wise (binary operator /
).
See more: bigframes.dataframe.DataFrame.rtruediv
bigframes.dataframe.DataFrame.sample
sample(
n: typing.Optional[int] = None,
frac: typing.Optional[float] = None,
*,
random_state: typing.Optional[int] = None,
sort: typing.Optional[typing.Union[bool, typing.Literal["random"]]] = "random"
) -> bigframes.dataframe.DataFrame
Return a random sample of items from an axis of object.
See more: bigframes.dataframe.DataFrame.sample
bigframes.dataframe.DataFrame.select_dtypes
select_dtypes(include=None, exclude=None) -> bigframes.dataframe.DataFrame
Return a subset of the DataFrame's columns based on the column dtypes.
bigframes.dataframe.DataFrame.set_index
set_index(
keys: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]],
append: bool = False,
drop: bool = True,
) -> bigframes.dataframe.DataFrame
Set the DataFrame index using existing columns.
See more: bigframes.dataframe.DataFrame.set_index
bigframes.dataframe.DataFrame.shift
shift(periods: int = 1) -> bigframes.dataframe.DataFrame
Shift index by desired number of periods.
See more: bigframes.dataframe.DataFrame.shift
bigframes.dataframe.DataFrame.skew
skew(*, numeric_only: bool = False)
Return unbiased skew over columns.
See more: bigframes.dataframe.DataFrame.skew
bigframes.dataframe.DataFrame.sort_index
sort_index(
ascending: bool = True, na_position: typing.Literal["first", "last"] = "last"
) -> bigframes.dataframe.DataFrame
Sort object by labels (along an axis).
See more: bigframes.dataframe.DataFrame.sort_index
bigframes.dataframe.DataFrame.sort_values
sort_values(
by: typing.Union[str, typing.Sequence[str]],
*,
ascending: typing.Union[bool, typing.Sequence[bool]] = True,
kind: str = "quicksort",
na_position: typing.Literal["first", "last"] = "last"
) -> bigframes.dataframe.DataFrame
Sort by the values along row axis.
bigframes.dataframe.DataFrame.stack
stack(level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = -1)
Stack the prescribed level(s) from columns to index.
See more: bigframes.dataframe.DataFrame.stack
bigframes.dataframe.DataFrame.std
std(
axis: typing.Union[str, int] = 0, *, numeric_only: bool = False
) -> bigframes.series.Series
Return sample standard deviation over columns.
See more: bigframes.dataframe.DataFrame.std
bigframes.dataframe.DataFrame.sub
sub(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get subtraction of DataFrame and other, element-wise (binary operator -
).
See more: bigframes.dataframe.DataFrame.sub
bigframes.dataframe.DataFrame.subtract
subtract(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
API documentation for subtract
method.
See more: bigframes.dataframe.DataFrame.subtract
bigframes.dataframe.DataFrame.sum
sum(
axis: typing.Union[str, int] = 0, *, numeric_only: bool = False
) -> bigframes.series.Series
Return the sum of the values over the requested axis.
See more: bigframes.dataframe.DataFrame.sum
bigframes.dataframe.DataFrame.swaplevel
swaplevel(i: int = -2, j: int = -1, axis: int | str = 0)
Swap levels i and j in a MultiIndex
.
See more: bigframes.dataframe.DataFrame.swaplevel
bigframes.dataframe.DataFrame.tail
tail(n: int = 5) -> bigframes.dataframe.DataFrame
Return the last n
rows.
See more: bigframes.dataframe.DataFrame.tail
bigframes.dataframe.DataFrame.to_csv
to_csv(
path_or_buf: str, sep=",", *, header: bool = True, index: bool = True
) -> None
Write object to a comma-separated values (csv) file on Cloud Storage.
See more: bigframes.dataframe.DataFrame.to_csv
bigframes.dataframe.DataFrame.to_dict
to_dict(orient: typing.Literal['dict', 'list', 'series', 'split', 'tight', 'records', 'index'] = 'dict', into: type[dict] =
Convert the DataFrame to a dictionary.
See more: bigframes.dataframe.DataFrame.to_dict
bigframes.dataframe.DataFrame.to_excel
to_excel(excel_writer, sheet_name: str = "Sheet1", **kwargs) -> None
Write DataFrame to an Excel sheet.
See more: bigframes.dataframe.DataFrame.to_excel
bigframes.dataframe.DataFrame.to_gbq
to_gbq(
destination_table: typing.Optional[str] = None,
*,
if_exists: typing.Optional[typing.Literal["fail", "replace", "append"]] = None,
index: bool = True,
ordering_id: typing.Optional[str] = None,
clustering_columns: typing.Union[
pandas.core.indexes.base.Index, typing.Iterable[typing.Hashable]
] = ()
) -> str
Write a DataFrame to a BigQuery table.
See more: bigframes.dataframe.DataFrame.to_gbq
bigframes.dataframe.DataFrame.to_html
to_html(
buf=None,
columns: typing.Optional[typing.Sequence[str]] = None,
col_space=None,
header: bool = True,
index: bool = True,
na_rep: str = "NaN",
formatters=None,
float_format=None,
sparsify: bool | None = None,
index_names: bool = True,
justify: str | None = None,
max_rows: int | None = None,
max_cols: int | None = None,
show_dimensions: bool = False,
decimal: str = ".",
bold_rows: bool = True,
classes: str | list | tuple | None = None,
escape: bool = True,
notebook: bool = False,
border: int | None = None,
table_id: str | None = None,
render_links: bool = False,
encoding: str | None = None,
) -> str
Render a DataFrame as an HTML table.
See more: bigframes.dataframe.DataFrame.to_html
bigframes.dataframe.DataFrame.to_json
to_json(
path_or_buf: str,
orient: typing.Literal[
"split", "records", "index", "columns", "values", "table"
] = "columns",
*,
lines: bool = False,
index: bool = True
) -> None
Convert the object to a JSON string, written to Cloud Storage.
See more: bigframes.dataframe.DataFrame.to_json
bigframes.dataframe.DataFrame.to_latex
to_latex(
buf=None,
columns: typing.Optional[typing.Sequence] = None,
header: typing.Union[bool, typing.Sequence[str]] = True,
index: bool = True,
**kwargs
) -> str | None
Render object to a LaTeX tabular, longtable, or nested table.
See more: bigframes.dataframe.DataFrame.to_latex
bigframes.dataframe.DataFrame.to_markdown
to_markdown(buf=None, mode: str = "wt", index: bool = True, **kwargs) -> str | None
Print DataFrame in Markdown-friendly format.
bigframes.dataframe.DataFrame.to_numpy
to_numpy(dtype=None, copy=False, na_value=None, **kwargs) -> numpy.ndarray
Convert the DataFrame to a NumPy array.
See more: bigframes.dataframe.DataFrame.to_numpy
bigframes.dataframe.DataFrame.to_orc
to_orc(path=None, **kwargs) -> bytes | None
Write a DataFrame to the ORC format.
See more: bigframes.dataframe.DataFrame.to_orc
bigframes.dataframe.DataFrame.to_pandas
to_pandas(
max_download_size: typing.Optional[int] = None,
sampling_method: typing.Optional[str] = None,
random_state: typing.Optional[int] = None,
*,
ordered: bool = True
) -> pandas.core.frame.DataFrame
Write DataFrame to pandas DataFrame.
See more: bigframes.dataframe.DataFrame.to_pandas
bigframes.dataframe.DataFrame.to_pandas_batches
to_pandas_batches() -> typing.Iterable[pandas.core.frame.DataFrame]
Stream DataFrame results to an iterable of pandas DataFrame.
bigframes.dataframe.DataFrame.to_parquet
to_parquet(
path: str,
*,
compression: typing.Optional[typing.Literal["snappy", "gzip"]] = "snappy",
index: bool = True
) -> None
Write a DataFrame to the binary Parquet format.
See more: bigframes.dataframe.DataFrame.to_parquet
bigframes.dataframe.DataFrame.to_pickle
to_pickle(path, **kwargs) -> None
Pickle (serialize) object to file.
See more: bigframes.dataframe.DataFrame.to_pickle
bigframes.dataframe.DataFrame.to_records
to_records(
index: bool = True, column_dtypes=None, index_dtypes=None
) -> numpy.recarray
Convert DataFrame to a NumPy record array.
