Class TensorboardServiceClient (1.59.0)

TensorboardServiceClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.cloud.aiplatform_v1beta1.services.tensorboard_service.transports.base.TensorboardServiceTransport, typing.Callable[[...], google.cloud.aiplatform_v1beta1.services.tensorboard_service.transports.base.TensorboardServiceTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)

TensorboardService

Properties

api_endpoint

Return the API endpoint used by the client instance.

Returns
Type Description
str The API endpoint used by the client instance.

transport

Returns the transport used by the client instance.

Returns
Type Description
TensorboardServiceTransport The transport used by the client instance.

universe_domain

Return the universe domain used by the client instance.

Returns
Type Description
str The universe domain used by the client instance.

Methods

TensorboardServiceClient

TensorboardServiceClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.cloud.aiplatform_v1beta1.services.tensorboard_service.transports.base.TensorboardServiceTransport, typing.Callable[[...], google.cloud.aiplatform_v1beta1.services.tensorboard_service.transports.base.TensorboardServiceTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)

Instantiates the tensorboard service client.

Parameters
Name Description
credentials Optional[google.auth.credentials.Credentials]

The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.

transport Optional[Union[str,TensorboardServiceTransport,Callable[..., TensorboardServiceTransport]]]

The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the TensorboardServiceTransport constructor. If set to None, a transport is chosen automatically. NOTE: "rest" transport functionality is currently in a beta state (preview). We welcome your feedback via an issue in this library's source repository.

client_options Optional[Union[google.api_core.client_options.ClientOptions, dict]]

Custom options for the client. 1. The api_endpoint property can be used to override the default endpoint provided by the client when transport is not explicitly provided. Only if this property is not set and transport was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the client_cert_source property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The universe_domain property can be used to override the default "googleapis.com" universe. Note that the api_endpoint property still takes precedence; and universe_domain is currently not supported for mTLS.

client_info google.api_core.gapic_v1.client_info.ClientInfo

The client info used to send a user-agent string along with API requests. If None, then default info will be used. Generally, you only need to set this if you're developing your own client library.

Exceptions
Type Description
google.auth.exceptions.MutualTLSChannelError If mutual TLS transport creation failed for any reason.

__exit__

__exit__(type, value, traceback)

Releases underlying transport's resources.

batch_create_tensorboard_runs

batch_create_tensorboard_runs(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.BatchCreateTensorboardRunsRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    requests: typing.Optional[
        typing.MutableSequence[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.CreateTensorboardRunRequest
        ]
    ] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.BatchCreateTensorboardRunsResponse
)

Batch create TensorboardRuns.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_batch_create_tensorboard_runs():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    requests = aiplatform_v1beta1.CreateTensorboardRunRequest()
    requests.parent = "parent_value"
    requests.tensorboard_run.display_name = "display_name_value"
    requests.tensorboard_run_id = "tensorboard_run_id_value"

    request = aiplatform_v1beta1.BatchCreateTensorboardRunsRequest(
        parent="parent_value",
        requests=requests,
    )

    # Make the request
    response = client.batch_create_tensorboard_runs(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.BatchCreateTensorboardRunsRequest, dict]

The request object. Request message for TensorboardService.BatchCreateTensorboardRuns.

parent str

Required. The resource name of the TensorboardExperiment to create the TensorboardRuns in. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment} The parent field in the CreateTensorboardRunRequest messages must match this field. This corresponds to the parent field on the request instance; if request is provided, this should not be set.

requests MutableSequence[google.cloud.aiplatform_v1beta1.types.CreateTensorboardRunRequest]

Required. The request message specifying the TensorboardRuns to create. A maximum of 1000 TensorboardRuns can be created in a batch. This corresponds to the requests field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.BatchCreateTensorboardRunsResponse Response message for TensorboardService.BatchCreateTensorboardRuns.

batch_create_tensorboard_time_series

batch_create_tensorboard_time_series(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.BatchCreateTensorboardTimeSeriesRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    requests: typing.Optional[
        typing.MutableSequence[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.CreateTensorboardTimeSeriesRequest
        ]
    ] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.BatchCreateTensorboardTimeSeriesResponse
)

Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_batch_create_tensorboard_time_series():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    requests = aiplatform_v1beta1.CreateTensorboardTimeSeriesRequest()
    requests.parent = "parent_value"
    requests.tensorboard_time_series.display_name = "display_name_value"
    requests.tensorboard_time_series.value_type = "BLOB_SEQUENCE"

    request = aiplatform_v1beta1.BatchCreateTensorboardTimeSeriesRequest(
        parent="parent_value",
        requests=requests,
    )

    # Make the request
    response = client.batch_create_tensorboard_time_series(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.BatchCreateTensorboardTimeSeriesRequest, dict]

The request object. Request message for TensorboardService.BatchCreateTensorboardTimeSeries.

parent str

Required. The resource name of the TensorboardExperiment to create the TensorboardTimeSeries in. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment} The TensorboardRuns referenced by the parent fields in the CreateTensorboardTimeSeriesRequest messages must be sub resources of this TensorboardExperiment. This corresponds to the parent field on the request instance; if request is provided, this should not be set.

requests MutableSequence[google.cloud.aiplatform_v1beta1.types.CreateTensorboardTimeSeriesRequest]

