- 1.71.1 (latest)
- 1.71.0
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
ImageGenerationModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Generates images from text prompt.
Examples::
model = ImageGenerationModel.from_pretrained("imagegeneration@002")
response = model.generate_images(
prompt="Astronaut riding a horse",
# Optional:
number_of_images=1,
seed=0,
)
response[0].show()
response[0].save("image1.png")
Methods
ImageGenerationModel
ImageGenerationModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Creates a _ModelGardenModel.
This constructor should not be called directly.
Use {model_class}.from_pretrained(model_name=...)
instead.
Parameters | |
---|---|
Name | Description |
model_id |
str
Identifier of a Model Garden Model. Example: "text-bison@001" |
endpoint_name |
typing.Optional[str]
Vertex Endpoint resource name for the model |
edit_image
edit_image(
*,
prompt: str,
base_image: vertexai.vision_models.Image,
mask: typing.Optional[vertexai.vision_models.Image] = None,
negative_prompt: typing.Optional[str] = None,
number_of_images: int = 1,
guidance_scale: typing.Optional[float] = None,
edit_mode: typing.Optional[
typing.Literal[
"inpainting-insert", "inpainting-remove", "outpainting", "product-image"
]
] = None,
mask_mode: typing.Optional[
typing.Literal["background", "foreground", "semantic"]
] = None,
segmentation_classes: typing.Optional[typing.List[str]] = None,
mask_dilation: typing.Optional[float] = None,
product_position: typing.Optional[typing.Literal["fixed", "reposition"]] = None,
output_mime_type: typing.Optional[typing.Literal["image/png", "image/jpeg"]] = None,
compression_quality: typing.Optional[float] = None,
language: typing.Optional[str] = None,
seed: typing.Optional[int] = None,
output_gcs_uri: typing.Optional[str] = None,
safety_filter_level: typing.Optional[
typing.Literal["block_most", "block_some", "block_few", "block_fewest"]
] = None,
person_generation: typing.Optional[
typing.Literal["dont_allow", "allow_adult", "allow_all"]
] = None
) -> vertexai.preview.vision_models.ImageGenerationResponse
Edits an existing image based on text prompt.
from_pretrained
from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.T
Loads a _ModelGardenModel.
Parameter | |
---|---|
Name | Description |
model_name |
str
Name of the model. |
Exceptions | |
---|---|
Type | Description |
ValueError |
If model_name is unknown. |
ValueError |
If model does not support this class. |
generate_images
generate_images(
prompt: str,
*,
negative_prompt: typing.Optional[str] = None,
number_of_images: int = 1,
aspect_ratio: typing.Optional[
typing.Literal["1:1", "9:16", "16:9", "4;3", "3:4"]
] = None,
guidance_scale: typing.Optional[float] = None,
language: typing.Optional[str] = None,
seed: typing.Optional[int] = None,
output_gcs_uri: typing.Optional[str] = None,
add_watermark: typing.Optional[bool] = True,
safety_filter_level: typing.Optional[
typing.Literal["block_most", "block_some", "block_few", "block_fewest"]
] = None,
person_generation: typing.Optional[
typing.Literal["dont_allow", "allow_adult", "allow_all"]
] = None
) -> vertexai.preview.vision_models.ImageGenerationResponse
Generates images from text prompt.
Parameter | |
---|---|
Name | Description |
prompt |
str
Text prompt for the image. |
upscale_image
upscale_image(
image: typing.Union[
vertexai.vision_models.Image, vertexai.preview.vision_models.GeneratedImage
],
new_size: typing.Optional[int] = 2048,
output_gcs_uri: typing.Optional[str] = None,
) -> vertexai.vision_models.Image
Upscales an image.
This supports upscaling images generated through the generate_images()
method,
or upscaling a new image that is 1024x1024.
Examples::
# Upscale a generated image
model = ImageGenerationModel.from_pretrained("imagegeneration@002")
response = model.generate_images(
prompt="Astronaut riding a horse",
)
model.upscale_image(image=response[0])
# Upscale a new 1024x1024 image
my_image = Image.load_from_file("my-image.png")
model.upscale_image(image=my_image)
Parameters | |
---|---|
Name | Description |
image |
Union[GeneratedImage, Image]
Required. The generated image to upscale. |
new_size |
int
The size of the biggest dimension of the upscaled image. Only 2048 and 4096 are currently supported. Results in a 2048x2048 or 4096x4096 image. Defaults to 2048 if not provided. |
output_gcs_uri |
typing.Optional[str]
Google Cloud Storage uri to store the upscaled images. |