See more: bigframes.dataframe.DataFrame.to_records
bigframes.dataframe.DataFrame.to_string
to_string(
buf=None,
columns: typing.Optional[typing.Sequence[str]] = None,
col_space=None,
header: typing.Union[bool, typing.Sequence[str]] = True,
index: bool = True,
na_rep: str = "NaN",
formatters=None,
float_format=None,
sparsify: bool | None = None,
index_names: bool = True,
justify: str | None = None,
max_rows: int | None = None,
max_cols: int | None = None,
show_dimensions: bool = False,
decimal: str = ".",
line_width: int | None = None,
min_rows: int | None = None,
max_colwidth: int | None = None,
encoding: str | None = None,
) -> str | None
Render a DataFrame to a console-friendly tabular output.
See more: bigframes.dataframe.DataFrame.to_string
bigframes.dataframe.DataFrame.truediv
truediv(
other: float | int | bigframes.series.Series | bigframes.dataframe.DataFrame,
axis: str | int = "columns",
) -> bigframes.dataframe.DataFrame
Get floating division of DataFrame and other, element-wise (binary operator /
).
See more: bigframes.dataframe.DataFrame.truediv
bigframes.dataframe.DataFrame.unstack
unstack(
level: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = -1
)
Pivot a level of the (necessarily hierarchical) index labels.
See more: bigframes.dataframe.DataFrame.unstack
bigframes.dataframe.DataFrame.update
update(other, join: str = "left", overwrite=True, filter_func=None)
Modify in place using non-NA values from another DataFrame.
See more: bigframes.dataframe.DataFrame.update
bigframes.dataframe.DataFrame.value_counts
value_counts(
subset: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]] = None,
normalize: bool = False,
sort: bool = True,
ascending: bool = False,
dropna: bool = True,
)
Return a Series containing counts of unique rows in the DataFrame.
bigframes.dataframe.DataFrame.var
var(
axis: typing.Union[str, int] = 0, *, numeric_only: bool = False
) -> bigframes.series.Series
Return unbiased variance over requested axis.
See more: bigframes.dataframe.DataFrame.var
bigframes.ml.cluster.KMeans.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.cluster.KMeans.repr
bigframes.ml.cluster.KMeans.detect_anomalies
detect_anomalies(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
contamination: float = 0.1
) -> bigframes.dataframe.DataFrame
Detect the anomaly data points of the input.
bigframes.ml.cluster.KMeans.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.ml.base._T
Compute k-means clustering.
See more: bigframes.ml.cluster.KMeans.fit
bigframes.ml.cluster.KMeans.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.cluster.KMeans.get_params
bigframes.ml.cluster.KMeans.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict the closest cluster each sample in X belongs to.
See more: bigframes.ml.cluster.KMeans.predict
bigframes.ml.cluster.KMeans.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
See more: bigframes.ml.cluster.KMeans.register
bigframes.ml.cluster.KMeans.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.dataframe.DataFrame
Calculate evaluation metrics of the model.
See more: bigframes.ml.cluster.KMeans.score
bigframes.ml.cluster.KMeans.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.cluster.KMeans
Save the model to BigQuery.
See more: bigframes.ml.cluster.KMeans.to_gbq
bigframes.ml.compose.ColumnTransformer.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.compose.ColumnTransformer.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.compose.ColumnTransformer
Fit all transformers using X.
bigframes.ml.compose.ColumnTransformer.fit_transform
fit_transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrame
API documentation for fit_transform
method.
See more: bigframes.ml.compose.ColumnTransformer.fit_transform
bigframes.ml.compose.ColumnTransformer.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.compose.ColumnTransformer.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
bigframes.ml.compose.ColumnTransformer.transform
transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Transform X separately by each transformer, concatenate results.
bigframes.ml.decomposition.PCA.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.decomposition.PCA.repr
bigframes.ml.decomposition.PCA.detect_anomalies
detect_anomalies(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
contamination: float = 0.1
) -> bigframes.dataframe.DataFrame
Detect the anomaly data points of the input.
bigframes.ml.decomposition.PCA.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.ml.base._T
Fit the model according to the given training data.
See more: bigframes.ml.decomposition.PCA.fit
bigframes.ml.decomposition.PCA.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.decomposition.PCA.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict the closest cluster for each sample in X.
See more: bigframes.ml.decomposition.PCA.predict
bigframes.ml.decomposition.PCA.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
See more: bigframes.ml.decomposition.PCA.register
bigframes.ml.decomposition.PCA.score
score(X=None, y=None) -> bigframes.dataframe.DataFrame
Calculate evaluation metrics of the model.
See more: bigframes.ml.decomposition.PCA.score
bigframes.ml.decomposition.PCA.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.decomposition.PCA
Save the model to BigQuery.
See more: bigframes.ml.decomposition.PCA.to_gbq
bigframes.ml.ensemble.RandomForestClassifier.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.ensemble.RandomForestClassifier.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._T
Build a forest of trees from the training set (X, y).
bigframes.ml.ensemble.RandomForestClassifier.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.ensemble.RandomForestClassifier.get_params
bigframes.ml.ensemble.RandomForestClassifier.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict regression target for X.
See more: bigframes.ml.ensemble.RandomForestClassifier.predict
bigframes.ml.ensemble.RandomForestClassifier.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
See more: bigframes.ml.ensemble.RandomForestClassifier.register
bigframes.ml.ensemble.RandomForestClassifier.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
)
Calculate evaluation metrics of the model.
See more: bigframes.ml.ensemble.RandomForestClassifier.score
bigframes.ml.ensemble.RandomForestClassifier.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.ensemble.RandomForestClassifier
Save the model to BigQuery.
See more: bigframes.ml.ensemble.RandomForestClassifier.to_gbq
bigframes.ml.ensemble.RandomForestRegressor.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.ensemble.RandomForestRegressor.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._T
Build a forest of trees from the training set (X, y).
bigframes.ml.ensemble.RandomForestRegressor.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.ensemble.RandomForestRegressor.get_params
bigframes.ml.ensemble.RandomForestRegressor.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict regression target for X.
See more: bigframes.ml.ensemble.RandomForestRegressor.predict
bigframes.ml.ensemble.RandomForestRegressor.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
See more: bigframes.ml.ensemble.RandomForestRegressor.register
bigframes.ml.ensemble.RandomForestRegressor.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
)
Calculate evaluation metrics of the model.
bigframes.ml.ensemble.RandomForestRegressor.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.ensemble.RandomForestRegressor
Save the model to BigQuery.
See more: bigframes.ml.ensemble.RandomForestRegressor.to_gbq
bigframes.ml.ensemble.XGBClassifier.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.ensemble.XGBClassifier.repr
bigframes.ml.ensemble.XGBClassifier.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._T
Fit gradient boosting model.
See more: bigframes.ml.ensemble.XGBClassifier.fit
bigframes.ml.ensemble.XGBClassifier.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.ensemble.XGBClassifier.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict using the XGB model.
bigframes.ml.ensemble.XGBClassifier.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
bigframes.ml.ensemble.XGBClassifier.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
)
Return the mean accuracy on the given test data and labels.
bigframes.ml.ensemble.XGBClassifier.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.ensemble.XGBClassifier
Save the model to BigQuery.
bigframes.ml.ensemble.XGBRegressor.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.ensemble.XGBRegressor.repr
bigframes.ml.ensemble.XGBRegressor.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._T
Fit gradient boosting model.
See more: bigframes.ml.ensemble.XGBRegressor.fit
bigframes.ml.ensemble.XGBRegressor.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.ensemble.XGBRegressor.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict using the XGB model.
bigframes.ml.ensemble.XGBRegressor.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
bigframes.ml.ensemble.XGBRegressor.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
)
Calculate evaluation metrics of the model.
See more: bigframes.ml.ensemble.XGBRegressor.score
bigframes.ml.ensemble.XGBRegressor.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.ensemble.XGBRegressor
Save the model to BigQuery.
bigframes.ml.forecasting.ARIMAPlus.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.forecasting.ARIMAPlus.repr
bigframes.ml.forecasting.ARIMAPlus.detect_anomalies
detect_anomalies(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
anomaly_prob_threshold: float = 0.95
) -> bigframes.dataframe.DataFrame
Detect the anomaly data points of the input.