Required. The request message specifying the TensorboardTimeSeries to create. A maximum of 1000 TensorboardTimeSeries can be created in a batch. This corresponds to the requests field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.BatchCreateTensorboardTimeSeriesResponse Response message for TensorboardService.BatchCreateTensorboardTimeSeries.

batch_read_tensorboard_time_series_data

batch_read_tensorboard_time_series_data(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.BatchReadTensorboardTimeSeriesDataRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.BatchReadTensorboardTimeSeriesDataResponse
)

Reads multiple TensorboardTimeSeries' data. The data point number limit is 1000 for scalars, 100 for tensors and blob references. If the number of data points stored is less than the limit, all data is returned. Otherwise, the number limit of data points is randomly selected from this time series and returned.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_batch_read_tensorboard_time_series_data():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.BatchReadTensorboardTimeSeriesDataRequest(
        tensorboard="tensorboard_value",
        time_series=['time_series_value1', 'time_series_value2'],
    )

    # Make the request
    response = client.batch_read_tensorboard_time_series_data(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.BatchReadTensorboardTimeSeriesDataRequest, dict]

The request object. Request message for TensorboardService.BatchReadTensorboardTimeSeriesData.

tensorboard str

Required. The resource name of the Tensorboard containing TensorboardTimeSeries to read data from. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}. The TensorboardTimeSeries referenced by time_series must be sub resources of this Tensorboard. This corresponds to the tensorboard field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.BatchReadTensorboardTimeSeriesDataResponse Response message for TensorboardService.BatchReadTensorboardTimeSeriesData.

cancel_operation

cancel_operation(
    request: typing.Optional[
        google.longrunning.operations_pb2.CancelOperationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> None

Starts asynchronous cancellation on a long-running operation.

The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED.

Parameters
Name Description
request .operations_pb2.CancelOperationRequest

The request object. Request message for CancelOperation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

common_billing_account_path

common_billing_account_path(billing_account: str) -> str

Returns a fully-qualified billing_account string.

common_folder_path

common_folder_path(folder: str) -> str

Returns a fully-qualified folder string.

common_location_path

common_location_path(project: str, location: str) -> str

Returns a fully-qualified location string.

common_organization_path

common_organization_path(organization: str) -> str

Returns a fully-qualified organization string.

common_project_path

common_project_path(project: str) -> str

Returns a fully-qualified project string.

create_tensorboard

create_tensorboard(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.CreateTensorboardRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    tensorboard: typing.Optional[
        google.cloud.aiplatform_v1beta1.types.tensorboard.Tensorboard
    ] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Creates a Tensorboard.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_create_tensorboard():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    tensorboard = aiplatform_v1beta1.Tensorboard()
    tensorboard.display_name = "display_name_value"

    request = aiplatform_v1beta1.CreateTensorboardRequest(
        parent="parent_value",
        tensorboard=tensorboard,
    )

    # Make the request
    operation = client.create_tensorboard(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.CreateTensorboardRequest, dict]

The request object. Request message for TensorboardService.CreateTensorboard.

parent str

Required. The resource name of the Location to create the Tensorboard in. Format: projects/{project}/locations/{location} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

tensorboard google.cloud.aiplatform_v1beta1.types.Tensorboard

Required. The Tensorboard to create. This corresponds to the tensorboard field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be Tensorboard Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects.

create_tensorboard_experiment

create_tensorboard_experiment(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.CreateTensorboardExperimentRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    tensorboard_experiment: typing.Optional[
        google.cloud.aiplatform_v1beta1.types.tensorboard_experiment.TensorboardExperiment
    ] = None,
    tensorboard_experiment_id: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1beta1.types.tensorboard_experiment.TensorboardExperiment

Creates a TensorboardExperiment.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_create_tensorboard_experiment():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.CreateTensorboardExperimentRequest(
        parent="parent_value",
        tensorboard_experiment_id="tensorboard_experiment_id_value",
    )

    # Make the request
    response = client.create_tensorboard_experiment(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.CreateTensorboardExperimentRequest, dict]

The request object. Request message for TensorboardService.CreateTensorboardExperiment.

parent str

Required. The resource name of the Tensorboard to create the TensorboardExperiment in. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

tensorboard_experiment google.cloud.aiplatform_v1beta1.types.TensorboardExperiment

The TensorboardExperiment to create. This corresponds to the tensorboard_experiment field on the request instance; if request is provided, this should not be set.

tensorboard_experiment_id str

Required. The ID to use for the Tensorboard experiment, which becomes the final component of the Tensorboard experiment's resource name. This value should be 1-128 characters, and valid characters are /a-z][0-9]-/. This corresponds to the tensorboard_experiment_id field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardExperiment A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard.

create_tensorboard_run

create_tensorboard_run(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.CreateTensorboardRunRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    tensorboard_run: typing.Optional[
        google.cloud.aiplatform_v1beta1.types.tensorboard_run.TensorboardRun
    ] = None,
    tensorboard_run_id: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1beta1.types.tensorboard_run.TensorboardRun

Creates a TensorboardRun.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_create_tensorboard_run():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    tensorboard_run = aiplatform_v1beta1.TensorboardRun()
    tensorboard_run.display_name = "display_name_value"

    request = aiplatform_v1beta1.CreateTensorboardRunRequest(
        parent="parent_value",
        tensorboard_run=tensorboard_run,
        tensorboard_run_id="tensorboard_run_id_value",
    )

    # Make the request
    response = client.create_tensorboard_run(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.CreateTensorboardRunRequest, dict]

