- 1.78.0 (latest)
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
AutoMLTextTrainingJob(
display_name: str,
prediction_type: str,
multi_label: bool = False,
sentiment_max: int = 10,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
labels: typing.Optional[typing.Dict[str, str]] = None,
training_encryption_spec_key_name: typing.Optional[str] = None,
model_encryption_spec_key_name: typing.Optional[str] = None,
)
Constructs a AutoML Text Training Job.
Parameters |
|
---|---|
Name | Description |
display_name |
str
Required. The user-defined name of this TrainingPipeline. |
prediction_type |
str
The type of prediction the Model is to produce, one of: "classification" - A classification model analyzes text data and returns a list of categories that apply to the text found in the data. Vertex AI offers both single-label and multi-label text classification models. "extraction" - An entity extraction model inspects text data for known entities referenced in the data and labels those entities in the text. "sentiment" - A sentiment analysis model inspects text data and identifies the prevailing emotional opinion within it, especially to determine a writer's attitude as positive, negative, or neutral. |
multi_label |
bool
Required and only applicable for text classification task. If false, a single-label (multi-class) Model will be trained (i.e. assuming that for each text snippet just up to one annotation may be applicable). If true, a multi-label Model will be trained (i.e. assuming that for each text snippet multiple annotations may be applicable). |
sentiment_max |
int
Required and only applicable for sentiment task. A sentiment is expressed as an integer ordinal, where higher value means a more positive sentiment. The range of sentiments that will be used is between 0 and sentimentMax (inclusive on both ends), and all the values in the range must be represented in the dataset before a model can be created. Only the Annotations with this sentimentMax will be used for training. sentimentMax value must be between 1 and 10 (inclusive). |
project |
str
Optional. Project to run training in. Overrides project set in aiplatform.init. |
location |
str
Optional. Location to run training in. Overrides location set in aiplatform.init. |
credentials |
auth_credentials.Credentials
Optional. Custom credentials to use to run call training service. Overrides credentials set in aiplatform.init. |
labels |
Dict[str, str]
Optional. The labels with user-defined metadata to organize TrainingPipelines. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. |
training_encryption_spec_key_name |
Optional[str]
Optional. The Cloud KMS resource identifier of the customer managed encryption key used to protect the training pipeline. Has the form: |
model_encryption_spec_key_name |
Optional[str]
Optional. The Cloud KMS resource identifier of the customer managed encryption key used to protect the model. Has the form: |
Properties
create_time
Time this resource was created.
display_name
Display name of this resource.
encryption_spec
Customer-managed encryption key options for this Vertex AI resource.
If this is set, then all resources created by this Vertex AI resource will be encrypted with the provided encryption key.
end_time
Time when the TrainingJob resource entered the PIPELINE_STATE_SUCCEEDED
,
PIPELINE_STATE_FAILED
, PIPELINE_STATE_CANCELLED
state.
error
Detailed error info for this TrainingJob resource. Only populated when
the TrainingJob's state is PIPELINE_STATE_FAILED
or
PIPELINE_STATE_CANCELLED
.
gca_resource
The underlying resource proto representation.
has_failed
Returns True if training has failed.
False otherwise.
labels
User-defined labels containing metadata about this resource.
Read more about labels at https://goo.gl/xmQnxf
name
Name of this resource.
resource_name
Full qualified resource name.
start_time
Time when the TrainingJob entered the PIPELINE_STATE_RUNNING
for
the first time.
state
Current training state.
update_time
Time this resource was last updated.
Methods
cancel
cancel() -> None
Starts asynchronous cancellation on the TrainingJob. The server
makes a best effort to cancel the job, but success is not guaranteed.
On successful cancellation, the TrainingJob is not deleted; instead it
becomes a job with state set to CANCELLED
.
Exceptions | |
---|---|
Type | Description |
RuntimeError |
If this TrainingJob has not started running. |
delete
delete(sync: bool = True) -> None
Deletes this Vertex AI resource. WARNING: This deletion is permanent.