See more: bigframes.ml.forecasting.ARIMAPlus.detect_anomalies
bigframes.ml.forecasting.ARIMAPlus.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._T
API documentation for fit
method.
See more: bigframes.ml.forecasting.ARIMAPlus.fit
bigframes.ml.forecasting.ARIMAPlus.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.forecasting.ARIMAPlus.predict
predict(
X=None, *, horizon: int = 3, confidence_level: float = 0.95
) -> bigframes.dataframe.DataFrame
Forecast time series at future horizon.
bigframes.ml.forecasting.ARIMAPlus.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
bigframes.ml.forecasting.ARIMAPlus.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.dataframe.DataFrame
Calculate evaluation metrics of the model.
See more: bigframes.ml.forecasting.ARIMAPlus.score
bigframes.ml.forecasting.ARIMAPlus.summary
summary(show_all_candidate_models: bool = False) -> bigframes.dataframe.DataFrame
Summary of the evaluation metrics of the time series model.
bigframes.ml.forecasting.ARIMAPlus.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.forecasting.ARIMAPlus
Save the model to BigQuery.
bigframes.ml.imported.ONNXModel.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.imported.ONNXModel.repr
bigframes.ml.imported.ONNXModel.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.imported.ONNXModel.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict the result from input DataFrame.
See more: bigframes.ml.imported.ONNXModel.predict
bigframes.ml.imported.ONNXModel.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
See more: bigframes.ml.imported.ONNXModel.register
bigframes.ml.imported.ONNXModel.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.imported.ONNXModel
Save the model to BigQuery.
See more: bigframes.ml.imported.ONNXModel.to_gbq
bigframes.ml.imported.TensorFlowModel.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.imported.TensorFlowModel.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.imported.TensorFlowModel.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict the result from input DataFrame.
bigframes.ml.imported.TensorFlowModel.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
bigframes.ml.imported.TensorFlowModel.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.imported.TensorFlowModel
Save the model to BigQuery.
bigframes.ml.imported.XGBoostModel.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.imported.XGBoostModel.repr
bigframes.ml.imported.XGBoostModel.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.imported.XGBoostModel.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict the result from input DataFrame.
bigframes.ml.imported.XGBoostModel.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
bigframes.ml.imported.XGBoostModel.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.imported.XGBoostModel
Save the model to BigQuery.
bigframes.ml.linear_model.LinearRegression.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.linear_model.LinearRegression.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._T
Fit linear model.
bigframes.ml.linear_model.LinearRegression.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.linear_model.LinearRegression.get_params
bigframes.ml.linear_model.LinearRegression.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict using the linear model.
See more: bigframes.ml.linear_model.LinearRegression.predict
bigframes.ml.linear_model.LinearRegression.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
See more: bigframes.ml.linear_model.LinearRegression.register
bigframes.ml.linear_model.LinearRegression.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.dataframe.DataFrame
Calculate evaluation metrics of the model.
bigframes.ml.linear_model.LinearRegression.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.linear_model.LinearRegression
Save the model to BigQuery.
bigframes.ml.linear_model.LogisticRegression.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.linear_model.LogisticRegression.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.ml.base._T
Fit the model according to the given training data.
bigframes.ml.linear_model.LogisticRegression.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.linear_model.LogisticRegression.get_params
bigframes.ml.linear_model.LogisticRegression.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict class labels for samples in X.
See more: bigframes.ml.linear_model.LogisticRegression.predict
bigframes.ml.linear_model.LogisticRegression.register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
See more: bigframes.ml.linear_model.LogisticRegression.register
bigframes.ml.linear_model.LogisticRegression.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
) -> bigframes.dataframe.DataFrame
Return the mean accuracy on the given test data and labels.
See more: bigframes.ml.linear_model.LogisticRegression.score
bigframes.ml.linear_model.LogisticRegression.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.linear_model.LogisticRegression
Save the model to BigQuery.
See more: bigframes.ml.linear_model.LogisticRegression.to_gbq
bigframes.ml.llm.GeminiTextGenerator.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.llm.GeminiTextGenerator.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.llm.GeminiTextGenerator.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
temperature: float = 0.9,
max_output_tokens: int = 8192,
top_k: int = 40,
top_p: float = 1.0
) -> bigframes.dataframe.DataFrame
Predict the result from input DataFrame.
bigframes.ml.llm.GeminiTextGenerator.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.llm.GeminiTextGenerator
Save the model to BigQuery.
bigframes.ml.llm.PaLM2TextEmbeddingGenerator.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.llm.PaLM2TextEmbeddingGenerator.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.llm.PaLM2TextEmbeddingGenerator.get_params
bigframes.ml.llm.PaLM2TextEmbeddingGenerator.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict the result from input DataFrame.
See more: bigframes.ml.llm.PaLM2TextEmbeddingGenerator.predict
bigframes.ml.llm.PaLM2TextEmbeddingGenerator.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.llm.PaLM2TextEmbeddingGenerator
Save the model to BigQuery.
See more: bigframes.ml.llm.PaLM2TextEmbeddingGenerator.to_gbq
bigframes.ml.llm.PaLM2TextGenerator.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.llm.PaLM2TextGenerator.repr
bigframes.ml.llm.PaLM2TextGenerator.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.llm.PaLM2TextGenerator.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
*,
temperature: float = 0.0,
max_output_tokens: int = 128,
top_k: int = 40,
top_p: float = 0.95
) -> bigframes.dataframe.DataFrame
Predict the result from input DataFrame.
bigframes.ml.llm.PaLM2TextGenerator.to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.llm.PaLM2TextGenerator
Save the model to BigQuery.
bigframes.ml.pipeline.Pipeline.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.pipeline.Pipeline.repr
bigframes.ml.pipeline.Pipeline.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.ml.pipeline.Pipeline
Fit the model.
See more: bigframes.ml.pipeline.Pipeline.fit
bigframes.ml.pipeline.Pipeline.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.pipeline.Pipeline.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
API documentation for predict
method.
See more: bigframes.ml.pipeline.Pipeline.predict
bigframes.ml.pipeline.Pipeline.score
score(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrame
API documentation for score
method.
See more: bigframes.ml.pipeline.Pipeline.score
bigframes.ml.pipeline.Pipeline.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.pipeline.Pipeline
Save the pipeline to BigQuery.
See more: bigframes.ml.pipeline.Pipeline.to_gbq
bigframes.ml.preprocessing.KBinsDiscretizer.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.preprocessing.KBinsDiscretizer.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.preprocessing.KBinsDiscretizer
Fit the estimator.
bigframes.ml.preprocessing.KBinsDiscretizer.fit_transform
fit_transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrame
Fit to data, then transform it.
See more: bigframes.ml.preprocessing.KBinsDiscretizer.fit_transform
bigframes.ml.preprocessing.KBinsDiscretizer.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.preprocessing.KBinsDiscretizer.get_params
bigframes.ml.preprocessing.KBinsDiscretizer.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
See more: bigframes.ml.preprocessing.KBinsDiscretizer.to_gbq
bigframes.ml.preprocessing.KBinsDiscretizer.transform
transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Discretize the data.
See more: bigframes.ml.preprocessing.KBinsDiscretizer.transform
bigframes.ml.preprocessing.LabelEncoder.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.preprocessing.LabelEncoder.fit
fit(
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.ml.preprocessing.LabelEncoder
Fit label encoder.
bigframes.ml.preprocessing.LabelEncoder.fit_transform
fit_transform(
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
API documentation for fit_transform
method.
See more: bigframes.ml.preprocessing.LabelEncoder.fit_transform
bigframes.ml.preprocessing.LabelEncoder.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.preprocessing.LabelEncoder.get_params
bigframes.ml.preprocessing.LabelEncoder.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.LabelEncoder.transform
transform(
y: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Transform y using label encoding.
bigframes.ml.preprocessing.MaxAbsScaler.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.preprocessing.MaxAbsScaler.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.preprocessing.MaxAbsScaler
Compute the maximum absolute value to be used for later scaling.
bigframes.ml.preprocessing.MaxAbsScaler.fit_transform
fit_transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrame
Fit to data, then transform it.