The request object. Request message for TensorboardService.CreateTensorboardRun.

parent str

Required. The resource name of the TensorboardExperiment to create the TensorboardRun in. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

tensorboard_run google.cloud.aiplatform_v1beta1.types.TensorboardRun

Required. The TensorboardRun to create. This corresponds to the tensorboard_run field on the request instance; if request is provided, this should not be set.

tensorboard_run_id str

Required. The ID to use for the Tensorboard run, which becomes the final component of the Tensorboard run's resource name. This value should be 1-128 characters, and valid characters are /a-z][0-9]-/. This corresponds to the tensorboard_run_id field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardRun TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc

create_tensorboard_time_series

create_tensorboard_time_series(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.CreateTensorboardTimeSeriesRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    tensorboard_time_series: typing.Optional[
        google.cloud.aiplatform_v1beta1.types.tensorboard_time_series.TensorboardTimeSeries
    ] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_time_series.TensorboardTimeSeries
)

Creates a TensorboardTimeSeries.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_create_tensorboard_time_series():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    tensorboard_time_series = aiplatform_v1beta1.TensorboardTimeSeries()
    tensorboard_time_series.display_name = "display_name_value"
    tensorboard_time_series.value_type = "BLOB_SEQUENCE"

    request = aiplatform_v1beta1.CreateTensorboardTimeSeriesRequest(
        parent="parent_value",
        tensorboard_time_series=tensorboard_time_series,
    )

    # Make the request
    response = client.create_tensorboard_time_series(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.CreateTensorboardTimeSeriesRequest, dict]

The request object. Request message for TensorboardService.CreateTensorboardTimeSeries.

parent str

Required. The resource name of the TensorboardRun to create the TensorboardTimeSeries in. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

tensorboard_time_series google.cloud.aiplatform_v1beta1.types.TensorboardTimeSeries

Required. The TensorboardTimeSeries to create. This corresponds to the tensorboard_time_series field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardTimeSeries TensorboardTimeSeries maps to times series produced in training runs

delete_operation

delete_operation(
    request: typing.Optional[
        google.longrunning.operations_pb2.DeleteOperationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> None

Deletes a long-running operation.

This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED.

Parameters
Name Description
request .operations_pb2.DeleteOperationRequest

The request object. Request message for DeleteOperation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

delete_tensorboard

delete_tensorboard(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.DeleteTensorboardRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Deletes a Tensorboard.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_delete_tensorboard():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.DeleteTensorboardRequest(
        name="name_value",
    )

    # Make the request
    operation = client.delete_tensorboard(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.DeleteTensorboardRequest, dict]

The request object. Request message for TensorboardService.DeleteTensorboard.

name str

Required. The name of the Tensorboard to be deleted. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }

delete_tensorboard_experiment

delete_tensorboard_experiment(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.DeleteTensorboardExperimentRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Deletes a TensorboardExperiment.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_delete_tensorboard_experiment():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.DeleteTensorboardExperimentRequest(
        name="name_value",
    )

    # Make the request
    operation = client.delete_tensorboard_experiment(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.DeleteTensorboardExperimentRequest, dict]

The request object. Request message for TensorboardService.DeleteTensorboardExperiment.

name str

Required. The name of the TensorboardExperiment to be deleted. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }

delete_tensorboard_run

delete_tensorboard_run(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.DeleteTensorboardRunRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Deletes a TensorboardRun.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_delete_tensorboard_run():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.DeleteTensorboardRunRequest(
        name="name_value",
    )

    # Make the request
    operation = client.delete_tensorboard_run(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.DeleteTensorboardRunRequest, dict]

The request object. Request message for TensorboardService.DeleteTensorboardRun.

name str

Required. The name of the TensorboardRun to be deleted. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }

delete_tensorboard_time_series

delete_tensorboard_time_series(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.DeleteTensorboardTimeSeriesRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Deletes a TensorboardTimeSeries.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_delete_tensorboard_time_series():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.DeleteTensorboardTimeSeriesRequest(
        name="name_value",
    )

    # Make the request
    operation = client.delete_tensorboard_time_series(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.DeleteTensorboardTimeSeriesRequest, dict]

The request object. Request message for TensorboardService.DeleteTensorboardTimeSeries.

name str

Required. The name of the TensorboardTimeSeries to be deleted. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }

export_tensorboard_time_series_data

export_tensorboard_time_series_data(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ExportTensorboardTimeSeriesDataRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard_time_series: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ExportTensorboardTimeSeriesDataPager
)

Exports a TensorboardTimeSeries' data. Data is returned in paginated responses.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_export_tensorboard_time_series_data():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ExportTensorboardTimeSeriesDataRequest(
        tensorboard_time_series="tensorboard_time_series_value",
    )

    # Make the request
    page_result = client.export_tensorboard_time_series_data(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ExportTensorboardTimeSeriesDataRequest, dict]

The request object. Request message for TensorboardService.ExportTensorboardTimeSeriesData.

tensorboard_time_series str

Required. The resource name of the TensorboardTimeSeries to export data from. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series} This corresponds to the tensorboard_time_series field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ExportTensorboardTimeSeriesDataPager Response message for TensorboardService.ExportTensorboardTimeSeriesData. Iterating over this object will yield results and resolve additional pages automatically.

from_service_account_file

from_service_account_file(filename: str, *args, **kwargs)

Creates an instance of this client using the provided credentials file.

