Class FeaturestoreServiceClient (1.54.0)

FeaturestoreServiceClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.cloud.aiplatform_v1.services.featurestore_service.transports.base.FeaturestoreServiceTransport, typing.Callable[[...], google.cloud.aiplatform_v1.services.featurestore_service.transports.base.FeaturestoreServiceTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)

The service that handles CRUD and List for resources for Featurestore.

Properties

api_endpoint

Return the API endpoint used by the client instance.

Returns
Type Description
str The API endpoint used by the client instance.

transport

Returns the transport used by the client instance.

Returns
Type Description
FeaturestoreServiceTransport The transport used by the client instance.

universe_domain

Return the universe domain used by the client instance.

Returns
Type Description
str The universe domain used by the client instance.

Methods

FeaturestoreServiceClient

FeaturestoreServiceClient(*, credentials: typing.Optional[google.auth.credentials.Credentials] = None, transport: typing.Optional[typing.Union[str, google.cloud.aiplatform_v1.services.featurestore_service.transports.base.FeaturestoreServiceTransport, typing.Callable[[...], google.cloud.aiplatform_v1.services.featurestore_service.transports.base.FeaturestoreServiceTransport]]] = None, client_options: typing.Optional[typing.Union[google.api_core.client_options.ClientOptions, dict]] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)

Instantiates the featurestore service client.

Parameters
Name Description
credentials Optional[google.auth.credentials.Credentials]

The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.

transport Optional[Union[str,FeaturestoreServiceTransport,Callable[..., FeaturestoreServiceTransport]]]

The transport to use, or a Callable that constructs and returns a new transport. If a Callable is given, it will be called with the same set of initialization arguments as used in the FeaturestoreServiceTransport constructor. If set to None, a transport is chosen automatically. NOTE: "rest" transport functionality is currently in a beta state (preview). We welcome your feedback via an issue in this library's source repository.

client_options Optional[Union[google.api_core.client_options.ClientOptions, dict]]

Custom options for the client. 1. The api_endpoint property can be used to override the default endpoint provided by the client when transport is not explicitly provided. Only if this property is not set and transport was not explicitly provided, the endpoint is determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment variable, which have one of the following values: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto-switch to the default mTLS endpoint if client certificate is present; this is the default value). 2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the client_cert_source property can be used to provide a client certificate for mTLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. 3. The universe_domain property can be used to override the default "googleapis.com" universe. Note that the api_endpoint property still takes precedence; and universe_domain is currently not supported for mTLS.

client_info google.api_core.gapic_v1.client_info.ClientInfo

The client info used to send a user-agent string along with API requests. If None, then default info will be used. Generally, you only need to set this if you're developing your own client library.

Exceptions
Type Description
google.auth.exceptions.MutualTLSChannelError If mutual TLS transport creation failed for any reason.

__exit__

__exit__(type, value, traceback)

Releases underlying transport's resources.

batch_create_features

batch_create_features(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.BatchCreateFeaturesRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    requests: typing.Optional[
        typing.MutableSequence[
            google.cloud.aiplatform_v1.types.featurestore_service.CreateFeatureRequest
        ]
    ] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Creates a batch of Features in a given EntityType.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_batch_create_features():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    requests = aiplatform_v1.CreateFeatureRequest()
    requests.parent = "parent_value"
    requests.feature_id = "feature_id_value"

    request = aiplatform_v1.BatchCreateFeaturesRequest(
        parent="parent_value",
        requests=requests,
    )

    # Make the request
    operation = client.batch_create_features(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.BatchCreateFeaturesRequest, dict]

The request object. Request message for FeaturestoreService.BatchCreateFeatures.

parent str

Required. The resource name of the EntityType to create the batch of Features under. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

requests MutableSequence[google.cloud.aiplatform_v1.types.CreateFeatureRequest]

Required. The request message specifying the Features to create. All Features must be created under the same parent EntityType. The parent field in each child request message can be omitted. If parent is set in a child request, then the value must match the parent value in this request message. This corresponds to the requests field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be BatchCreateFeaturesResponse Response message for FeaturestoreService.BatchCreateFeatures.

batch_read_feature_values

batch_read_feature_values(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.BatchReadFeatureValuesRequest,
            dict,
        ]
    ] = None,
    *,
    featurestore: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Batch reads Feature values from a Featurestore.