See more: bigframes.ml.preprocessing.MaxAbsScaler.fit_transform
bigframes.ml.preprocessing.MaxAbsScaler.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.preprocessing.MaxAbsScaler.get_params
bigframes.ml.preprocessing.MaxAbsScaler.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.MaxAbsScaler.transform
transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Scale the data.
bigframes.ml.preprocessing.MinMaxScaler.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.preprocessing.MinMaxScaler.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.preprocessing.MinMaxScaler
Compute the minimum and maximum to be used for later scaling.
bigframes.ml.preprocessing.MinMaxScaler.fit_transform
fit_transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrame
Fit to data, then transform it.
See more: bigframes.ml.preprocessing.MinMaxScaler.fit_transform
bigframes.ml.preprocessing.MinMaxScaler.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.preprocessing.MinMaxScaler.get_params
bigframes.ml.preprocessing.MinMaxScaler.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.MinMaxScaler.transform
transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Scale the data.
bigframes.ml.preprocessing.OneHotEncoder.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.preprocessing.OneHotEncoder.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.preprocessing.OneHotEncoder
Fit OneHotEncoder to X.
bigframes.ml.preprocessing.OneHotEncoder.fit_transform
fit_transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrame
API documentation for fit_transform
method.
See more: bigframes.ml.preprocessing.OneHotEncoder.fit_transform
bigframes.ml.preprocessing.OneHotEncoder.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.preprocessing.OneHotEncoder.get_params
bigframes.ml.preprocessing.OneHotEncoder.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.OneHotEncoder.transform
transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Transform X using one-hot encoding.
See more: bigframes.ml.preprocessing.OneHotEncoder.transform
bigframes.ml.preprocessing.StandardScaler.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
bigframes.ml.preprocessing.StandardScaler.fit
fit(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.preprocessing.StandardScaler
Compute the mean and std to be used for later scaling.
bigframes.ml.preprocessing.StandardScaler.fit_transform
fit_transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
y: typing.Optional[
typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
] = None,
) -> bigframes.dataframe.DataFrame
Fit to data, then transform it.
See more: bigframes.ml.preprocessing.StandardScaler.fit_transform
bigframes.ml.preprocessing.StandardScaler.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
See more: bigframes.ml.preprocessing.StandardScaler.get_params
bigframes.ml.preprocessing.StandardScaler.to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._T
Save the transformer as a BigQuery model.
bigframes.ml.preprocessing.StandardScaler.transform
transform(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Perform standardization by centering and scaling.
See more: bigframes.ml.preprocessing.StandardScaler.transform
bigframes.ml.remote.VertexAIModel.__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
See more: bigframes.ml.remote.VertexAIModel.repr
bigframes.ml.remote.VertexAIModel.get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
bigframes.ml.remote.VertexAIModel.predict
predict(
X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrame
Predict the result from the input DataFrame.
bigframes.operations.datetimes.DatetimeMethods.floor
floor(freq: str) -> bigframes.series.Series
Perform floor operation on the data to the specified freq.
See more: bigframes.operations.datetimes.DatetimeMethods.floor
bigframes.operations.datetimes.DatetimeMethods.normalize
normalize() -> bigframes.series.Series
Convert times to midnight.
See more: bigframes.operations.datetimes.DatetimeMethods.normalize
bigframes.operations.datetimes.DatetimeMethods.strftime
strftime(date_format: str) -> bigframes.series.Series
Convert to string Series using specified date_format.
See more: bigframes.operations.datetimes.DatetimeMethods.strftime
bigframes.operations.plotting.PlotAccessor.area
area(
x: typing.Optional[typing.Hashable] = None,
y: typing.Optional[typing.Hashable] = None,
stacked: bool = True,
**kwargs
)
Draw a stacked area plot.
bigframes.operations.plotting.PlotAccessor.hist
hist(by: typing.Optional[typing.Sequence[str]] = None, bins: int = 10, **kwargs)
Draw one histogram of the DataFrame’s columns.
bigframes.operations.plotting.PlotAccessor.line
line(
x: typing.Optional[typing.Hashable] = None,
y: typing.Optional[typing.Hashable] = None,
**kwargs
)
Plot Series or DataFrame as lines.
bigframes.operations.plotting.PlotAccessor.scatter
scatter(
x: typing.Optional[typing.Hashable] = None,
y: typing.Optional[typing.Hashable] = None,
s: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
c: typing.Optional[
typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]]
] = None,
**kwargs
)
Create a scatter plot with varying marker point size and color.
See more: bigframes.operations.plotting.PlotAccessor.scatter
bigframes.operations.plotting.PlotAccessor
PlotAccessor(data)
Make plots of Series or DataFrame with the matplotlib
backend.
bigframes.operations.strings.StringMethods.capitalize
capitalize() -> bigframes.series.Series
Convert strings in the Series/Index to be capitalized.
See more: bigframes.operations.strings.StringMethods.capitalize
bigframes.operations.strings.StringMethods.cat
cat(
others: typing.Union[str, bigframes.series.Series],
*,
join: typing.Literal["outer", "left"] = "left"
) -> bigframes.series.Series
Concatenate strings in the Series/Index with given separator.
bigframes.operations.strings.StringMethods.center
center(width: int, fillchar: str = " ") -> bigframes.series.Series
Pad left and right side of strings in the Series/Index.
bigframes.operations.strings.StringMethods.contains
contains(
pat, case: bool = True, flags: int = 0, *, regex: bool = True
) -> bigframes.series.Series
Test if pattern or regex is contained within a string of a Series or Index.
See more: bigframes.operations.strings.StringMethods.contains
bigframes.operations.strings.StringMethods.endswith
endswith(pat: typing.Union[str, tuple[str, ...]]) -> bigframes.series.Series
Test if the end of each string element matches a pattern.
See more: bigframes.operations.strings.StringMethods.endswith
bigframes.operations.strings.StringMethods.extract
extract(pat: str, flags: int = 0) -> bigframes.dataframe.DataFrame
Extract capture groups in the regex pat
as columns in a DataFrame.
See more: bigframes.operations.strings.StringMethods.extract
bigframes.operations.strings.StringMethods.find
find(
sub: str, start: typing.Optional[int] = None, end: typing.Optional[int] = None
) -> bigframes.series.Series
Return lowest indexes in each strings in the Series/Index.
bigframes.operations.strings.StringMethods.fullmatch
fullmatch(pat, case=True, flags=0) -> bigframes.series.Series
Determine if each string entirely matches a regular expression.
See more: bigframes.operations.strings.StringMethods.fullmatch
bigframes.operations.strings.StringMethods.get
get(i: int) -> bigframes.series.Series
Extract element from each component at specified position or with specified key.
bigframes.operations.strings.StringMethods.isalnum
isalnum() -> bigframes.series.Series
Check whether all characters in each string are alphanumeric.
See more: bigframes.operations.strings.StringMethods.isalnum
bigframes.operations.strings.StringMethods.isalpha
isalpha() -> bigframes.series.Series
Check whether all characters in each string are alphabetic.
See more: bigframes.operations.strings.StringMethods.isalpha
bigframes.operations.strings.StringMethods.isdecimal
isdecimal() -> bigframes.series.Series
Check whether all characters in each string are decimal.
See more: bigframes.operations.strings.StringMethods.isdecimal
bigframes.operations.strings.StringMethods.isdigit
isdigit() -> bigframes.series.Series
Check whether all characters in each string are digits.
See more: bigframes.operations.strings.StringMethods.isdigit
bigframes.operations.strings.StringMethods.islower
islower() -> bigframes.series.Series
Check whether all characters in each string are lowercase.
See more: bigframes.operations.strings.StringMethods.islower
bigframes.operations.strings.StringMethods.isnumeric
isnumeric() -> bigframes.series.Series
Check whether all characters in each string are numeric.
See more: bigframes.operations.strings.StringMethods.isnumeric
bigframes.operations.strings.StringMethods.isspace
isspace() -> bigframes.series.Series
Check whether all characters in each string are whitespace.
See more: bigframes.operations.strings.StringMethods.isspace
bigframes.operations.strings.StringMethods.isupper
isupper() -> bigframes.series.Series
Check whether all characters in each string are uppercase.