Parameter
Name Description
filename str

The path to the service account private key json file.

Returns
Type Description
TensorboardServiceClient The constructed client.

from_service_account_info

from_service_account_info(info: dict, *args, **kwargs)

Creates an instance of this client using the provided credentials info.

Parameter
Name Description
info dict

The service account private key info.

Returns
Type Description
TensorboardServiceClient The constructed client.

from_service_account_json

from_service_account_json(filename: str, *args, **kwargs)

Creates an instance of this client using the provided credentials file.

Parameter
Name Description
filename str

The path to the service account private key json file.

Returns
Type Description
TensorboardServiceClient The constructed client.

get_iam_policy

get_iam_policy(
    request: typing.Optional[google.iam.v1.iam_policy_pb2.GetIamPolicyRequest] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.iam.v1.policy_pb2.Policy

Gets the IAM access control policy for a function.

Returns an empty policy if the function exists and does not have a policy set.

Parameters
Name Description
request .iam_policy_pb2.GetIamPolicyRequest

The request object. Request message for GetIamPolicy method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.policy_pb2.Policy Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A Policy is a collection of bindings. A binding binds one or more members to a single role. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). A role is a named list of permissions (defined by IAM or configured by users). A binding can optionally specify a condition, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource. **JSON Example** :: { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01t00:00:00.000z')",="" }="" }="" ]="" }="" **yaml="" example**="" ::="" bindings:="" -="" members:="" -="" user:mike@example.com="" -="" group:admins@example.com="" -="" domain:google.com="" -="" serviceaccount:my-project-id@appspot.gserviceaccount.com="" role:="" roles/resourcemanager.organizationadmin="" -="" members:="" -="" user:eve@example.com="" role:="" roles/resourcemanager.organizationviewer="" condition:="" title:="" expirable="" access="" description:="" does="" not="" grant="" access="" after="" sep="" 2020="" expression:="" request.time="">< timestamp('2020-10-01t00:00:00.000z')="" for="" a="" description="" of="" iam="" and="" its="" features,="" see="" the="">IAM developer's guide __.

get_location

get_location(
    request: typing.Optional[
        google.cloud.location.locations_pb2.GetLocationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.location.locations_pb2.Location

Gets information about a location.

Parameters
Name Description
request .location_pb2.GetLocationRequest

The request object. Request message for GetLocation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.location_pb2.Location Location object.

get_mtls_endpoint_and_cert_source

get_mtls_endpoint_and_cert_source(
    client_options: typing.Optional[
        google.api_core.client_options.ClientOptions
    ] = None,
)

Deprecated. Return the API endpoint and client cert source for mutual TLS.

The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not "true", the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.

The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.

More details can be found at https://google.aip.dev/auth/4114.

Parameter
Name Description
client_options google.api_core.client_options.ClientOptions

Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.

Exceptions
Type Description
google.auth.exceptions.MutualTLSChannelError If any errors happen.
Returns
Type Description
Tuple[str, Callable[[], Tuple[bytes, bytes]]] returns the API endpoint and the client cert source to use.

get_operation

get_operation(
    request: typing.Optional[
        google.longrunning.operations_pb2.GetOperationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.longrunning.operations_pb2.Operation

Gets the latest state of a long-running operation.

Parameters
Name Description
request .operations_pb2.GetOperationRequest

The request object. Request message for GetOperation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.operations_pb2.Operation An Operation object.

get_tensorboard

get_tensorboard(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.GetTensorboardRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1beta1.types.tensorboard.Tensorboard

Gets a Tensorboard.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_get_tensorboard():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.GetTensorboardRequest(
        name="name_value",
    )

    # Make the request
    response = client.get_tensorboard(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.GetTensorboardRequest, dict]

The request object. Request message for TensorboardService.GetTensorboard.

name str

Required. The name of the Tensorboard resource. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.Tensorboard Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects.

get_tensorboard_experiment

get_tensorboard_experiment(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.GetTensorboardExperimentRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1beta1.types.tensorboard_experiment.TensorboardExperiment

Gets a TensorboardExperiment.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_get_tensorboard_experiment():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.GetTensorboardExperimentRequest(
        name="name_value",
    )

    # Make the request
    response = client.get_tensorboard_experiment(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.GetTensorboardExperimentRequest, dict]

The request object. Request message for TensorboardService.GetTensorboardExperiment.

name str

Required. The name of the TensorboardExperiment resource. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardExperiment A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard.

get_tensorboard_run

get_tensorboard_run(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.GetTensorboardRunRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1beta1.types.tensorboard_run.TensorboardRun

Gets a TensorboardRun.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_get_tensorboard_run():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.GetTensorboardRunRequest(
        name="name_value",
    )

    # Make the request
    response = client.get_tensorboard_run(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.GetTensorboardRunRequest, dict]

The request object. Request message for TensorboardService.GetTensorboardRun.

name str

Required. The name of the TensorboardRun resource. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardRun TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc

get_tensorboard_time_series

get_tensorboard_time_series(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.GetTensorboardTimeSeriesRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_time_series.TensorboardTimeSeries
)

Gets a TensorboardTimeSeries.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_get_tensorboard_time_series():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.GetTensorboardTimeSeriesRequest(
        name="name_value",
    )

    # Make the request
    response = client.get_tensorboard_time_series(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.GetTensorboardTimeSeriesRequest, dict]

The request object. Request message for TensorboardService.GetTensorboardTimeSeries.

name str

Required. The name of the TensorboardTimeSeries resource. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardTimeSeries TensorboardTimeSeries maps to times series produced in training runs

list_locations

list_locations(
    request: typing.Optional[
        google.cloud.location.locations_pb2.ListLocationsRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.location.locations_pb2.ListLocationsResponse

Lists information about the supported locations for this service.