This API enables batch reading Feature values, where each read instance in the batch may read Feature values of entities from one or more EntityTypes. Point-in-time correctness is guaranteed for Feature values of each read instance as of each instance's read timestamp.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_batch_read_feature_values():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    csv_read_instances = aiplatform_v1.CsvSource()
    csv_read_instances.gcs_source.uris = ['uris_value1', 'uris_value2']

    destination = aiplatform_v1.FeatureValueDestination()
    destination.bigquery_destination.output_uri = "output_uri_value"

    entity_type_specs = aiplatform_v1.EntityTypeSpec()
    entity_type_specs.entity_type_id = "entity_type_id_value"
    entity_type_specs.feature_selector.id_matcher.ids = ['ids_value1', 'ids_value2']

    request = aiplatform_v1.BatchReadFeatureValuesRequest(
        csv_read_instances=csv_read_instances,
        featurestore="featurestore_value",
        destination=destination,
        entity_type_specs=entity_type_specs,
    )

    # Make the request
    operation = client.batch_read_feature_values(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.BatchReadFeatureValuesRequest, dict]

The request object. Request message for FeaturestoreService.BatchReadFeatureValues.

featurestore str

Required. The resource name of the Featurestore from which to query Feature values. Format: projects/{project}/locations/{location}/featurestores/{featurestore} This corresponds to the featurestore field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be BatchReadFeatureValuesResponse Response message for FeaturestoreService.BatchReadFeatureValues.

cancel_operation

cancel_operation(
    request: typing.Optional[
        google.longrunning.operations_pb2.CancelOperationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> None

Starts asynchronous cancellation on a long-running operation.

The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED.

Parameters
Name Description
request .operations_pb2.CancelOperationRequest

The request object. Request message for CancelOperation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

common_billing_account_path

common_billing_account_path(billing_account: str) -> str

Returns a fully-qualified billing_account string.

common_folder_path

common_folder_path(folder: str) -> str

Returns a fully-qualified folder string.

common_location_path

common_location_path(project: str, location: str) -> str

Returns a fully-qualified location string.

common_organization_path

common_organization_path(organization: str) -> str

Returns a fully-qualified organization string.

common_project_path

common_project_path(project: str) -> str

Returns a fully-qualified project string.

create_entity_type

create_entity_type(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.CreateEntityTypeRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    entity_type: typing.Optional[
        google.cloud.aiplatform_v1.types.entity_type.EntityType
    ] = None,
    entity_type_id: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Creates a new EntityType in a given Featurestore.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_create_entity_type():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.CreateEntityTypeRequest(
        parent="parent_value",
        entity_type_id="entity_type_id_value",
    )

    # Make the request
    operation = client.create_entity_type(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.CreateEntityTypeRequest, dict]

The request object. Request message for FeaturestoreService.CreateEntityType.

parent str

Required. The resource name of the Featurestore to create EntityTypes. Format: projects/{project}/locations/{location}/featurestores/{featurestore} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

entity_type google.cloud.aiplatform_v1.types.EntityType

The EntityType to create. This corresponds to the entity_type field on the request instance; if request is provided, this should not be set.

entity_type_id str

Required. The ID to use for the EntityType, which will become the final component of the EntityType's resource name. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number. The value must be unique within a featurestore. This corresponds to the entity_type_id field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be EntityType An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.

create_feature

create_feature(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.CreateFeatureRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    feature: typing.Optional[google.cloud.aiplatform_v1.types.feature.Feature] = None,
    feature_id: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Creates a new Feature in a given EntityType.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_create_feature():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.CreateFeatureRequest(
        parent="parent_value",
        feature_id="feature_id_value",
    )

    # Make the request
    operation = client.create_feature(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.CreateFeatureRequest, dict]

The request object. Request message for FeaturestoreService.CreateFeature. Request message for FeatureRegistryService.CreateFeature.

parent str

Required. The resource name of the EntityType or FeatureGroup to create a Feature. Format for entity_type as parent: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type} Format for feature_group as parent: projects/{project}/locations/{location}/featureGroups/{feature_group} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

feature google.cloud.aiplatform_v1.types.Feature

Required. The Feature to create. This corresponds to the feature field on the request instance; if request is provided, this should not be set.

feature_id str

Required. The ID to use for the Feature, which will become the final component of the Feature's resource name. This value may be up to 128 characters, and valid characters are [a-z0-9_]. The first character cannot be a number. The value must be unique within an EntityType/FeatureGroup. This corresponds to the feature_id field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be Feature Feature Metadata information. For example, color is a feature that describes an apple.

create_featurestore

create_featurestore(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.CreateFeaturestoreRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    featurestore: typing.Optional[
        google.cloud.aiplatform_v1.types.featurestore.Featurestore
    ] = None,
    featurestore_id: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Creates a new Featurestore in a given project and location.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_create_featurestore():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.CreateFeaturestoreRequest(
        parent="parent_value",
        featurestore_id="featurestore_id_value",
    )

    # Make the request
    operation = client.create_featurestore(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.CreateFeaturestoreRequest, dict]

The request object. Request message for FeaturestoreService.CreateFeaturestore.