See more: bigframes.operations.strings.StringMethods.isupper
bigframes.operations.strings.StringMethods.len
len() -> bigframes.series.Series
Compute the length of each element in the Series/Index.
bigframes.operations.strings.StringMethods.ljust
ljust(width, fillchar=" ") -> bigframes.series.Series
Pad right side of strings in the Series/Index up to width.
bigframes.operations.strings.StringMethods.lower
lower() -> bigframes.series.Series
Convert strings in the Series/Index to lowercase.
bigframes.operations.strings.StringMethods.lstrip
lstrip() -> bigframes.series.Series
Remove leading characters.
bigframes.operations.strings.StringMethods.match
match(pat, case=True, flags=0) -> bigframes.series.Series
Determine if each string starts with a match of a regular expression.
bigframes.operations.strings.StringMethods.pad
pad(width, side="left", fillchar=" ") -> bigframes.series.Series
Pad strings in the Series/Index up to width.
bigframes.operations.strings.StringMethods.repeat
repeat(repeats: int) -> bigframes.series.Series
Duplicate each string in the Series or Index.
bigframes.operations.strings.StringMethods.replace
replace(
pat: typing.Union[str, re.Pattern],
repl: str,
*,
case: typing.Optional[bool] = None,
flags: int = 0,
regex: bool = False
) -> bigframes.series.Series
Replace each occurrence of pattern/regex in the Series/Index.
See more: bigframes.operations.strings.StringMethods.replace
bigframes.operations.strings.StringMethods.reverse
reverse() -> bigframes.series.Series
Reverse strings in the Series.
See more: bigframes.operations.strings.StringMethods.reverse
bigframes.operations.strings.StringMethods.rjust
rjust(width, fillchar=" ") -> bigframes.series.Series
Pad left side of strings in the Series/Index up to width.
bigframes.operations.strings.StringMethods.rstrip
rstrip() -> bigframes.series.Series
Remove trailing characters.
bigframes.operations.strings.StringMethods.slice
slice(
start: typing.Optional[int] = None, stop: typing.Optional[int] = None
) -> bigframes.series.Series
Slice substrings from each element in the Series or Index.
bigframes.operations.strings.StringMethods.startswith
startswith(pat: typing.Union[str, tuple[str, ...]]) -> bigframes.series.Series
Test if the start of each string element matches a pattern.
See more: bigframes.operations.strings.StringMethods.startswith
bigframes.operations.strings.StringMethods.strip
strip() -> bigframes.series.Series
Remove leading and trailing characters.
bigframes.operations.strings.StringMethods.upper
upper() -> bigframes.series.Series
Convert strings in the Series/Index to uppercase.
bigframes.operations.strings.StringMethods.zfill
zfill(width: int) -> bigframes.series.Series
Pad strings in the Series/Index by prepending '0' characters.
bigframes.operations.structs.StructAccessor.explode
explode() -> bigframes.dataframe.DataFrame
Extract all child fields of a struct as a DataFrame.
See more: bigframes.operations.structs.StructAccessor.explode
bigframes.operations.structs.StructAccessor.field
field(name_or_index: str | int) -> bigframes.series.Series
Extract a child field of a struct as a Series.
bigframes.pandas.NamedAgg
NamedAgg(column, aggfunc)
Create new instance of NamedAgg(column, aggfunc).
See more: bigframes.pandas.NamedAgg
bigframes.series.Series.__array_ufunc__
__array_ufunc__(
ufunc: numpy.ufunc, method: str, *inputs, **kwargs
) -> bigframes.series.Series
Used to support numpy ufuncs.
See more: bigframes.series.Series.array_ufunc
bigframes.series.Series.__rmatmul__
__rmatmul__(other)
Matrix multiplication using binary @
operator in Python>=3.5.
See more: bigframes.series.Series.rmatmul
bigframes.series.Series.abs
abs() -> bigframes.series.Series
Return a Series/DataFrame with absolute numeric value of each element.
See more: bigframes.series.Series.abs
bigframes.series.Series.add
add(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return addition of Series and other, element-wise (binary operator add).
See more: bigframes.series.Series.add
bigframes.series.Series.add_prefix
add_prefix(prefix: str, axis: int | str | None = None) -> bigframes.series.Series
Prefix labels with string prefix
.
See more: bigframes.series.Series.add_prefix
bigframes.series.Series.add_suffix
add_suffix(suffix: str, axis: int | str | None = None) -> bigframes.series.Series
Suffix labels with string suffix
.
See more: bigframes.series.Series.add_suffix
bigframes.series.Series.agg
agg(
func: typing.Union[str, typing.Sequence[str]]
) -> typing.Union[typing.Any, bigframes.series.Series]
Aggregate using one or more operations over the specified axis.
See more: bigframes.series.Series.agg
bigframes.series.Series.aggregate
aggregate(
func: typing.Union[str, typing.Sequence[str]]
) -> typing.Union[typing.Any, bigframes.series.Series]
API documentation for aggregate
method.
See more: bigframes.series.Series.aggregate
bigframes.series.Series.all
all() -> bool
Return whether all elements are True, potentially over an axis.
See more: bigframes.series.Series.all
bigframes.series.Series.any
any() -> bool
Return whether any element is True, potentially over an axis.
See more: bigframes.series.Series.any
bigframes.series.Series.apply
apply(
func, by_row: typing.Union[typing.Literal["compat"], bool] = "compat"
) -> bigframes.series.Series
Invoke function on values of a Series.
See more: bigframes.series.Series.apply
bigframes.series.Series.argmax
argmax() -> int
Return int position of the smallest value in the Series.
See more: bigframes.series.Series.argmax
bigframes.series.Series.argmin
argmin() -> int
Return int position of the largest value in the Series.
See more: bigframes.series.Series.argmin
bigframes.series.Series.astype
astype(
dtype: typing.Union[
typing.Literal[
"boolean",
"Float64",
"Int64",
"int64[pyarrow]",
"string",
"string[pyarrow]",
"timestamp[us, tz=UTC][pyarrow]",
"timestamp[us][pyarrow]",
"date32[day][pyarrow]",
"time64[us][pyarrow]",
"decimal128(38, 9)[pyarrow]",
"decimal256(76, 38)[pyarrow]",
"binary[pyarrow]",
],
pandas.core.arrays.boolean.BooleanDtype,
pandas.core.arrays.floating.Float64Dtype,
pandas.core.arrays.integer.Int64Dtype,
pandas.core.arrays.string_.StringDtype,
pandas.core.dtypes.dtypes.ArrowDtype,
geopandas.array.GeometryDtype,
]
) -> bigframes.series.Series
Cast a pandas object to a specified dtype dtype
.
See more: bigframes.series.Series.astype
bigframes.series.Series.between
between(left, right, inclusive="both")
Return boolean Series equivalent to left <= series <= right.
See more: bigframes.series.Series.between
bigframes.series.Series.bfill
bfill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series
Fill NA/NaN values by using the next valid observation to fill the gap.
See more: bigframes.series.Series.bfill
bigframes.series.Series.clip
clip(lower, upper)
Trim values at input threshold(s).
See more: bigframes.series.Series.clip
bigframes.series.Series.copy
copy() -> bigframes.series.Series
Make a copy of this object's indices and data.
See more: bigframes.series.Series.copy
bigframes.series.Series.corr
corr(other: bigframes.series.Series, method="pearson", min_periods=None) -> float
Compute the correlation with the other Series.
See more: bigframes.series.Series.corr
bigframes.series.Series.count
count() -> int
Return number of non-NA/null observations in the Series.
See more: bigframes.series.Series.count
bigframes.series.Series.cov
cov(other: bigframes.series.Series) -> float
Compute covariance with Series, excluding missing values.
See more: bigframes.series.Series.cov
bigframes.series.Series.cummax
cummax() -> bigframes.series.Series
Return cumulative maximum over a DataFrame or Series axis.
See more: bigframes.series.Series.cummax
bigframes.series.Series.cummin
cummin() -> bigframes.series.Series
Return cumulative minimum over a DataFrame or Series axis.
See more: bigframes.series.Series.cummin
bigframes.series.Series.cumprod
cumprod() -> bigframes.series.Series
Return cumulative product over a DataFrame or Series axis.
