下一節提供微調 BERT 模型的範例,說明如何使用 Hugging Face Transformers 程式庫搭配 TensorFlow,進行序列分類。資料集會下載到已掛接的 Parallelstore 支援磁碟區,讓模型訓練作業直接從磁碟區讀取資料。
必要條件
- 確認節點至少有 8 GiB 的可用記憶體。
- 建立 PersistentVolumeClaim,要求以 Parallelstore 支援的磁碟區。
請儲存下列模型訓練作業的 YAML 資訊清單 (parallelstore-csi-job-example.yaml
)。
apiVersion: batch/v1
kind: Job
metadata:
name: parallelstore-csi-job-example
spec:
template:
metadata:
annotations:
gke-parallelstore/cpu-limit: "0"
gke-parallelstore/memory-limit: "0"
spec:
securityContext:
runAsUser: 1000
runAsGroup: 100
fsGroup: 100
containers:
- name: tensorflow
image: jupyter/tensorflow-notebook@sha256:173f124f638efe870bb2b535e01a76a80a95217e66ed00751058c51c09d6d85d
command: ["bash", "-c"]
args:
- |
pip install transformers datasets
python - <<EOF
from datasets import load_dataset
dataset = load_dataset("glue", "cola", cache_dir='/data')
dataset = dataset["train"]
from transformers import AutoTokenizer
import numpy as np
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
tokenized_data = tokenizer(dataset["sentence"], return_tensors="np", padding=True)
tokenized_data = dict(tokenized_data)
labels = np.array(dataset["label"])
from transformers import TFAutoModelForSequenceClassification
from tensorflow.keras.optimizers import Adam
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased")
model.compile(optimizer=Adam(3e-5))
model.fit(tokenized_data, labels)
EOF
volumeMounts:
- name: parallelstore-volume
mountPath: /data
volumes:
- name: parallelstore-volume
persistentVolumeClaim:
claimName: parallelstore-pvc
restartPolicy: Never
backoffLimit: 1
將 YAML 資訊清單套用至叢集。
kubectl apply -f parallelstore-csi-job-example.yaml
使用下列指令,查看資料載入和模型訓練進度:
POD_NAME=$(kubectl get pod | grep 'parallelstore-csi-job-example' | awk '{print $1}')
kubectl logs -f $POD_NAME -c tensorflow