parent str

Required. The resource name of the Location to create Featurestores. Format: projects/{project}/locations/{location} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

featurestore google.cloud.aiplatform_v1.types.Featurestore

Required. The Featurestore to create. This corresponds to the featurestore field on the request instance; if request is provided, this should not be set.

featurestore_id str

Required. The ID to use for this Featurestore, which will become the final component of the Featurestore's resource name. This value may be up to 60 characters, and valid characters are [a-z0-9_]. The first character cannot be a number. The value must be unique within the project and location. This corresponds to the featurestore_id field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be Featurestore Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.

delete_entity_type

delete_entity_type(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.DeleteEntityTypeRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    force: typing.Optional[bool] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Deletes a single EntityType. The EntityType must not have any Features or force must be set to true for the request to succeed.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_delete_entity_type():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.DeleteEntityTypeRequest(
        name="name_value",
    )

    # Make the request
    operation = client.delete_entity_type(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.DeleteEntityTypeRequest, dict]

The request object. Request message for [FeaturestoreService.DeleteEntityTypes][].

name str

Required. The name of the EntityType to be deleted. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type} This corresponds to the name field on the request instance; if request is provided, this should not be set.

force bool

If set to true, any Features for this EntityType will also be deleted. (Otherwise, the request will only work if the EntityType has no Features.) This corresponds to the force field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }

delete_feature

delete_feature(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.DeleteFeatureRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Deletes a single Feature.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_delete_feature():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.DeleteFeatureRequest(
        name="name_value",
    )

    # Make the request
    operation = client.delete_feature(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.DeleteFeatureRequest, dict]

The request object. Request message for FeaturestoreService.DeleteFeature. Request message for FeatureRegistryService.DeleteFeature.

name str

Required. The name of the Features to be deleted. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}/features/{feature} projects/{project}/locations/{location}/featureGroups/{feature_group}/features/{feature} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }

delete_feature_values

delete_feature_values(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.DeleteFeatureValuesRequest,
            dict,
        ]
    ] = None,
    *,
    entity_type: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Delete Feature values from Featurestore.

The progress of the deletion is tracked by the returned operation. The deleted feature values are guaranteed to be invisible to subsequent read operations after the operation is marked as successfully done.

If a delete feature values operation fails, the feature values returned from reads and exports may be inconsistent. If consistency is required, the caller must retry the same delete request again and wait till the new operation returned is marked as successfully done.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_delete_feature_values():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    select_entity = aiplatform_v1.SelectEntity()
    select_entity.entity_id_selector.csv_source.gcs_source.uris = ['uris_value1', 'uris_value2']

    request = aiplatform_v1.DeleteFeatureValuesRequest(
        select_entity=select_entity,
        entity_type="entity_type_value",
    )

    # Make the request
    operation = client.delete_feature_values(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.DeleteFeatureValuesRequest, dict]

The request object. Request message for FeaturestoreService.DeleteFeatureValues.

entity_type str

Required. The resource name of the EntityType grouping the Features for which values are being deleted from. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entityType} This corresponds to the entity_type field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be DeleteFeatureValuesResponse Response message for FeaturestoreService.DeleteFeatureValues.

delete_featurestore

delete_featurestore(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.DeleteFeaturestoreRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    force: typing.Optional[bool] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Deletes a single Featurestore. The Featurestore must not contain any EntityTypes or force must be set to true for the request to succeed.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_delete_featurestore():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.DeleteFeaturestoreRequest(
        name="name_value",
    )

    # Make the request
    operation = client.delete_featurestore(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.DeleteFeaturestoreRequest, dict]

The request object. Request message for FeaturestoreService.DeleteFeaturestore.

name str

Required. The name of the Featurestore to be deleted. Format: projects/{project}/locations/{location}/featurestores/{featurestore} This corresponds to the name field on the request instance; if request is provided, this should not be set.

force bool

If set to true, any EntityTypes and Features for this Featurestore will also be deleted. (Otherwise, the request will only work if the Featurestore has no EntityTypes.) This corresponds to the force field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }

delete_operation

delete_operation(
    request: typing.Optional[
        google.longrunning.operations_pb2.DeleteOperationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> None

Deletes a long-running operation.

This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED.

Parameters
Name Description
request .operations_pb2.DeleteOperationRequest

The request object. Request message for DeleteOperation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

entity_type_path

entity_type_path(
    project: str, location: str, featurestore: str, entity_type: str
) -> str

Returns a fully-qualified entity_type string.

export_feature_values

export_feature_values(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.ExportFeatureValuesRequest,
            dict,
        ]
    ] = None,
    *,
    entity_type: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Exports Feature values from all the entities of a target EntityType.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_export_feature_values():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    destination = aiplatform_v1.FeatureValueDestination()
    destination.bigquery_destination.output_uri = "output_uri_value"

    feature_selector = aiplatform_v1.FeatureSelector()
    feature_selector.id_matcher.ids = ['ids_value1', 'ids_value2']

    request = aiplatform_v1.ExportFeatureValuesRequest(
        entity_type="entity_type_value",
        destination=destination,
        feature_selector=feature_selector,
    )