See more: bigframes.series.Series.cumprod
bigframes.series.Series.cumsum
cumsum() -> bigframes.series.Series
Return cumulative sum over a DataFrame or Series axis.
See more: bigframes.series.Series.cumsum
bigframes.series.Series.diff
diff(periods: int = 1) -> bigframes.series.Series
First discrete difference of element.
See more: bigframes.series.Series.diff
bigframes.series.Series.div
div(other: float | int | bigframes.series.Series) -> bigframes.series.Series
API documentation for div
method.
See more: bigframes.series.Series.div
bigframes.series.Series.divide
divide(other: float | int | bigframes.series.Series) -> bigframes.series.Series
API documentation for divide
method.
See more: bigframes.series.Series.divide
bigframes.series.Series.divmod
divmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]
Return integer division and modulo of Series and other, element-wise (binary operator divmod).
See more: bigframes.series.Series.divmod
bigframes.series.Series.dot
dot(other)
Compute the dot product between the Series and the columns of other.
See more: bigframes.series.Series.dot
bigframes.series.Series.drop
drop(
labels: typing.Any = None,
*,
axis: typing.Union[int, str] = 0,
index: typing.Any = None,
columns: typing.Union[typing.Hashable, typing.Iterable[typing.Hashable]] = None,
level: typing.Optional[typing.Union[str, int]] = None
) -> bigframes.series.Series
Return Series with specified index labels removed.
See more: bigframes.series.Series.drop
bigframes.series.Series.drop_duplicates
drop_duplicates(*, keep: str = "first") -> bigframes.series.Series
Return Series with duplicate values removed.
See more: bigframes.series.Series.drop_duplicates
bigframes.series.Series.droplevel
droplevel(
level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]],
axis: int | str = 0,
)
Return Series with requested index / column level(s) removed.
See more: bigframes.series.Series.droplevel
bigframes.series.Series.dropna
dropna(
*,
axis: int = 0,
inplace: bool = False,
how: typing.Optional[str] = None,
ignore_index: bool = False
) -> bigframes.series.Series
Return a new Series with missing values removed.
See more: bigframes.series.Series.dropna
bigframes.series.Series.duplicated
duplicated(keep: str = "first") -> bigframes.series.Series
Indicate duplicate Series values.
See more: bigframes.series.Series.duplicated
bigframes.series.Series.eq
eq(other: object) -> bigframes.series.Series
Return equal of Series and other, element-wise (binary operator eq).
See more: bigframes.series.Series.eq
bigframes.series.Series.equals
equals(
other: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame]
) -> bool
API documentation for equals
method.
See more: bigframes.series.Series.equals
bigframes.series.Series.expanding
expanding(min_periods: int = 1) -> bigframes.core.window.Window
Provide expanding window calculations.
See more: bigframes.series.Series.expanding
bigframes.series.Series.explode
explode(*, ignore_index: typing.Optional[bool] = False) -> bigframes.series.Series
Transform each element of a list-like to a row.
See more: bigframes.series.Series.explode
bigframes.series.Series.ffill
ffill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series
Fill NA/NaN values by propagating the last valid observation to next valid.
See more: bigframes.series.Series.ffill
bigframes.series.Series.fillna
fillna(value=None) -> bigframes.series.Series
Fill NA/NaN values using the specified method.
See more: bigframes.series.Series.fillna
bigframes.series.Series.filter
filter(
items: typing.Optional[typing.Iterable] = None,
like: typing.Optional[str] = None,
regex: typing.Optional[str] = None,
axis: typing.Optional[typing.Union[str, int]] = None,
) -> bigframes.series.Series
Subset the dataframe rows or columns according to the specified index labels.
See more: bigframes.series.Series.filter
bigframes.series.Series.floordiv
floordiv(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return integer division of Series and other, element-wise (binary operator floordiv).
See more: bigframes.series.Series.floordiv
bigframes.series.Series.ge
ge(other) -> bigframes.series.Series
Get 'greater than or equal to' of Series and other, element-wise (binary operator >=
).
See more: bigframes.series.Series.ge
bigframes.series.Series.get
get(key, default=None)
Get item from object for given key (ex: DataFrame column).
See more: bigframes.series.Series.get
bigframes.series.Series.groupby
groupby(
by: typing.Union[
typing.Hashable,
bigframes.series.Series,
typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]],
] = None,
axis=0,
level: typing.Optional[
typing.Union[int, str, typing.Sequence[int], typing.Sequence[str]]
] = None,
as_index: bool = True,
*,
dropna: bool = True
) -> bigframes.core.groupby.SeriesGroupBy
Group Series using a mapper or by a Series of columns.
See more: bigframes.series.Series.groupby
bigframes.series.Series.gt
gt(other) -> bigframes.series.Series
Get 'less than or equal to' of Series and other, element-wise (binary operator <=
).
See more: bigframes.series.Series.gt
bigframes.series.Series.head
head(n: int = 5) -> bigframes.series.Series
Return the first n
rows.
See more: bigframes.series.Series.head
bigframes.series.Series.idxmax
idxmax() -> typing.Hashable
Return the row label of the maximum value.
See more: bigframes.series.Series.idxmax
bigframes.series.Series.idxmin
idxmin() -> typing.Hashable
Return the row label of the minimum value.
See more: bigframes.series.Series.idxmin
bigframes.series.Series.interpolate
interpolate(method: str = "linear") -> bigframes.series.Series
Fill NaN values using an interpolation method.
See more: bigframes.series.Series.interpolate
bigframes.series.Series.isin
isin(values) -> "Series" | None
Whether elements in Series are contained in values.
See more: bigframes.series.Series.isin
bigframes.series.Series.isna
isna() -> bigframes.series.Series
Detect missing values.
See more: bigframes.series.Series.isna
bigframes.series.Series.isnull
isnull() -> bigframes.series.Series
Detect missing values.
See more: bigframes.series.Series.isnull
bigframes.series.Series.kurt
kurt()
Return unbiased kurtosis over requested axis.
See more: bigframes.series.Series.kurt
bigframes.series.Series.kurtosis
kurtosis()
API documentation for kurtosis
method.
See more: bigframes.series.Series.kurtosis
bigframes.series.Series.le
le(other) -> bigframes.series.Series
Get 'less than or equal to' of Series and other, element-wise (binary operator <=
).
See more: bigframes.series.Series.le
bigframes.series.Series.lt
lt(other) -> bigframes.series.Series
Get 'less than' of Series and other, element-wise (binary operator <
).
See more: bigframes.series.Series.lt
bigframes.series.Series.map
map(
arg: typing.Union[typing.Mapping, bigframes.series.Series],
na_action: typing.Optional[str] = None,
*,
verify_integrity: bool = False
) -> bigframes.series.Series
Map values of Series according to an input mapping or function.
See more: bigframes.series.Series.map
bigframes.series.Series.mask
mask(cond, other=None) -> bigframes.series.Series
Replace values where the condition is True.
See more: bigframes.series.Series.mask
bigframes.series.Series.max
max() -> typing.Any
Return the maximum of the values over the requested axis.
See more: bigframes.series.Series.max
bigframes.series.Series.mean
mean() -> float
Return the mean of the values over the requested axis.
See more: bigframes.series.Series.mean
bigframes.series.Series.median
median(*, exact: bool = False) -> float
Return the median of the values over the requested axis.
See more: bigframes.series.Series.median
bigframes.series.Series.min
min() -> typing.Any
Return the maximum of the values over the requested axis.
See more: bigframes.series.Series.min
bigframes.series.Series.mod
mod(other) -> bigframes.series.Series
Return modulo of Series and other, element-wise (binary operator mod).
See more: bigframes.series.Series.mod
bigframes.series.Series.mode
mode() -> bigframes.series.Series
Return the mode(s) of the Series.
See more: bigframes.series.Series.mode
bigframes.series.Series.mul
mul(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return multiplication of Series and other, element-wise (binary operator mul).
See more: bigframes.series.Series.mul
bigframes.series.Series.multiply
multiply(other: float | int | bigframes.series.Series) -> bigframes.series.Series
API documentation for multiply
method.
See more: bigframes.series.Series.multiply
bigframes.series.Series.ne
ne(other: object) -> bigframes.series.Series
Return not equal of Series and other, element-wise (binary operator ne).
