Reference documentation and code samples for the Google Cloud Datalabeling V1beta1 Client class EvaluationJobConfig.
Configures specific details of how a continuous evaluation job works. Provide this configuration when you create an EvaluationJob.
Generated from protobuf message google.cloud.datalabeling.v1beta1.EvaluationJobConfig
Methods
__construct
Constructor.
Parameters | |
---|---|
Name | Description |
data |
array
Optional. Data for populating the Message object. |
↳ image_classification_config |
Google\Cloud\DataLabeling\V1beta1\ImageClassificationConfig
Specify this field if your model version performs image classification or general classification. |
↳ bounding_poly_config |
Google\Cloud\DataLabeling\V1beta1\BoundingPolyConfig
Specify this field if your model version performs image object detection (bounding box detection). |
↳ text_classification_config |
Google\Cloud\DataLabeling\V1beta1\TextClassificationConfig
Specify this field if your model version performs text classification. |
↳ input_config |
Google\Cloud\DataLabeling\V1beta1\InputConfig
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields: * |
↳ evaluation_config |
Google\Cloud\DataLabeling\V1beta1\EvaluationConfig
Required. Details for calculating evaluation metrics and creating Evaulations. If your model version performs image object detection, you must specify the |
↳ human_annotation_config |
Google\Cloud\DataLabeling\V1beta1\HumanAnnotationConfig
Optional. Details for human annotation of your data. If you set labelMissingGroundTruth to |
↳ bigquery_import_keys |
array|Google\Protobuf\Internal\MapField
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON. You can provide the following entries in this field: * |
↳ example_count |
int
Required. The maximum number of predictions to sample and save to BigQuery during each evaluation interval. This limit overrides |
↳ example_sample_percentage |
float
Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery. |
↳ evaluation_job_alert_config |
Google\Cloud\DataLabeling\V1beta1\EvaluationJobAlertConfig
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run. |
getImageClassificationConfig
Specify this field if your model version performs image classification or general classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
Returns | |
---|---|
Type | Description |
Google\Cloud\DataLabeling\V1beta1\ImageClassificationConfig|null |
hasImageClassificationConfig
setImageClassificationConfig
Specify this field if your model version performs image classification or general classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\DataLabeling\V1beta1\ImageClassificationConfig
|
Returns | |
---|---|
Type | Description |
$this |
getBoundingPolyConfig
Specify this field if your model version performs image object detection (bounding box detection).
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
Returns | |
---|---|
Type | Description |
Google\Cloud\DataLabeling\V1beta1\BoundingPolyConfig|null |
hasBoundingPolyConfig
setBoundingPolyConfig
Specify this field if your model version performs image object detection (bounding box detection).
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\DataLabeling\V1beta1\BoundingPolyConfig
|
Returns | |
---|---|
Type | Description |
$this |
getTextClassificationConfig
Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
Returns | |
---|---|
Type | Description |
Google\Cloud\DataLabeling\V1beta1\TextClassificationConfig|null |
hasTextClassificationConfig
setTextClassificationConfig
Specify this field if your model version performs text classification.
annotationSpecSet
in this configuration must match
EvaluationJob.annotationSpecSet.
allowMultiLabel
in this configuration must match
classificationMetadata.isMultiLabel
in input_config.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\DataLabeling\V1beta1\TextClassificationConfig
|
Returns | |
---|---|
Type | Description |
$this |
getInputConfig
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
.annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
. - You must specify
bigquerySource
(notgcsSource
).
Returns | |
---|---|
Type | Description |
Google\Cloud\DataLabeling\V1beta1\InputConfig|null |
hasInputConfig
clearInputConfig
setInputConfig
Rquired. Details for the sampled prediction input. Within this configuration, there are requirements for several fields:
dataType
must be one ofIMAGE
,TEXT
, orGENERAL_DATA
.annotationType
must be one ofIMAGE_CLASSIFICATION_ANNOTATION
,TEXT_CLASSIFICATION_ANNOTATION
,GENERAL_CLASSIFICATION_ANNOTATION
, orIMAGE_BOUNDING_BOX_ANNOTATION
(image object detection).- If your machine learning model performs classification, you must specify
classificationMetadata.isMultiLabel
. - You must specify
bigquerySource
(notgcsSource
).
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\DataLabeling\V1beta1\InputConfig
|
Returns | |
---|---|
Type | Description |
$this |
getEvaluationConfig
Required. Details for calculating evaluation metrics and creating
Evaulations. If your model version performs image object
detection, you must specify the boundingBoxEvaluationOptions
field within
this configuration. Otherwise, provide an empty object for this
configuration.