    # Make the request
    operation = client.export_feature_values(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.ExportFeatureValuesRequest, dict]

The request object. Request message for FeaturestoreService.ExportFeatureValues.

entity_type str

Required. The resource name of the EntityType from which to export Feature values. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type} This corresponds to the entity_type field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be ExportFeatureValuesResponse Response message for FeaturestoreService.ExportFeatureValues.

feature_path

feature_path(
    project: str, location: str, featurestore: str, entity_type: str, feature: str
) -> str

Returns a fully-qualified feature string.

featurestore_path

featurestore_path(project: str, location: str, featurestore: str) -> str

Returns a fully-qualified featurestore string.

from_service_account_file

from_service_account_file(filename: str, *args, **kwargs)

Creates an instance of this client using the provided credentials file.

Parameter
Name Description
filename str

The path to the service account private key json file.

Returns
Type Description
FeaturestoreServiceClient The constructed client.

from_service_account_info

from_service_account_info(info: dict, *args, **kwargs)

Creates an instance of this client using the provided credentials info.

Parameter
Name Description
info dict

The service account private key info.

Returns
Type Description
FeaturestoreServiceClient The constructed client.

from_service_account_json

from_service_account_json(filename: str, *args, **kwargs)

Creates an instance of this client using the provided credentials file.

Parameter
Name Description
filename str

The path to the service account private key json file.

Returns
Type Description
FeaturestoreServiceClient The constructed client.

get_entity_type

get_entity_type(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.GetEntityTypeRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1.types.entity_type.EntityType

Gets details of a single EntityType.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_get_entity_type():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.GetEntityTypeRequest(
        name="name_value",
    )

    # Make the request
    response = client.get_entity_type(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.GetEntityTypeRequest, dict]

The request object. Request message for FeaturestoreService.GetEntityType.

name str

Required. The name of the EntityType resource. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.types.EntityType An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.

get_feature

get_feature(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.GetFeatureRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1.types.feature.Feature

Gets details of a single Feature.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_get_feature():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.GetFeatureRequest(
        name="name_value",
    )

    # Make the request
    response = client.get_feature(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.GetFeatureRequest, dict]

The request object. Request message for FeaturestoreService.GetFeature. Request message for FeatureRegistryService.GetFeature.

name str

Required. The name of the Feature resource. Format for entity_type as parent: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type} Format for feature_group as parent: projects/{project}/locations/{location}/featureGroups/{feature_group} This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.types.Feature Feature Metadata information. For example, color is a feature that describes an apple.

get_featurestore

get_featurestore(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.GetFeaturestoreRequest,
            dict,
        ]
    ] = None,
    *,
    name: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1.types.featurestore.Featurestore

Gets details of a single Featurestore.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_get_featurestore():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.GetFeaturestoreRequest(
        name="name_value",
    )

    # Make the request
    response = client.get_featurestore(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.GetFeaturestoreRequest, dict]

The request object. Request message for FeaturestoreService.GetFeaturestore.

name str

Required. The name of the Featurestore resource. This corresponds to the name field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.types.Featurestore Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.

get_iam_policy

get_iam_policy(
    request: typing.Optional[google.iam.v1.iam_policy_pb2.GetIamPolicyRequest] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.iam.v1.policy_pb2.Policy

Gets the IAM access control policy for a function.

Returns an empty policy if the function exists and does not have a policy set.

Parameters
Name Description
request .iam_policy_pb2.GetIamPolicyRequest

The request object. Request message for GetIamPolicy method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.policy_pb2.Policy Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A Policy is a collection of bindings. A binding binds one or more members to a single role. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). A role is a named list of permissions (defined by IAM or configured by users). A binding can optionally specify a condition, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource. **JSON Example** :: { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01t00:00:00.000z')",="" }="" }="" ]="" }="" **yaml="" example**="" ::="" bindings:="" -="" members:="" -="" user:mike@example.com="" -="" group:admins@example.com="" -="" domain:google.com="" -="" serviceaccount:my-project-id@appspot.gserviceaccount.com="" role:="" roles/resourcemanager.organizationadmin="" -="" members:="" -="" user:eve@example.com="" role:="" roles/resourcemanager.organizationviewer="" condition:="" title:="" expirable="" access="" description:="" does="" not="" grant="" access="" after="" sep="" 2020="" expression:="" request.time="">< timestamp('2020-10-01t00:00:00.000z')="" for="" a="" description="" of="" iam="" and="" its="" features,="" see="" the="">IAM developer's guide __.

get_location

get_location(
    request: typing.Optional[
        google.cloud.location.locations_pb2.GetLocationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.location.locations_pb2.Location

Gets information about a location.

