Enum ExecutionTemplate.ScaleTier (1.0.6)

public enum ExecutionTemplate.ScaleTier extends Enum<ExecutionTemplate.ScaleTier> implements ProtocolMessageEnum

Required. Specifies the machine types, the number of replicas for workers and parameter servers.

Protobuf enum google.cloud.notebooks.v1.ExecutionTemplate.ScaleTier

Implements

ProtocolMessageEnum

Static Fields

NameDescription
BASIC

A single worker instance. This tier is suitable for learning how to use Cloud ML, and for experimenting with new models using small datasets.

BASIC = 1;

BASIC_GPU

A single worker instance with a K80 GPU.

BASIC_GPU = 4;

BASIC_GPU_VALUE

A single worker instance with a K80 GPU.

BASIC_GPU = 4;

BASIC_TPU

A single worker instance with a Cloud TPU.

BASIC_TPU = 5;

BASIC_TPU_VALUE

A single worker instance with a Cloud TPU.

BASIC_TPU = 5;

BASIC_VALUE

A single worker instance. This tier is suitable for learning how to use Cloud ML, and for experimenting with new models using small datasets.

BASIC = 1;

CUSTOM

The CUSTOM tier is not a set tier, but rather enables you to use your own cluster specification. When you use this tier, set values to configure your processing cluster according to these guidelines:

  • You must set TrainingInput.masterType to specify the type of machine to use for your master node. This is the only required setting.
  • You may set TrainingInput.workerCount to specify the number of workers to use. If you specify one or more workers, you must also set TrainingInput.workerType to specify the type of machine to use for your worker nodes.
  • You may set TrainingInput.parameterServerCount to specify the number of parameter servers to use. If you specify one or more parameter servers, you must also set TrainingInput.parameterServerType to specify the type of machine to use for your parameter servers. Note that all of your workers must use the same machine type, which can be different from your parameter server type and master type. Your parameter servers must likewise use the same machine type, which can be different from your worker type and master type.

CUSTOM = 6;

CUSTOM_VALUE

The CUSTOM tier is not a set tier, but rather enables you to use your own cluster specification. When you use this tier, set values to configure your processing cluster according to these guidelines:

  • You must set TrainingInput.masterType to specify the type of machine to use for your master node. This is the only required setting.
  • You may set TrainingInput.workerCount to specify the number of workers to use. If you specify one or more workers, you must also set TrainingInput.workerType to specify the type of machine to use for your worker nodes.
  • You may set TrainingInput.parameterServerCount to specify the number of parameter servers to use. If you specify one or more parameter servers, you must also set TrainingInput.parameterServerType to specify the type of machine to use for your parameter servers. Note that all of your workers must use the same machine type, which can be different from your parameter server type and master type. Your parameter servers must likewise use the same machine type, which can be different from your worker type and master type.

CUSTOM = 6;

PREMIUM_1

A large number of workers with many parameter servers.

PREMIUM_1 = 3;

PREMIUM_1_VALUE

A large number of workers with many parameter servers.

PREMIUM_1 = 3;

SCALE_TIER_UNSPECIFIED

Unspecified Scale Tier.

SCALE_TIER_UNSPECIFIED = 0;

SCALE_TIER_UNSPECIFIED_VALUE

Unspecified Scale Tier.

SCALE_TIER_UNSPECIFIED = 0;

STANDARD_1

Many workers and a few parameter servers.

STANDARD_1 = 2;

STANDARD_1_VALUE

Many workers and a few parameter servers.

STANDARD_1 = 2;

UNRECOGNIZED

Static Methods

NameDescription
forNumber(int value)
getDescriptor()
internalGetValueMap()
valueOf(Descriptors.EnumValueDescriptor desc)
valueOf(int value)

Deprecated. Use #forNumber(int) instead.

valueOf(String name)
values()

Methods

NameDescription
getDescriptorForType()
getNumber()
getValueDescriptor()