Parameters
Name Description
request .location_pb2.ListLocationsRequest

The request object. Request message for ListLocations method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.location_pb2.ListLocationsResponse Response message for ListLocations method.

list_operations

list_operations(
    request: typing.Optional[
        google.longrunning.operations_pb2.ListOperationsRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.longrunning.operations_pb2.ListOperationsResponse

Lists operations that match the specified filter in the request.

Parameters
Name Description
request .operations_pb2.ListOperationsRequest

The request object. Request message for ListOperations method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.operations_pb2.ListOperationsResponse Response message for ListOperations method.

list_tensorboard_experiments

list_tensorboard_experiments(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ListTensorboardExperimentsRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ListTensorboardExperimentsPager
)

Lists TensorboardExperiments in a Location.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_list_tensorboard_experiments():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ListTensorboardExperimentsRequest(
        parent="parent_value",
    )

    # Make the request
    page_result = client.list_tensorboard_experiments(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ListTensorboardExperimentsRequest, dict]

The request object. Request message for TensorboardService.ListTensorboardExperiments.

parent str

Required. The resource name of the Tensorboard to list TensorboardExperiments. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ListTensorboardExperimentsPager Response message for TensorboardService.ListTensorboardExperiments. Iterating over this object will yield results and resolve additional pages automatically.

list_tensorboard_runs

list_tensorboard_runs(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ListTensorboardRunsRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ListTensorboardRunsPager
)

Lists TensorboardRuns in a Location.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_list_tensorboard_runs():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ListTensorboardRunsRequest(
        parent="parent_value",
    )

    # Make the request
    page_result = client.list_tensorboard_runs(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ListTensorboardRunsRequest, dict]

The request object. Request message for TensorboardService.ListTensorboardRuns.

parent str

Required. The resource name of the TensorboardExperiment to list TensorboardRuns. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ListTensorboardRunsPager Response message for TensorboardService.ListTensorboardRuns. Iterating over this object will yield results and resolve additional pages automatically.

list_tensorboard_time_series

list_tensorboard_time_series(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ListTensorboardTimeSeriesRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ListTensorboardTimeSeriesPager
)

Lists TensorboardTimeSeries in a Location.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_list_tensorboard_time_series():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ListTensorboardTimeSeriesRequest(
        parent="parent_value",
    )

    # Make the request
    page_result = client.list_tensorboard_time_series(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ListTensorboardTimeSeriesRequest, dict]

The request object. Request message for TensorboardService.ListTensorboardTimeSeries.

parent str

Required. The resource name of the TensorboardRun to list TensorboardTimeSeries. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ListTensorboardTimeSeriesPager Response message for TensorboardService.ListTensorboardTimeSeries. Iterating over this object will yield results and resolve additional pages automatically.

list_tensorboards

list_tensorboards(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ListTensorboardsRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ListTensorboardsPager
)

Lists Tensorboards in a Location.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_list_tensorboards():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ListTensorboardsRequest(
        parent="parent_value",
    )

    # Make the request
    page_result = client.list_tensorboards(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ListTensorboardsRequest, dict]

The request object. Request message for TensorboardService.ListTensorboards.

parent str

Required. The resource name of the Location to list Tensorboards. Format: projects/{project}/locations/{location} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.services.tensorboard_service.pagers.ListTensorboardsPager Response message for TensorboardService.ListTensorboards. Iterating over this object will yield results and resolve additional pages automatically.

parse_common_billing_account_path

parse_common_billing_account_path(path: str) -> typing.Dict[str, str]

Parse a billing_account path into its component segments.

parse_common_folder_path

parse_common_folder_path(path: str) -> typing.Dict[str, str]

Parse a folder path into its component segments.

parse_common_location_path

parse_common_location_path(path: str) -> typing.Dict[str, str]

Parse a location path into its component segments.

parse_common_organization_path

parse_common_organization_path(path: str) -> typing.Dict[str, str]

Parse a organization path into its component segments.

parse_common_project_path

parse_common_project_path(path: str) -> typing.Dict[str, str]

Parse a project path into its component segments.

parse_tensorboard_experiment_path

parse_tensorboard_experiment_path(path: str) -> typing.Dict[str, str]

Parses a tensorboard_experiment path into its component segments.

parse_tensorboard_path

parse_tensorboard_path(path: str) -> typing.Dict[str, str]

Parses a tensorboard path into its component segments.

parse_tensorboard_run_path

parse_tensorboard_run_path(path: str) -> typing.Dict[str, str]

Parses a tensorboard_run path into its component segments.

parse_tensorboard_time_series_path

parse_tensorboard_time_series_path(path: str) -> typing.Dict[str, str]

Parses a tensorboard_time_series path into its component segments.

read_tensorboard_blob_data

read_tensorboard_blob_data(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ReadTensorboardBlobDataRequest,
            dict,
        ]
    ] = None,
    *,
    time_series: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> typing.Iterable[
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.ReadTensorboardBlobDataResponse
]