See more: bigframes.series.Series.ne
bigframes.series.Series.nlargest
nlargest(n: int = 5, keep: str = "first") -> bigframes.series.Series
Return the largest n
elements.
See more: bigframes.series.Series.nlargest
bigframes.series.Series.notna
notna() -> bigframes.series.Series
Detect existing (non-missing) values.
See more: bigframes.series.Series.notna
bigframes.series.Series.notnull
notnull() -> bigframes.series.Series
Detect existing (non-missing) values.
See more: bigframes.series.Series.notnull
bigframes.series.Series.nsmallest
nsmallest(n: int = 5, keep: str = "first") -> bigframes.series.Series
Return the smallest n
elements.
See more: bigframes.series.Series.nsmallest
bigframes.series.Series.nunique
nunique() -> int
Return number of unique elements in the object.
See more: bigframes.series.Series.nunique
bigframes.series.Series.pad
pad(*, limit: typing.Optional[int] = None) -> bigframes.series.Series
API documentation for pad
method.
See more: bigframes.series.Series.pad
bigframes.series.Series.pct_change
pct_change(periods: int = 1) -> bigframes.series.Series
Fractional change between the current and a prior element.
See more: bigframes.series.Series.pct_change
bigframes.series.Series.pipe
pipe(func: Callable[..., T] | tuple[Callable[..., T], str], *args, **kwargs) -> T
Apply chainable functions that expect Series or DataFrames.
See more: bigframes.series.Series.pipe
bigframes.series.Series.pow
pow(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return Exponential power of series and other, element-wise (binary operator pow
).
See more: bigframes.series.Series.pow
bigframes.series.Series.prod
prod() -> float
Return the product of the values over the requested axis.
See more: bigframes.series.Series.prod
bigframes.series.Series.product
product() -> float
API documentation for product
method.
See more: bigframes.series.Series.product
bigframes.series.Series.radd
radd(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return addition of Series and other, element-wise (binary operator radd).
See more: bigframes.series.Series.radd
bigframes.series.Series.rank
rank(
axis=0,
method: str = "average",
numeric_only=False,
na_option: str = "keep",
ascending: bool = True,
) -> bigframes.series.Series
Compute numerical data ranks (1 through n) along axis.
See more: bigframes.series.Series.rank
bigframes.series.Series.rdiv
rdiv(other: float | int | bigframes.series.Series) -> bigframes.series.Series
API documentation for rdiv
method.
See more: bigframes.series.Series.rdiv
bigframes.series.Series.rdivmod
rdivmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]
Return integer division and modulo of Series and other, element-wise (binary operator rdivmod).
See more: bigframes.series.Series.rdivmod
bigframes.series.Series.reindex
reindex(index=None, *, validate: typing.Optional[bool] = None)
Conform Series to new index with optional filling logic.
See more: bigframes.series.Series.reindex
bigframes.series.Series.reindex_like
reindex_like(
other: bigframes.series.Series, *, validate: typing.Optional[bool] = None
)
Return an object with matching indices as other object.
See more: bigframes.series.Series.reindex_like
bigframes.series.Series.rename
rename(
index: typing.Union[typing.Hashable, typing.Mapping[typing.Any, typing.Any]] = None,
**kwargs
) -> bigframes.series.Series
Alter Series index labels or name.
See more: bigframes.series.Series.rename
bigframes.series.Series.rename_axis
rename_axis(
mapper: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], **kwargs
) -> bigframes.series.Series
Set the name of the axis for the index or columns.
See more: bigframes.series.Series.rename_axis
bigframes.series.Series.reorder_levels
reorder_levels(
order: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]],
axis: int | str = 0,
)
Rearrange index levels using input order.
See more: bigframes.series.Series.reorder_levels
bigframes.series.Series.replace
replace(to_replace: typing.Any, value: typing.Any = None, *, regex: bool = False)
Replace values given in to_replace
with value
.
See more: bigframes.series.Series.replace
bigframes.series.Series.reset_index
reset_index(
*, name: typing.Optional[str] = None, drop: bool = False
) -> bigframes.dataframe.DataFrame | bigframes.series.Series
Generate a new DataFrame or Series with the index reset.
See more: bigframes.series.Series.reset_index
bigframes.series.Series.rfloordiv
rfloordiv(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return integer division of Series and other, element-wise (binary operator rfloordiv).
See more: bigframes.series.Series.rfloordiv
bigframes.series.Series.rmod
rmod(other) -> bigframes.series.Series
Return modulo of Series and other, element-wise (binary operator mod).
See more: bigframes.series.Series.rmod
bigframes.series.Series.rmul
rmul(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return multiplication of Series and other, element-wise (binary operator mul).
See more: bigframes.series.Series.rmul
bigframes.series.Series.rolling
rolling(window: int, min_periods=None) -> bigframes.core.window.Window
Provide rolling window calculations.
See more: bigframes.series.Series.rolling
bigframes.series.Series.round
round(decimals=0) -> bigframes.series.Series
Round each value in a Series to the given number of decimals.
See more: bigframes.series.Series.round
bigframes.series.Series.rpow
rpow(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return Exponential power of series and other, element-wise (binary operator rpow
).
See more: bigframes.series.Series.rpow
bigframes.series.Series.rsub
rsub(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return subtraction of Series and other, element-wise (binary operator rsub).
See more: bigframes.series.Series.rsub
bigframes.series.Series.rtruediv
rtruediv(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return floating division of Series and other, element-wise (binary operator rtruediv).
See more: bigframes.series.Series.rtruediv
bigframes.series.Series.sample
sample(
n: typing.Optional[int] = None,
frac: typing.Optional[float] = None,
*,
random_state: typing.Optional[int] = None,
sort: typing.Optional[typing.Union[bool, typing.Literal["random"]]] = "random"
) -> bigframes.series.Series
Return a random sample of items from an axis of object.
See more: bigframes.series.Series.sample
bigframes.series.Series.shift
shift(periods: int = 1) -> bigframes.series.Series
Shift index by desired number of periods.
See more: bigframes.series.Series.shift
bigframes.series.Series.skew
skew()
Return unbiased skew over requested axis.
See more: bigframes.series.Series.skew
bigframes.series.Series.sort_index
sort_index(
*, axis=0, ascending=True, na_position="last"
) -> bigframes.series.Series
Sort Series by index labels.
See more: bigframes.series.Series.sort_index
bigframes.series.Series.sort_values
sort_values(
*, axis=0, ascending=True, kind: str = "quicksort", na_position="last"
) -> bigframes.series.Series
Sort by the values.
See more: bigframes.series.Series.sort_values
bigframes.series.Series.std
std() -> float
Return sample standard deviation over requested axis.
See more: bigframes.series.Series.std
bigframes.series.Series.sub
sub(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return subtraction of Series and other, element-wise (binary operator sub).
See more: bigframes.series.Series.sub
bigframes.series.Series.subtract
subtract(other: float | int | bigframes.series.Series) -> bigframes.series.Series
API documentation for subtract
method.
See more: bigframes.series.Series.subtract
bigframes.series.Series.sum
sum() -> float
Return the sum of the values over the requested axis.
See more: bigframes.series.Series.sum
bigframes.series.Series.swaplevel
swaplevel(i: int = -2, j: int = -1)
Swap levels i and j in a MultiIndex
.
See more: bigframes.series.Series.swaplevel
bigframes.series.Series.tail
tail(n: int = 5) -> bigframes.series.Series
Return the last n
rows.
See more: bigframes.series.Series.tail
bigframes.series.Series.to_csv
to_csv(
path_or_buf: str, sep=",", *, header: bool = True, index: bool = True
) -> None
Write object to a comma-separated values (csv) file on Cloud Storage.
See more: bigframes.series.Series.to_csv
bigframes.series.Series.to_dict
to_dict(into: type[dict] =
Convert Series to {label -> value} dict or dict-like object.
See more: bigframes.series.Series.to_dict
bigframes.series.Series.to_excel
to_excel(excel_writer, sheet_name="Sheet1", **kwargs) -> None
Write Series to an Excel sheet.
