- 1.18.0 (latest)
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.1
- 1.12.0
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.39.0
- 0.38.0
- 0.37.1
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.2
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.13.0
- 0.12.0
- 0.11.1
- 0.10.0
Reference documentation and code samples for the Google Cloud Ai Platform V1 Client class ModelDeploymentMonitoringObjectiveType.
The Model Monitoring Objective types.
Protobuf type google.cloud.aiplatform.v1.ModelDeploymentMonitoringObjectiveType
Namespace
Google \ Cloud \ AIPlatform \ V1Methods
static::name
Parameter | |
---|---|
Name | Description |
value |
mixed
|
static::value
Parameter | |
---|---|
Name | Description |
name |
mixed
|
Constants
MODEL_DEPLOYMENT_MONITORING_OBJECTIVE_TYPE_UNSPECIFIED
Value: 0
Default value, should not be set.
Generated from protobuf enum MODEL_DEPLOYMENT_MONITORING_OBJECTIVE_TYPE_UNSPECIFIED = 0;
RAW_FEATURE_SKEW
Value: 1
Raw feature values' stats to detect skew between Training-Prediction datasets.
Generated from protobuf enum RAW_FEATURE_SKEW = 1;
RAW_FEATURE_DRIFT
Value: 2
Raw feature values' stats to detect drift between Serving-Prediction datasets.
Generated from protobuf enum RAW_FEATURE_DRIFT = 2;
FEATURE_ATTRIBUTION_SKEW
Value: 3
Feature attribution scores to detect skew between Training-Prediction datasets.
Generated from protobuf enum FEATURE_ATTRIBUTION_SKEW = 3;
FEATURE_ATTRIBUTION_DRIFT
Value: 4
Feature attribution scores to detect skew between Prediction datasets collected within different time windows.
Generated from protobuf enum FEATURE_ATTRIBUTION_DRIFT = 4;