Gets bytes of TensorboardBlobs. This is to allow reading blob data stored in consumer project's Cloud Storage bucket without users having to obtain Cloud Storage access permission.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_read_tensorboard_blob_data():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ReadTensorboardBlobDataRequest(
        time_series="time_series_value",
    )

    # Make the request
    stream = client.read_tensorboard_blob_data(request=request)

    # Handle the response
    for response in stream:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ReadTensorboardBlobDataRequest, dict]

The request object. Request message for TensorboardService.ReadTensorboardBlobData.

time_series str

Required. The resource name of the TensorboardTimeSeries to list Blobs. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series} This corresponds to the time_series field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
Iterable[google.cloud.aiplatform_v1beta1.types.ReadTensorboardBlobDataResponse] Response message for TensorboardService.ReadTensorboardBlobData.

read_tensorboard_size

read_tensorboard_size(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ReadTensorboardSizeRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.ReadTensorboardSizeResponse
)

Returns the storage size for a given TensorBoard instance.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_read_tensorboard_size():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ReadTensorboardSizeRequest(
        tensorboard="tensorboard_value",
    )

    # Make the request
    response = client.read_tensorboard_size(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ReadTensorboardSizeRequest, dict]

The request object. Request message for TensorboardService.ReadTensorboardSize.

tensorboard str

Required. The name of the Tensorboard resource. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard} This corresponds to the tensorboard field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.ReadTensorboardSizeResponse Response message for TensorboardService.ReadTensorboardSize.

read_tensorboard_time_series_data

read_tensorboard_time_series_data(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ReadTensorboardTimeSeriesDataRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard_time_series: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.ReadTensorboardTimeSeriesDataResponse
)

Reads a TensorboardTimeSeries' data. By default, if the number of data points stored is less than 1000, all data is returned. Otherwise, 1000 data points is randomly selected from this time series and returned. This value can be changed by changing max_data_points, which can't be greater than 10k.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_read_tensorboard_time_series_data():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ReadTensorboardTimeSeriesDataRequest(
        tensorboard_time_series="tensorboard_time_series_value",
    )

    # Make the request
    response = client.read_tensorboard_time_series_data(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ReadTensorboardTimeSeriesDataRequest, dict]

The request object. Request message for TensorboardService.ReadTensorboardTimeSeriesData.

tensorboard_time_series str

Required. The resource name of the TensorboardTimeSeries to read data from. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series} This corresponds to the tensorboard_time_series field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.ReadTensorboardTimeSeriesDataResponse Response message for TensorboardService.ReadTensorboardTimeSeriesData.

read_tensorboard_usage

read_tensorboard_usage(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.ReadTensorboardUsageRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.ReadTensorboardUsageResponse
)

Returns a list of monthly active users for a given TensorBoard instance.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_read_tensorboard_usage():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.ReadTensorboardUsageRequest(
        tensorboard="tensorboard_value",
    )

    # Make the request
    response = client.read_tensorboard_usage(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.ReadTensorboardUsageRequest, dict]

The request object. Request message for TensorboardService.ReadTensorboardUsage.

tensorboard str

Required. The name of the Tensorboard resource. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard} This corresponds to the tensorboard field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.ReadTensorboardUsageResponse Response message for TensorboardService.ReadTensorboardUsage.

set_iam_policy

set_iam_policy(
    request: typing.Optional[google.iam.v1.iam_policy_pb2.SetIamPolicyRequest] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.iam.v1.policy_pb2.Policy

Sets the IAM access control policy on the specified function.

Replaces any existing policy.

Parameters
Name Description
request .iam_policy_pb2.SetIamPolicyRequest

The request object. Request message for SetIamPolicy method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.policy_pb2.Policy Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A Policy is a collection of bindings. A binding binds one or more members to a single role. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). A role is a named list of permissions (defined by IAM or configured by users). A binding can optionally specify a condition, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource. **JSON Example** :: { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01t00:00:00.000z')",="" }="" }="" ]="" }="" **yaml="" example**="" ::="" bindings:="" -="" members:="" -="" user:mike@example.com="" -="" group:admins@example.com="" -="" domain:google.com="" -="" serviceaccount:my-project-id@appspot.gserviceaccount.com="" role:="" roles/resourcemanager.organizationadmin="" -="" members:="" -="" user:eve@example.com="" role:="" roles/resourcemanager.organizationviewer="" condition:="" title:="" expirable="" access="" description:="" does="" not="" grant="" access="" after="" sep="" 2020="" expression:="" request.time="">< timestamp('2020-10-01t00:00:00.000z')="" for="" a="" description="" of="" iam="" and="" its="" features,="" see="" the="">IAM developer's guide __.

tensorboard_experiment_path

tensorboard_experiment_path(
    project: str, location: str, tensorboard: str, experiment: str
) -> str

Returns a fully-qualified tensorboard_experiment string.

tensorboard_path

tensorboard_path(project: str, location: str, tensorboard: str) -> str

Returns a fully-qualified tensorboard string.

tensorboard_run_path

tensorboard_run_path(
    project: str, location: str, tensorboard: str, experiment: str, run: str
) -> str

Returns a fully-qualified tensorboard_run string.

tensorboard_time_series_path

tensorboard_time_series_path(
    project: str,
    location: str,
    tensorboard: str,
    experiment: str,
    run: str,
    time_series: str,
) -> str

Returns a fully-qualified tensorboard_time_series string.

test_iam_permissions

test_iam_permissions(
    request: typing.Optional[
        google.iam.v1.iam_policy_pb2.TestIamPermissionsRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.iam.v1.iam_policy_pb2.TestIamPermissionsResponse

Tests the specified IAM permissions against the IAM access control policy for a function.