See more: bigframes.series.Series.to_excel
bigframes.series.Series.to_frame
to_frame(name: typing.Hashable = None) -> bigframes.dataframe.DataFrame
Convert Series to DataFrame.
See more: bigframes.series.Series.to_frame
bigframes.series.Series.to_json
to_json(
path_or_buf: str,
orient: typing.Literal[
"split", "records", "index", "columns", "values", "table"
] = "columns",
*,
lines: bool = False,
index: bool = True
) -> None
Convert the object to a JSON string, written to Cloud Storage.
See more: bigframes.series.Series.to_json
bigframes.series.Series.to_latex
to_latex(
buf=None, columns=None, header=True, index=True, **kwargs
) -> typing.Optional[str]
Render object to a LaTeX tabular, longtable, or nested table.
See more: bigframes.series.Series.to_latex
bigframes.series.Series.to_list
to_list() -> list
Return a list of the values.
See more: bigframes.series.Series.to_list
bigframes.series.Series.to_markdown
to_markdown(
buf: typing.Optional[typing.IO[str]] = None,
mode: str = "wt",
index: bool = True,
**kwargs
) -> typing.Optional[str]
Print {klass} in Markdown-friendly format.
See more: bigframes.series.Series.to_markdown
bigframes.series.Series.to_numpy
to_numpy(dtype=None, copy=False, na_value=None, **kwargs) -> numpy.ndarray
A NumPy ndarray representing the values in this Series or Index.
See more: bigframes.series.Series.to_numpy
bigframes.series.Series.to_pandas
to_pandas(
max_download_size: typing.Optional[int] = None,
sampling_method: typing.Optional[str] = None,
random_state: typing.Optional[int] = None,
*,
ordered: bool = True
) -> pandas.core.series.Series
Writes Series to pandas Series.
See more: bigframes.series.Series.to_pandas
bigframes.series.Series.to_pickle
to_pickle(path, **kwargs) -> None
Pickle (serialize) object to file.
See more: bigframes.series.Series.to_pickle
bigframes.series.Series.to_string
to_string(
buf=None,
na_rep="NaN",
float_format=None,
header=True,
index=True,
length=False,
dtype=False,
name=False,
max_rows=None,
min_rows=None,
) -> typing.Optional[str]
Render a string representation of the Series.
See more: bigframes.series.Series.to_string
bigframes.series.Series.to_xarray
to_xarray()
Return an xarray object from the pandas object.
See more: bigframes.series.Series.to_xarray
bigframes.series.Series.tolist
tolist() -> list
Return a list of the values.
See more: bigframes.series.Series.tolist
bigframes.series.Series.transpose
transpose() -> bigframes.series.Series
Return the transpose, which is by definition self.
See more: bigframes.series.Series.transpose
bigframes.series.Series.truediv
truediv(other: float | int | bigframes.series.Series) -> bigframes.series.Series
Return floating division of Series and other, element-wise (binary operator truediv).
See more: bigframes.series.Series.truediv
bigframes.series.Series.unique
unique() -> bigframes.series.Series
Return unique values of Series object.
See more: bigframes.series.Series.unique
bigframes.series.Series.unstack
unstack(
level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]] = -1
)
Unstack, also known as pivot, Series with MultiIndex to produce DataFrame.
See more: bigframes.series.Series.unstack
bigframes.series.Series.value_counts
value_counts(
normalize: bool = False,
sort: bool = True,
ascending: bool = False,
*,
dropna: bool = True
)
Return a Series containing counts of unique values.
See more: bigframes.series.Series.value_counts
bigframes.series.Series.var
var() -> float
Return unbiased variance over requested axis.
See more: bigframes.series.Series.var
bigframes.series.Series.where
where(cond, other=None)
Replace values where the condition is False.
See more: bigframes.series.Series.where
bigframes.session.Session.close
close()
No-op.
See more: bigframes.session.Session.close
bigframes.session.Session.read_csv
read_csv(
filepath_or_buffer: str | IO["bytes"],
*,
sep: Optional[str] = ",",
header: Optional[int] = 0,
names: Optional[
Union[MutableSequence[Any], np.ndarray[Any, Any], Tuple[Any, ...], range]
] = None,
index_col: Optional[
Union[int, str, Sequence[Union[str, int]], Literal[False]]
] = None,
usecols: Optional[
Union[
MutableSequence[str],
Tuple[str, ...],
Sequence[int],
pandas.Series,
pandas.Index,
np.ndarray[Any, Any],
Callable[[Any], bool],
]
] = None,
dtype: Optional[Dict] = None,
engine: Optional[
Literal["c", "python", "pyarrow", "python-fwf", "bigquery"]
] = None,
encoding: Optional[str] = None,
**kwargs
) -> dataframe.DataFrame
Loads DataFrame from comma-separated values (csv) file locally or from Cloud Storage.
See more: bigframes.session.Session.read_csv
bigframes.session.Session.read_gbq
read_gbq(
query_or_table: str,
*,
index_col: Iterable[str] | str = (),
columns: Iterable[str] = (),
configuration: Optional[Dict] = None,
max_results: Optional[int] = None,
filters: third_party_pandas_gbq.FiltersType = (),
use_cache: Optional[bool] = None,
col_order: Iterable[str] = ()
) -> dataframe.DataFrame
Loads a DataFrame from BigQuery.
See more: bigframes.session.Session.read_gbq
bigframes.session.Session.read_gbq_function
read_gbq_function(function_name: str)
Loads a BigQuery function from BigQuery.
bigframes.session.Session.read_gbq_model
read_gbq_model(model_name: str)
Loads a BigQuery ML model from BigQuery.
See more: bigframes.session.Session.read_gbq_model
bigframes.session.Session.read_gbq_query
read_gbq_query(
query: str,
*,
index_col: Iterable[str] | str = (),
columns: Iterable[str] = (),
configuration: Optional[Dict] = None,
max_results: Optional[int] = None,
use_cache: Optional[bool] = None,
col_order: Iterable[str] = ()
) -> dataframe.DataFrame
Turn a SQL query into a DataFrame.
See more: bigframes.session.Session.read_gbq_query
bigframes.session.Session.read_gbq_table
read_gbq_table(
query: str,
*,
index_col: Iterable[str] | str = (),
columns: Iterable[str] = (),
max_results: Optional[int] = None,
filters: third_party_pandas_gbq.FiltersType = (),
use_cache: bool = True,
col_order: Iterable[str] = ()
) -> dataframe.DataFrame
Turn a BigQuery table into a DataFrame.
See more: bigframes.session.Session.read_gbq_table
bigframes.session.Session.read_json
read_json(
path_or_buf: str | IO["bytes"],
*,
orient: Literal[
"split", "records", "index", "columns", "values", "table"
] = "columns",
dtype: Optional[Dict] = None,
encoding: Optional[str] = None,
lines: bool = False,
engine: Literal["ujson", "pyarrow", "bigquery"] = "ujson",
**kwargs
) -> dataframe.DataFrame
Convert a JSON string to DataFrame object.
See more: bigframes.session.Session.read_json
bigframes.session.Session.read_pandas
Loads DataFrame from a pandas DataFrame.
See more: bigframes.session.Session.read_pandas
bigframes.session.Session.read_parquet
read_parquet(
path: str | IO["bytes"], *, engine: str = "auto"
) -> dataframe.DataFrame
Load a Parquet object from the file path (local or Cloud Storage), returning a DataFrame.
See more: bigframes.session.Session.read_parquet
bigframes.session.Session.read_pickle
read_pickle(
filepath_or_buffer: FilePath | ReadPickleBuffer,
compression: CompressionOptions = "infer",
storage_options: StorageOptions = None,
)
Load pickled BigFrames object (or any object) from file.
See more: bigframes.session.Session.read_pickle
bigframes.session.Session.remote_function
remote_function(
input_types: typing.List[type],
output_type: type,
dataset: typing.Optional[str] = None,
bigquery_connection: typing.Optional[str] = None,
reuse: bool = True,
name: typing.Optional[str] = None,
packages: typing.Optional[typing.Sequence[str]] = None,
cloud_function_service_account: typing.Optional[str] = None,
cloud_function_kms_key_name: typing.Optional[str] = None,
cloud_function_docker_repository: typing.Optional[str] = None,
)
Decorator to turn a user defined function into a BigQuery remote function.