Parameters
Name Description
request .location_pb2.GetLocationRequest

The request object. Request message for GetLocation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.location_pb2.Location Location object.

get_mtls_endpoint_and_cert_source

get_mtls_endpoint_and_cert_source(
    client_options: typing.Optional[
        google.api_core.client_options.ClientOptions
    ] = None,
)

Deprecated. Return the API endpoint and client cert source for mutual TLS.

The client cert source is determined in the following order: (1) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is not "true", the client cert source is None. (2) if client_options.client_cert_source is provided, use the provided one; if the default client cert source exists, use the default one; otherwise the client cert source is None.

The API endpoint is determined in the following order: (1) if client_options.api_endpoint if provided, use the provided one. (2) if GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "always", use the default mTLS endpoint; if the environment variable is "never", use the default API endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise use the default API endpoint.

More details can be found at https://google.aip.dev/auth/4114.

Parameter
Name Description
client_options google.api_core.client_options.ClientOptions

Custom options for the client. Only the api_endpoint and client_cert_source properties may be used in this method.

Exceptions
Type Description
google.auth.exceptions.MutualTLSChannelError If any errors happen.
Returns
Type Description
Tuple[str, Callable[[], Tuple[bytes, bytes]]] returns the API endpoint and the client cert source to use.

get_operation

get_operation(
    request: typing.Optional[
        google.longrunning.operations_pb2.GetOperationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.longrunning.operations_pb2.Operation

Gets the latest state of a long-running operation.

Parameters
Name Description
request .operations_pb2.GetOperationRequest

The request object. Request message for GetOperation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.operations_pb2.Operation An Operation object.

import_feature_values

import_feature_values(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.ImportFeatureValuesRequest,
            dict,
        ]
    ] = None,
    *,
    entity_type: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Imports Feature values into the Featurestore from a source storage. The progress of the import is tracked by the returned operation. The imported features are guaranteed to be visible to subsequent read operations after the operation is marked as successfully done.

If an import operation fails, the Feature values returned from reads and exports may be inconsistent. If consistency is required, the caller must retry the same import request again and wait till the new operation returned is marked as successfully done.

There are also scenarios where the caller can cause inconsistency.

  • Source data for import contains multiple distinct Feature values for the same entity ID and timestamp.
  • Source is modified during an import. This includes adding, updating, or removing source data and/or metadata. Examples of updating metadata include but are not limited to changing storage location, storage class, or retention policy.
  • Online serving cluster is under-provisioned.
# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_import_feature_values():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    avro_source = aiplatform_v1.AvroSource()
    avro_source.gcs_source.uris = ['uris_value1', 'uris_value2']

    feature_specs = aiplatform_v1.FeatureSpec()
    feature_specs.id = "id_value"

    request = aiplatform_v1.ImportFeatureValuesRequest(
        avro_source=avro_source,
        feature_time_field="feature_time_field_value",
        entity_type="entity_type_value",
        feature_specs=feature_specs,
    )

    # Make the request
    operation = client.import_feature_values(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.ImportFeatureValuesRequest, dict]

The request object. Request message for FeaturestoreService.ImportFeatureValues.

entity_type str

Required. The resource name of the EntityType grouping the Features for which values are being imported. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entityType} This corresponds to the entity_type field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be ImportFeatureValuesResponse Response message for FeaturestoreService.ImportFeatureValues.

list_entity_types

list_entity_types(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.ListEntityTypesRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1.services.featurestore_service.pagers.ListEntityTypesPager
)

Lists EntityTypes in a given Featurestore.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_list_entity_types():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.ListEntityTypesRequest(
        parent="parent_value",
    )

    # Make the request
    page_result = client.list_entity_types(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.ListEntityTypesRequest, dict]

The request object. Request message for FeaturestoreService.ListEntityTypes.

parent str

Required. The resource name of the Featurestore to list EntityTypes. Format: projects/{project}/locations/{location}/featurestores/{featurestore} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.services.featurestore_service.pagers.ListEntityTypesPager Response message for FeaturestoreService.ListEntityTypes. Iterating over this object will yield results and resolve additional pages automatically.

list_features

list_features(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.ListFeaturesRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1.services.featurestore_service.pagers.ListFeaturesPager

Lists Features in a given EntityType.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_list_features():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.ListFeaturesRequest(
        parent="parent_value",
    )

    # Make the request
    page_result = client.list_features(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.ListFeaturesRequest, dict]

The request object. Request message for FeaturestoreService.ListFeatures. Request message for FeatureRegistryService.ListFeatures.

parent str

Required. The resource name of the Location to list Features. Format for entity_type as parent: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type} Format for feature_group as parent: projects/{project}/locations/{location}/featureGroups/{feature_group} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.services.featurestore_service.pagers.ListFeaturesPager Response message for FeaturestoreService.ListFeatures. Response message for FeatureRegistryService.ListFeatures. Iterating over this object will yield results and resolve additional pages automatically.

