- 1.25.0 (latest)
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
Transformers for missing value imputation. This module is styled after scikit-learn's preprocessing module: https://scikit-learn.org/stable/modules/impute.html.
Classes
SimpleImputer
SimpleImputer(strategy: typing.Literal["mean", "median", "most_frequent"] = "mean")
Univariate imputer for completing missing values with simple strategies.
Replace missing values using a descriptive statistic (e.g. mean, median, or most frequent) along each column.
Parameter | |
---|---|
Name | Description |
strategy |
{'mean', 'median', 'most_frequent'}, default='mean'
The imputation strategy. 'mean': replace missing values using the mean along the axis. 'median':replace missing values using the median along the axis. 'most_frequent', replace missing using the most frequent value along the axis. |