Parameter | |
---|---|
Name | Description |
sync |
bool
Whether to execute this deletion synchronously. If False, this method will be executed in concurrent Future and any downstream object will be immediately returned and synced when the Future has completed. |
done
done() -> bool
Method indicating whether a job has completed.
get
get(
resource_name: str,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
) -> google.cloud.aiplatform.training_jobs._TrainingJob
Get Training Job for the given resource_name.
Parameters | |
---|---|
Name | Description |
resource_name |
str
Required. A fully-qualified resource name or ID. |
project |
str
Optional project to retrieve training job from. If not set, project set in aiplatform.init will be used. |
location |
str
Optional location to retrieve training job from. If not set, location set in aiplatform.init will be used. |
credentials |
auth_credentials.Credentials
Custom credentials to use to upload this model. Overrides credentials set in aiplatform.init. |
Exceptions | |
---|---|
Type | Description |
ValueError |
If the retrieved training job's training task definition doesn't match the custom training task definition. |
get_model
get_model(sync=True) -> google.cloud.aiplatform.models.Model
Vertex AI Model produced by this training, if one was produced.
Parameter | |
---|---|
Name | Description |
sync |
bool
Whether to execute this method synchronously. If False, this method will be executed in concurrent Future and any downstream object will be immediately returned and synced when the Future has completed. |
Exceptions | |
---|---|
Type | Description |
RuntimeError |
If training failed or if a model was not produced by this training. |
Returns | |
---|---|
Type | Description |
model |
Vertex AI Model produced by this training |
list
list(
filter: typing.Optional[str] = None,
order_by: typing.Optional[str] = None,
project: typing.Optional[str] = None,
location: typing.Optional[str] = None,
credentials: typing.Optional[google.auth.credentials.Credentials] = None,
) -> typing.List[google.cloud.aiplatform.base.VertexAiResourceNoun]
List all instances of this TrainingJob resource.
Example Usage:
aiplatform.CustomTrainingJob.list( filter='display_name="experiment_a27"', order_by='create_time desc' )
Parameters | |
---|---|
Name | Description |
filter |
str
Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported. |
order_by |
str
Optional. A comma-separated list of fields to order by, sorted in ascending order. Use "desc" after a field name for descending. Supported fields: |
project |
str
Optional. Project to retrieve list from. If not set, project set in aiplatform.init will be used. |
location |
str
Optional. Location to retrieve list from. If not set, location set in aiplatform.init will be used. |
credentials |
auth_credentials.Credentials
Optional. Custom credentials to use to retrieve list. Overrides credentials set in aiplatform.init. |
run
run(
dataset: google.cloud.aiplatform.datasets.text_dataset.TextDataset,
training_fraction_split: typing.Optional[float] = None,
validation_fraction_split: typing.Optional[float] = None,
test_fraction_split: typing.Optional[float] = None,
training_filter_split: typing.Optional[str] = None,
validation_filter_split: typing.Optional[str] = None,
test_filter_split: typing.Optional[str] = None,
model_display_name: typing.Optional[str] = None,
model_labels: typing.Optional[typing.Dict[str, str]] = None,
model_id: typing.Optional[str] = None,
parent_model: typing.Optional[str] = None,
is_default_version: typing.Optional[bool] = True,
model_version_aliases: typing.Optional[typing.Sequence[str]] = None,
model_version_description: typing.Optional[str] = None,
sync: bool = True,
create_request_timeout: typing.Optional[float] = None,
) -> google.cloud.aiplatform.models.Model
Runs the training job and returns a model.
If training on a Vertex AI dataset, you can use one of the following split configurations:
Data fraction splits:
Any of training_fraction_split
, validation_fraction_split
and
test_fraction_split
may optionally be provided, they must sum to up to 1. If
the provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly 80%
of data will be used for training, 10% for validation, and 10% for test.