list_featurestores

list_featurestores(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.ListFeaturestoresRequest,
            dict,
        ]
    ] = None,
    *,
    parent: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1.services.featurestore_service.pagers.ListFeaturestoresPager
)

Lists Featurestores in a given project and location.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_list_featurestores():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.ListFeaturestoresRequest(
        parent="parent_value",
    )

    # Make the request
    page_result = client.list_featurestores(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.ListFeaturestoresRequest, dict]

The request object. Request message for FeaturestoreService.ListFeaturestores.

parent str

Required. The resource name of the Location to list Featurestores. Format: projects/{project}/locations/{location} This corresponds to the parent field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.services.featurestore_service.pagers.ListFeaturestoresPager Response message for FeaturestoreService.ListFeaturestores. Iterating over this object will yield results and resolve additional pages automatically.

list_locations

list_locations(
    request: typing.Optional[
        google.cloud.location.locations_pb2.ListLocationsRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.location.locations_pb2.ListLocationsResponse

Lists information about the supported locations for this service.

Parameters
Name Description
request .location_pb2.ListLocationsRequest

The request object. Request message for ListLocations method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.location_pb2.ListLocationsResponse Response message for ListLocations method.

list_operations

list_operations(
    request: typing.Optional[
        google.longrunning.operations_pb2.ListOperationsRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.longrunning.operations_pb2.ListOperationsResponse

Lists operations that match the specified filter in the request.

Parameters
Name Description
request .operations_pb2.ListOperationsRequest

The request object. Request message for ListOperations method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.operations_pb2.ListOperationsResponse Response message for ListOperations method.

parse_common_billing_account_path

parse_common_billing_account_path(path: str) -> typing.Dict[str, str]

Parse a billing_account path into its component segments.

parse_common_folder_path

parse_common_folder_path(path: str) -> typing.Dict[str, str]

Parse a folder path into its component segments.

parse_common_location_path

parse_common_location_path(path: str) -> typing.Dict[str, str]

Parse a location path into its component segments.

parse_common_organization_path

parse_common_organization_path(path: str) -> typing.Dict[str, str]

Parse a organization path into its component segments.

parse_common_project_path

parse_common_project_path(path: str) -> typing.Dict[str, str]

Parse a project path into its component segments.

parse_entity_type_path

parse_entity_type_path(path: str) -> typing.Dict[str, str]

Parses a entity_type path into its component segments.

parse_feature_path

parse_feature_path(path: str) -> typing.Dict[str, str]

Parses a feature path into its component segments.

parse_featurestore_path

parse_featurestore_path(path: str) -> typing.Dict[str, str]

Parses a featurestore path into its component segments.

search_features

search_features(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.SearchFeaturesRequest,
            dict,
        ]
    ] = None,
    *,
    location: typing.Optional[str] = None,
    query: typing.Optional[str] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> (
    google.cloud.aiplatform_v1.services.featurestore_service.pagers.SearchFeaturesPager
)

Searches Features matching a query in a given project.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_search_features():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.SearchFeaturesRequest(
        location="location_value",
    )

    # Make the request
    page_result = client.search_features(request=request)

    # Handle the response
    for response in page_result:
        print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.SearchFeaturesRequest, dict]

The request object. Request message for FeaturestoreService.SearchFeatures.

location str

Required. The resource name of the Location to search Features. Format: projects/{project}/locations/{location} This corresponds to the location field on the request instance; if request is provided, this should not be set.

query str

Query string that is a conjunction of field-restricted queries and/or field-restricted filters. Field-restricted queries and filters can be combined using AND to form a conjunction. A field query is in the form FIELD:QUERY. This implicitly checks if QUERY exists as a substring within Feature's FIELD. The QUERY and the FIELD are converted to a sequence of words (i.e. tokens) for comparison. This is done by: - Removing leading/trailing whitespace and tokenizing the search value. Characters that are not one of alphanumeric [a-zA-Z0-9], underscore _, or asterisk are treated as delimiters for tokens. is treated as a wildcard that matches characters within a token. - Ignoring case. - Prepending an asterisk to the first and appending an asterisk to the last token in QUERY. A QUERY must be either a singular token or a phrase. A phrase is one or multiple words enclosed in double quotation marks ("). With phrases, the order of the words is important. Words in the phrase must be matching in order and consecutively. Supported FIELDs for field-restricted queries: - feature_id - description - entity_type_id Examples: - feature_id: foo --> Matches a Feature with ID containing the substring foo (eg. foo, foofeature, barfoo). - feature_id: foofeature --> Matches a Feature with ID containing the substring foofeature (eg. foobarfeature). - feature_id: foo AND description: bar --> Matches a Feature with ID containing the substring foo and description containing the substring bar. Besides field queries, the following exact-match filters are supported. The exact-match filters do not support wildcards. Unlike field-restricted queries, exact-match filters are case-sensitive. - feature_id: Supports = comparisons. - description: Supports = comparisons. Multi-token filters should be enclosed in quotes. - entity_type_id: Supports = comparisons. - value_type: Supports = and != comparisons. - labels: Supports key-value equality as well as key presence. - featurestore_id: Supports = comparisons. Examples: - description = "foo bar" --> Any Feature with description exactly equal to foo bar - value_type = DOUBLE --> Features whose type is DOUBLE. - labels.active = yes AND labels.env = prod --> Features having both (active: yes) and (env: prod) labels. - labels.env: * --> Any Feature which has a label with env as the key. This corresponds to the query field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.services.featurestore_service.pagers.SearchFeaturesPager Response message for FeaturestoreService.SearchFeatures. Iterating over this object will yield results and resolve additional pages automatically.

