- 1.21.0 (latest)
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
Forcasting models.
Classes
ARIMAPlus
ARIMAPlus(
*,
horizon: int = 1000,
auto_arima: bool = True,
auto_arima_max_order: typing.Optional[int] = None,
auto_arima_min_order: typing.Optional[int] = None,
data_frequency: str = "auto_frequency",
include_drift: bool = False,
holiday_region: typing.Optional[str] = None,
clean_spikes_and_dips: bool = True,
adjust_step_changes: bool = True,
time_series_length_fraction: typing.Optional[float] = None,
min_time_series_length: typing.Optional[int] = None,
max_time_series_length: typing.Optional[int] = None,
trend_smoothing_window_size: typing.Optional[int] = None,
decompose_time_series: bool = True
)
Time Series ARIMA Plus model.
Parameters | |
---|---|
Name | Description |
horizon |
int, default 1,000
The number of time points to forecast. Default to 1,000, max value 10,000. |
auto_arima |
bool, default True
Determines whether the training process uses auto.ARIMA or not. If True, training automatically finds the best non-seasonal order (that is, the p, d, q tuple) and decides whether or not to include a linear drift term when d is 1. |
auto_arima_max_order |
int or None, default None
The maximum value for the sum of non-seasonal p and q. |
auto_arima_min_order |
int or None, default None
The minimum value for the sum of non-seasonal p and q. |
data_frequency |
str, default "auto_frequency"
The data frequency of the input time series. Possible values are "auto_frequency", "per_minute", "hourly", "daily", "weekly", "monthly", "quarterly", "yearly" |
include_drift |
bool, defalut False
Determines whether the model should include a linear drift term or not. The drift term is applicable when non-seasonal d is 1. |
holiday_region |
str or None, default None
The geographical region based on which the holiday effect is applied in modeling. By default, holiday effect modeling isn't used. Possible values see https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-time-series#holiday_region. |
clean_spikes_and_dips |
bool, default True
Determines whether or not to perform automatic spikes and dips detection and cleanup in the model training pipeline. The spikes and dips are replaced with local linear interpolated values when they're detected. |
adjust_step_changes |
bool, default True
Determines whether or not to perform automatic step change detection and adjustment in the model training pipeline. |
time_series_length_fraction |
float or None, default None
The fraction of the interpolated length of the time series that's used to model the time series trend component. All of the time points of the time series are used to model the non-trend component. |
min_time_series_length |
int or None, default None
The minimum number of time points that are used in modeling the trend component of the time series. |
max_time_series_length |
int or None, default None
The maximum number of time points in a time series that can be used in modeling the trend component of the time series. |
trend_smoothing_window_size |
int or None, default None
The smoothing window size for the trend component. |
decompose_time_series |
bool, default True
Determines whether the separate components of both the history and forecast parts of the time series (such as holiday effect and seasonal components) are saved in the model. |