If the function does not exist, this will return an empty set of permissions, not a NOT_FOUND error.

Parameters
Name Description
request .iam_policy_pb2.TestIamPermissionsRequest

The request object. Request message for TestIamPermissions method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.iam_policy_pb2.TestIamPermissionsResponse Response message for TestIamPermissions method.

update_tensorboard

update_tensorboard(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.UpdateTensorboardRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard: typing.Optional[
        google.cloud.aiplatform_v1beta1.types.tensorboard.Tensorboard
    ] = None,
    update_mask: typing.Optional[google.protobuf.field_mask_pb2.FieldMask] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Updates a Tensorboard.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_update_tensorboard():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    tensorboard = aiplatform_v1beta1.Tensorboard()
    tensorboard.display_name = "display_name_value"

    request = aiplatform_v1beta1.UpdateTensorboardRequest(
        tensorboard=tensorboard,
    )

    # Make the request
    operation = client.update_tensorboard(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.UpdateTensorboardRequest, dict]

The request object. Request message for TensorboardService.UpdateTensorboard.

tensorboard google.cloud.aiplatform_v1beta1.types.Tensorboard

Required. The Tensorboard's name field is used to identify the Tensorboard to be updated. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard} This corresponds to the tensorboard field on the request instance; if request is provided, this should not be set.

update_mask google.protobuf.field_mask_pb2.FieldMask

Required. Field mask is used to specify the fields to be overwritten in the Tensorboard resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it's in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified. This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be Tensorboard Tensorboard is a physical database that stores users' training metrics. A default Tensorboard is provided in each region of a Google Cloud project. If needed users can also create extra Tensorboards in their projects.

update_tensorboard_experiment

update_tensorboard_experiment(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.UpdateTensorboardExperimentRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard_experiment: typing.Optional[
        google.cloud.aiplatform_v1beta1.types.tensorboard_experiment.TensorboardExperiment
    ] = None,
    update_mask: typing.Optional[google.protobuf.field_mask_pb2.FieldMask] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1beta1.types.tensorboard_experiment.TensorboardExperiment

Updates a TensorboardExperiment.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_update_tensorboard_experiment():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1beta1.UpdateTensorboardExperimentRequest(
    )

    # Make the request
    response = client.update_tensorboard_experiment(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.UpdateTensorboardExperimentRequest, dict]

The request object. Request message for TensorboardService.UpdateTensorboardExperiment.

tensorboard_experiment google.cloud.aiplatform_v1beta1.types.TensorboardExperiment

Required. The TensorboardExperiment's name field is used to identify the TensorboardExperiment to be updated. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment} This corresponds to the tensorboard_experiment field on the request instance; if request is provided, this should not be set.

update_mask google.protobuf.field_mask_pb2.FieldMask

Required. Field mask is used to specify the fields to be overwritten in the TensorboardExperiment resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it's in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified. This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardExperiment A TensorboardExperiment is a group of TensorboardRuns, that are typically the results of a training job run, in a Tensorboard.

update_tensorboard_run

update_tensorboard_run(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.UpdateTensorboardRunRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard_run: typing.Optional[
        google.cloud.aiplatform_v1beta1.types.tensorboard_run.TensorboardRun
    ] = None,
    update_mask: typing.Optional[google.protobuf.field_mask_pb2.FieldMask] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1beta1.types.tensorboard_run.TensorboardRun

Updates a TensorboardRun.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_update_tensorboard_run():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    tensorboard_run = aiplatform_v1beta1.TensorboardRun()
    tensorboard_run.display_name = "display_name_value"

    request = aiplatform_v1beta1.UpdateTensorboardRunRequest(
        tensorboard_run=tensorboard_run,
    )

    # Make the request
    response = client.update_tensorboard_run(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.UpdateTensorboardRunRequest, dict]

The request object. Request message for TensorboardService.UpdateTensorboardRun.

tensorboard_run google.cloud.aiplatform_v1beta1.types.TensorboardRun

Required. The TensorboardRun's name field is used to identify the TensorboardRun to be updated. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run} This corresponds to the tensorboard_run field on the request instance; if request is provided, this should not be set.

update_mask google.protobuf.field_mask_pb2.FieldMask

Required. Field mask is used to specify the fields to be overwritten in the TensorboardRun resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it's in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified. This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardRun TensorboardRun maps to a specific execution of a training job with a given set of hyperparameter values, model definition, dataset, etc

update_tensorboard_time_series

update_tensorboard_time_series(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.UpdateTensorboardTimeSeriesRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard_time_series: typing.Optional[
        google.cloud.aiplatform_v1beta1.types.tensorboard_time_series.TensorboardTimeSeries
    ] = None,
    update_mask: typing.Optional[google.protobuf.field_mask_pb2.FieldMask] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_time_series.TensorboardTimeSeries
)

Updates a TensorboardTimeSeries.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_update_tensorboard_time_series():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    tensorboard_time_series = aiplatform_v1beta1.TensorboardTimeSeries()
    tensorboard_time_series.display_name = "display_name_value"
    tensorboard_time_series.value_type = "BLOB_SEQUENCE"

    request = aiplatform_v1beta1.UpdateTensorboardTimeSeriesRequest(
        tensorboard_time_series=tensorboard_time_series,
    )