set_iam_policy

set_iam_policy(
    request: typing.Optional[google.iam.v1.iam_policy_pb2.SetIamPolicyRequest] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.iam.v1.policy_pb2.Policy

Sets the IAM access control policy on the specified function.

Replaces any existing policy.

Parameters
Name Description
request .iam_policy_pb2.SetIamPolicyRequest

The request object. Request message for SetIamPolicy method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.policy_pb2.Policy Defines an Identity and Access Management (IAM) policy. It is used to specify access control policies for Cloud Platform resources. A Policy is a collection of bindings. A binding binds one or more members to a single role. Members can be user accounts, service accounts, Google groups, and domains (such as G Suite). A role is a named list of permissions (defined by IAM or configured by users). A binding can optionally specify a condition, which is a logic expression that further constrains the role binding based on attributes about the request and/or target resource. **JSON Example** :: { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": ["user:eve@example.com"], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01t00:00:00.000z')",="" }="" }="" ]="" }="" **yaml="" example**="" ::="" bindings:="" -="" members:="" -="" user:mike@example.com="" -="" group:admins@example.com="" -="" domain:google.com="" -="" serviceaccount:my-project-id@appspot.gserviceaccount.com="" role:="" roles/resourcemanager.organizationadmin="" -="" members:="" -="" user:eve@example.com="" role:="" roles/resourcemanager.organizationviewer="" condition:="" title:="" expirable="" access="" description:="" does="" not="" grant="" access="" after="" sep="" 2020="" expression:="" request.time="">< timestamp('2020-10-01t00:00:00.000z')="" for="" a="" description="" of="" iam="" and="" its="" features,="" see="" the="">IAM developer's guide __.

test_iam_permissions

test_iam_permissions(
    request: typing.Optional[
        google.iam.v1.iam_policy_pb2.TestIamPermissionsRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.iam.v1.iam_policy_pb2.TestIamPermissionsResponse

Tests the specified IAM permissions against the IAM access control policy for a function.

If the function does not exist, this will return an empty set of permissions, not a NOT_FOUND error.

Parameters
Name Description
request .iam_policy_pb2.TestIamPermissionsRequest

The request object. Request message for TestIamPermissions method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.iam_policy_pb2.TestIamPermissionsResponse Response message for TestIamPermissions method.

update_entity_type

update_entity_type(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.UpdateEntityTypeRequest,
            dict,
        ]
    ] = None,
    *,
    entity_type: typing.Optional[
        google.cloud.aiplatform_v1.types.entity_type.EntityType
    ] = None,
    update_mask: typing.Optional[google.protobuf.field_mask_pb2.FieldMask] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1.types.entity_type.EntityType

Updates the parameters of a single EntityType.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_update_entity_type():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.UpdateEntityTypeRequest(
    )

    # Make the request
    response = client.update_entity_type(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.UpdateEntityTypeRequest, dict]

The request object. Request message for FeaturestoreService.UpdateEntityType.

entity_type google.cloud.aiplatform_v1.types.EntityType

Required. The EntityType's name field is used to identify the EntityType to be updated. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type} This corresponds to the entity_type field on the request instance; if request is provided, this should not be set.

update_mask google.protobuf.field_mask_pb2.FieldMask

Field mask is used to specify the fields to be overwritten in the EntityType resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to * to override all fields. Updatable fields: - description - labels - monitoring_config.snapshot_analysis.disabled - monitoring_config.snapshot_analysis.monitoring_interval_days - monitoring_config.snapshot_analysis.staleness_days - monitoring_config.import_features_analysis.state - monitoring_config.import_features_analysis.anomaly_detection_baseline - monitoring_config.numerical_threshold_config.value - monitoring_config.categorical_threshold_config.value - offline_storage_ttl_days This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.types.EntityType An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.