Data filter splits:
Assigns input data to training, validation, and test sets
based on the given filters, data pieces not matched by any
filter are ignored. Currently only supported for Datasets
containing DataItems.
If any of the filters in this message are to match nothing, then
they can be set as '-' (the minus sign).
If using filter splits, all of `training_filter_split`, `validation_filter_split` and
`test_filter_split` must be provided.
Supported only for unstructured Datasets.
Parameters | |
---|---|
Name | Description |
dataset |
datasets.TextDataset
Required. The dataset within the same Project from which data will be used to train the Model. The Dataset must use schema compatible with Model being trained, and what is compatible should be described in the used TrainingPipeline's [training_task_definition] [google.cloud.aiplatform.v1beta1.TrainingPipeline.training_task_definition]. |
training_fraction_split |
float
Optional. The fraction of the input data that is to be used to train the Model. This is ignored if Dataset is not provided. |
validation_fraction_split |
float
Optional. The fraction of the input data that is to be used to validate the Model. This is ignored if Dataset is not provided. |
test_fraction_split |
float
Optional. The fraction of the input data that is to be used to evaluate the Model. This is ignored if Dataset is not provided. |
training_filter_split |
str
Optional. A filter on DataItems of the Dataset. DataItems that match this filter are used to train the Model. A filter with same syntax as the one used in DatasetService.ListDataItems may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order. This is ignored if Dataset is not provided. |
validation_filter_split |
str
Optional. A filter on DataItems of the Dataset. DataItems that match this filter are used to validate the Model. A filter with same syntax as the one used in DatasetService.ListDataItems may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order. This is ignored if Dataset is not provided. |
test_filter_split |
str
Optional. A filter on DataItems of the Dataset. DataItems that match this filter are used to test the Model. A filter with same syntax as the one used in DatasetService.ListDataItems may be used. If a single DataItem is matched by more than one of the FilterSplit filters, then it is assigned to the first set that applies to it in the training, validation, test order. This is ignored if Dataset is not provided. |
model_display_name |
str
Optional. The display name of the managed Vertex AI Model. The name can be up to 128 characters long and can consist of any UTF-8 characters. If not provided upon creation, the job's display_name is used. |
model_labels |
Dict[str, str]
Optional. The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.. |
model_id |
str
Optional. The ID to use for the Model produced by this job, which will become the final component of the model resource name. This value may be up to 63 characters, and valid characters are |
parent_model |
str
Optional. The resource name or model ID of an existing model. The new model uploaded by this job will be a version of |
is_default_version |
bool
Optional. When set to True, the newly uploaded model version will automatically have alias "default" included. Subsequent uses of the model produced by this job without a version specified will use this "default" version. When set to False, the "default" alias will not be moved. Actions targeting the model version produced by this job will need to specifically reference this version by ID or alias. New model uploads, i.e. version 1, will always be "default" aliased. |
model_version_aliases |
Sequence[str]
Optional. User provided version aliases so that the model version uploaded by this job can be referenced via alias instead of auto-generated version ID. A default version alias will be created for the first version of the model. The format is |
model_version_description |
str
Optional. The description of the model version being uploaded by this job. |
sync |
bool
Whether to execute this method synchronously. If False, this method will be executed in concurrent Future and any downstream object will be immediately returned and synced when the Future has completed. |
create_request_timeout |
float
Optional. The timeout for the create request in seconds |
Exceptions | |
---|---|
Type | Description |
RuntimeError |
If Training job has already been run or is waiting to run. |
Returns | |
---|---|
Type | Description |
model |
The trained Vertex AI Model resource. |
to_dict
to_dict() -> typing.Dict[str, typing.Any]
Returns the resource proto as a dictionary.
wait
wait()
Helper method that blocks until all futures are complete.
wait_for_resource_creation
wait_for_resource_creation() -> None
Waits until resource has been created.