    # Make the request
    response = client.update_tensorboard_time_series(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.UpdateTensorboardTimeSeriesRequest, dict]

The request object. Request message for TensorboardService.UpdateTensorboardTimeSeries.

tensorboard_time_series google.cloud.aiplatform_v1beta1.types.TensorboardTimeSeries

Required. The TensorboardTimeSeries' name field is used to identify the TensorboardTimeSeries to be updated. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run}/timeSeries/{time_series} This corresponds to the tensorboard_time_series field on the request instance; if request is provided, this should not be set.

update_mask google.protobuf.field_mask_pb2.FieldMask

Required. Field mask is used to specify the fields to be overwritten in the TensorboardTimeSeries resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field is overwritten if it's in the mask. If the user does not provide a mask then all fields are overwritten if new values are specified. This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.TensorboardTimeSeries TensorboardTimeSeries maps to times series produced in training runs

wait_operation

wait_operation(
    request: typing.Optional[
        google.longrunning.operations_pb2.WaitOperationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.longrunning.operations_pb2.Operation

Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state.

If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns google.rpc.Code.UNIMPLEMENTED.

Parameters
Name Description
request .operations_pb2.WaitOperationRequest

The request object. Request message for WaitOperation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.operations_pb2.Operation An Operation object.

write_tensorboard_experiment_data

write_tensorboard_experiment_data(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.WriteTensorboardExperimentDataRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard_experiment: typing.Optional[str] = None,
    write_run_data_requests: typing.Optional[
        typing.MutableSequence[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.WriteTensorboardRunDataRequest
        ]
    ] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.WriteTensorboardExperimentDataResponse
)

Write time series data points of multiple TensorboardTimeSeries in multiple TensorboardRun's. If any data fail to be ingested, an error is returned.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_write_tensorboard_experiment_data():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    write_run_data_requests = aiplatform_v1beta1.WriteTensorboardRunDataRequest()
    write_run_data_requests.tensorboard_run = "tensorboard_run_value"
    write_run_data_requests.time_series_data.tensorboard_time_series_id = "tensorboard_time_series_id_value"
    write_run_data_requests.time_series_data.value_type = "BLOB_SEQUENCE"

    request = aiplatform_v1beta1.WriteTensorboardExperimentDataRequest(
        tensorboard_experiment="tensorboard_experiment_value",
        write_run_data_requests=write_run_data_requests,
    )

    # Make the request
    response = client.write_tensorboard_experiment_data(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.WriteTensorboardExperimentDataRequest, dict]

The request object. Request message for TensorboardService.WriteTensorboardExperimentData.

tensorboard_experiment str

Required. The resource name of the TensorboardExperiment to write data to. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment} This corresponds to the tensorboard_experiment field on the request instance; if request is provided, this should not be set.

write_run_data_requests MutableSequence[google.cloud.aiplatform_v1beta1.types.WriteTensorboardRunDataRequest]

Required. Requests containing per-run TensorboardTimeSeries data to write. This corresponds to the write_run_data_requests field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.WriteTensorboardExperimentDataResponse Response message for TensorboardService.WriteTensorboardExperimentData.

write_tensorboard_run_data

write_tensorboard_run_data(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1beta1.types.tensorboard_service.WriteTensorboardRunDataRequest,
            dict,
        ]
    ] = None,
    *,
    tensorboard_run: typing.Optional[str] = None,
    time_series_data: typing.Optional[
        typing.MutableSequence[
            google.cloud.aiplatform_v1beta1.types.tensorboard_data.TimeSeriesData
        ]
    ] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1beta1.types.tensorboard_service.WriteTensorboardRunDataResponse
)

Write time series data points into multiple TensorboardTimeSeries under a TensorboardRun. If any data fail to be ingested, an error is returned.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1beta1

def sample_write_tensorboard_run_data():
    # Create a client
    client = aiplatform_v1beta1.TensorboardServiceClient()

    # Initialize request argument(s)
    time_series_data = aiplatform_v1beta1.TimeSeriesData()
    time_series_data.tensorboard_time_series_id = "tensorboard_time_series_id_value"
    time_series_data.value_type = "BLOB_SEQUENCE"

    request = aiplatform_v1beta1.WriteTensorboardRunDataRequest(
        tensorboard_run="tensorboard_run_value",
        time_series_data=time_series_data,
    )

    # Make the request
    response = client.write_tensorboard_run_data(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1beta1.types.WriteTensorboardRunDataRequest, dict]

The request object. Request message for TensorboardService.WriteTensorboardRunData.

tensorboard_run str

Required. The resource name of the TensorboardRun to write data to. Format: projects/{project}/locations/{location}/tensorboards/{tensorboard}/experiments/{experiment}/runs/{run} This corresponds to the tensorboard_run field on the request instance; if request is provided, this should not be set.

time_series_data MutableSequence[google.cloud.aiplatform_v1beta1.types.TimeSeriesData]

Required. The TensorboardTimeSeries data to write. Values with in a time series are indexed by their step value. Repeated writes to the same step will overwrite the existing value for that step. The upper limit of data points per write request is 5000. This corresponds to the time_series_data field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1beta1.types.WriteTensorboardRunDataResponse Response message for TensorboardService.WriteTensorboardRunData.