update_feature

update_feature(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.UpdateFeatureRequest,
            dict,
        ]
    ] = None,
    *,
    feature: typing.Optional[google.cloud.aiplatform_v1.types.feature.Feature] = None,
    update_mask: typing.Optional[google.protobuf.field_mask_pb2.FieldMask] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.cloud.aiplatform_v1.types.feature.Feature

Updates the parameters of a single Feature.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_update_feature():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.UpdateFeatureRequest(
    )

    # Make the request
    response = client.update_feature(request=request)

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.UpdateFeatureRequest, dict]

The request object. Request message for FeaturestoreService.UpdateFeature. Request message for FeatureRegistryService.UpdateFeature.

feature google.cloud.aiplatform_v1.types.Feature

Required. The Feature's name field is used to identify the Feature to be updated. Format: projects/{project}/locations/{location}/featurestores/{featurestore}/entityTypes/{entity_type}/features/{feature} projects/{project}/locations/{location}/featureGroups/{feature_group}/features/{feature} This corresponds to the feature field on the request instance; if request is provided, this should not be set.

update_mask google.protobuf.field_mask_pb2.FieldMask

Field mask is used to specify the fields to be overwritten in the Features resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to * to override all fields. Updatable fields: - description - labels - disable_monitoring (Not supported for FeatureRegistry Feature) This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.cloud.aiplatform_v1.types.Feature Feature Metadata information. For example, color is a feature that describes an apple.

update_featurestore

update_featurestore(
    request: typing.Optional[
        typing.Union[
            google.cloud.aiplatform_v1.types.featurestore_service.UpdateFeaturestoreRequest,
            dict,
        ]
    ] = None,
    *,
    featurestore: typing.Optional[
        google.cloud.aiplatform_v1.types.featurestore.Featurestore
    ] = None,
    update_mask: typing.Optional[google.protobuf.field_mask_pb2.FieldMask] = None,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.api_core.operation.Operation

Updates the parameters of a single Featurestore.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import aiplatform_v1

def sample_update_featurestore():
    # Create a client
    client = aiplatform_v1.FeaturestoreServiceClient()

    # Initialize request argument(s)
    request = aiplatform_v1.UpdateFeaturestoreRequest(
    )

    # Make the request
    operation = client.update_featurestore(request=request)

    print("Waiting for operation to complete...")

    response = operation.result()

    # Handle the response
    print(response)
Parameters
Name Description
request Union[google.cloud.aiplatform_v1.types.UpdateFeaturestoreRequest, dict]

The request object. Request message for FeaturestoreService.UpdateFeaturestore.

featurestore google.cloud.aiplatform_v1.types.Featurestore

Required. The Featurestore's name field is used to identify the Featurestore to be updated. Format: projects/{project}/locations/{location}/featurestores/{featurestore} This corresponds to the featurestore field on the request instance; if request is provided, this should not be set.

update_mask google.protobuf.field_mask_pb2.FieldMask

Field mask is used to specify the fields to be overwritten in the Featurestore resource by the update. The fields specified in the update_mask are relative to the resource, not the full request. A field will be overwritten if it is in the mask. If the user does not provide a mask then only the non-empty fields present in the request will be overwritten. Set the update_mask to * to override all fields. Updatable fields: - labels - online_serving_config.fixed_node_count - online_serving_config.scaling - online_storage_ttl_days This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
google.api_core.operation.Operation An object representing a long-running operation. The result type for the operation will be Featurestore Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.

wait_operation

wait_operation(
    request: typing.Optional[
        google.longrunning.operations_pb2.WaitOperationRequest
    ] = None,
    *,
    retry: typing.Optional[
        typing.Union[
            google.api_core.retry.retry_unary.Retry,
            google.api_core.gapic_v1.method._MethodDefault,
        ]
    ] = _MethodDefault._DEFAULT_VALUE,
    timeout: typing.Union[float, object] = _MethodDefault._DEFAULT_VALUE,
    metadata: typing.Sequence[typing.Tuple[str, str]] = ()
) -> google.longrunning.operations_pb2.Operation

Waits until the specified long-running operation is done or reaches at most a specified timeout, returning the latest state.

If the operation is already done, the latest state is immediately returned. If the timeout specified is greater than the default HTTP/RPC timeout, the HTTP/RPC timeout is used. If the server does not support this method, it returns google.rpc.Code.UNIMPLEMENTED.

Parameters
Name Description
request .operations_pb2.WaitOperationRequest

The request object. Request message for WaitOperation method.

retry google.api_core.retry.Retry

Designation of what errors, if any, should be retried.

timeout float

The timeout for this request.

metadata Sequence[Tuple[str, str]]

Strings which should be sent along with the request as metadata.

Returns
Type Description
.operations_pb2.Operation An Operation object.