Returns | |
---|---|
Type | Description |
Google\Cloud\DataLabeling\V1beta1\EvaluationConfig|null |
hasEvaluationConfig
clearEvaluationConfig
setEvaluationConfig
Required. Details for calculating evaluation metrics and creating
Evaulations. If your model version performs image object
detection, you must specify the boundingBoxEvaluationOptions
field within
this configuration. Otherwise, provide an empty object for this
configuration.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\DataLabeling\V1beta1\EvaluationConfig
|
Returns | |
---|---|
Type | Description |
$this |
getHumanAnnotationConfig
Optional. Details for human annotation of your data. If you set
labelMissingGroundTruth to
true
for this evaluation job, then you must specify this field. If you
plan to provide your own ground truth labels, then omit this field.
Note that you must create an Instruction resource before you can
specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
Returns | |
---|---|
Type | Description |
Google\Cloud\DataLabeling\V1beta1\HumanAnnotationConfig|null |
hasHumanAnnotationConfig
clearHumanAnnotationConfig
setHumanAnnotationConfig
Optional. Details for human annotation of your data. If you set
labelMissingGroundTruth to
true
for this evaluation job, then you must specify this field. If you
plan to provide your own ground truth labels, then omit this field.
Note that you must create an Instruction resource before you can
specify this field. Provide the name of the instruction resource in the
instruction
field within this configuration.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\DataLabeling\V1beta1\HumanAnnotationConfig
|
Returns | |
---|---|
Type | Description |
$this |
getBigqueryImportKeys
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
.reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
.label_json_key
: the label key for prediction output. Required.label_score_json_key
: the score key for prediction output. Required.bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
Returns | |
---|---|
Type | Description |
Google\Protobuf\Internal\MapField |
setBigqueryImportKeys
Required. Prediction keys that tell Data Labeling Service where to find the data for evaluation in your BigQuery table. When the service samples prediction input and output from your model version and saves it to BigQuery, the data gets stored as JSON strings in the BigQuery table. These keys tell Data Labeling Service how to parse the JSON.
You can provide the following entries in this field:
data_json_key
: the data key for prediction input. You must provide either this key orreference_json_key
.reference_json_key
: the data reference key for prediction input. You must provide either this key ordata_json_key
.label_json_key
: the label key for prediction output. Required.label_score_json_key
: the score key for prediction output. Required.bounding_box_json_key
: the bounding box key for prediction output. Required if your model version perform image object detection. Learn how to configure prediction keys.
Parameter | |
---|---|
Name | Description |
var |
array|Google\Protobuf\Internal\MapField
|
Returns | |
---|---|
Type | Description |
$this |
getExampleCount
Required. The maximum number of predictions to sample and save to BigQuery
during each evaluation interval. This limit
overrides example_sample_percentage
: even if the service has not sampled
enough predictions to fulfill example_sample_perecentage
during an
interval, it stops sampling predictions when it meets this limit.
Returns | |
---|---|
Type | Description |
int |
setExampleCount
Required. The maximum number of predictions to sample and save to BigQuery
during each evaluation interval. This limit
overrides example_sample_percentage
: even if the service has not sampled
enough predictions to fulfill example_sample_perecentage
during an
interval, it stops sampling predictions when it meets this limit.
Parameter | |
---|---|
Name | Description |
var |
int
|
Returns | |
---|---|
Type | Description |
$this |
getExampleSamplePercentage
Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
Returns | |
---|---|
Type | Description |
float |
setExampleSamplePercentage
Required. Fraction of predictions to sample and save to BigQuery during each evaluation interval. For example, 0.1 means 10% of predictions served by your model version get saved to BigQuery.
Parameter | |
---|---|
Name | Description |
var |
float
|
Returns | |
---|---|
Type | Description |
$this |
getEvaluationJobAlertConfig
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
Returns | |
---|---|
Type | Description |
Google\Cloud\DataLabeling\V1beta1\EvaluationJobAlertConfig|null |
hasEvaluationJobAlertConfig
clearEvaluationJobAlertConfig
setEvaluationJobAlertConfig
Optional. Configuration details for evaluation job alerts. Specify this field if you want to receive email alerts if the evaluation job finds that your predictions have low mean average precision during a run.
Parameter | |
---|---|
Name | Description |
var |
Google\Cloud\DataLabeling\V1beta1\EvaluationJobAlertConfig
|
Returns | |
---|---|
Type | Description |
$this |
getHumanAnnotationRequestConfig
Returns | |
---|---|
Type | Description |
string |