Class Model.Builder (3.29.0)

public static final class Model.Builder extends GeneratedMessageV3.Builder<Model.Builder> implements ModelOrBuilder

A trained machine learning Model.

Protobuf type google.cloud.aiplatform.v1.Model

Implements

ModelOrBuilder
com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)

Static Methods

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
TypeDescription
Descriptor

Methods

addAllDeployedModels(Iterable<? extends DeployedModelRef> values)

public Model.Builder addAllDeployedModels(Iterable<? extends DeployedModelRef> values)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valuesIterable<? extends com.google.cloud.aiplatform.v1.DeployedModelRef>
Returns
TypeDescription
Model.Builder

addAllSupportedDeploymentResourcesTypes(Iterable<? extends Model.DeploymentResourcesType> values)

public Model.Builder addAllSupportedDeploymentResourcesTypes(Iterable<? extends Model.DeploymentResourcesType> values)

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valuesIterable<? extends com.google.cloud.aiplatform.v1.Model.DeploymentResourcesType>

The supportedDeploymentResourcesTypes to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addAllSupportedDeploymentResourcesTypesValue(Iterable<Integer> values)

public Model.Builder addAllSupportedDeploymentResourcesTypesValue(Iterable<Integer> values)

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valuesIterable<Integer>

The enum numeric values on the wire for supportedDeploymentResourcesTypes to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addAllSupportedExportFormats(Iterable<? extends Model.ExportFormat> values)

public Model.Builder addAllSupportedExportFormats(Iterable<? extends Model.ExportFormat> values)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valuesIterable<? extends com.google.cloud.aiplatform.v1.Model.ExportFormat>
Returns
TypeDescription
Model.Builder

addAllSupportedInputStorageFormats(Iterable<String> values)

public Model.Builder addAllSupportedInputStorageFormats(Iterable<String> values)

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valuesIterable<String>

The supportedInputStorageFormats to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addAllSupportedOutputStorageFormats(Iterable<String> values)

public Model.Builder addAllSupportedOutputStorageFormats(Iterable<String> values)

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valuesIterable<String>

The supportedOutputStorageFormats to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addAllVersionAliases(Iterable<String> values)

public Model.Builder addAllVersionAliases(Iterable<String> values)

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Parameter
NameDescription
valuesIterable<String>

The versionAliases to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addDeployedModels(DeployedModelRef value)

public Model.Builder addDeployedModels(DeployedModelRef value)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueDeployedModelRef
Returns
TypeDescription
Model.Builder

addDeployedModels(DeployedModelRef.Builder builderForValue)

public Model.Builder addDeployedModels(DeployedModelRef.Builder builderForValue)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
builderForValueDeployedModelRef.Builder
Returns
TypeDescription
Model.Builder

addDeployedModels(int index, DeployedModelRef value)

public Model.Builder addDeployedModels(int index, DeployedModelRef value)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint
valueDeployedModelRef
Returns
TypeDescription
Model.Builder

addDeployedModels(int index, DeployedModelRef.Builder builderForValue)

public Model.Builder addDeployedModels(int index, DeployedModelRef.Builder builderForValue)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint
builderForValueDeployedModelRef.Builder
Returns
TypeDescription
Model.Builder

addDeployedModelsBuilder()

public DeployedModelRef.Builder addDeployedModelsBuilder()

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
DeployedModelRef.Builder

addDeployedModelsBuilder(int index)

public DeployedModelRef.Builder addDeployedModelsBuilder(int index)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
DeployedModelRef.Builder

addRepeatedField(Descriptors.FieldDescriptor field, Object value)

public Model.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
NameDescription
fieldFieldDescriptor
valueObject
Returns
TypeDescription
Model.Builder
Overrides

addSupportedDeploymentResourcesTypes(Model.DeploymentResourcesType value)

public Model.Builder addSupportedDeploymentResourcesTypes(Model.DeploymentResourcesType value)

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueModel.DeploymentResourcesType

The supportedDeploymentResourcesTypes to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addSupportedDeploymentResourcesTypesValue(int value)

public Model.Builder addSupportedDeploymentResourcesTypesValue(int value)

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueint

The enum numeric value on the wire for supportedDeploymentResourcesTypes to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addSupportedExportFormats(Model.ExportFormat value)

public Model.Builder addSupportedExportFormats(Model.ExportFormat value)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueModel.ExportFormat
Returns
TypeDescription
Model.Builder

addSupportedExportFormats(Model.ExportFormat.Builder builderForValue)

public Model.Builder addSupportedExportFormats(Model.ExportFormat.Builder builderForValue)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
builderForValueModel.ExportFormat.Builder
Returns
TypeDescription
Model.Builder

addSupportedExportFormats(int index, Model.ExportFormat value)

public Model.Builder addSupportedExportFormats(int index, Model.ExportFormat value)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint
valueModel.ExportFormat
Returns
TypeDescription
Model.Builder

addSupportedExportFormats(int index, Model.ExportFormat.Builder builderForValue)

public Model.Builder addSupportedExportFormats(int index, Model.ExportFormat.Builder builderForValue)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint
builderForValueModel.ExportFormat.Builder
Returns
TypeDescription
Model.Builder

addSupportedExportFormatsBuilder()

public Model.ExportFormat.Builder addSupportedExportFormatsBuilder()

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.ExportFormat.Builder

addSupportedExportFormatsBuilder(int index)

public Model.ExportFormat.Builder addSupportedExportFormatsBuilder(int index)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
Model.ExportFormat.Builder

addSupportedInputStorageFormats(String value)

public Model.Builder addSupportedInputStorageFormats(String value)

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueString

The supportedInputStorageFormats to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addSupportedInputStorageFormatsBytes(ByteString value)

public Model.Builder addSupportedInputStorageFormatsBytes(ByteString value)

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueByteString

The bytes of the supportedInputStorageFormats to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addSupportedOutputStorageFormats(String value)

public Model.Builder addSupportedOutputStorageFormats(String value)

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueString

The supportedOutputStorageFormats to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addSupportedOutputStorageFormatsBytes(ByteString value)

public Model.Builder addSupportedOutputStorageFormatsBytes(ByteString value)

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueByteString

The bytes of the supportedOutputStorageFormats to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addVersionAliases(String value)

public Model.Builder addVersionAliases(String value)

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Parameter
NameDescription
valueString

The versionAliases to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

addVersionAliasesBytes(ByteString value)

public Model.Builder addVersionAliasesBytes(ByteString value)

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Parameter
NameDescription
valueByteString

The bytes of the versionAliases to add.

Returns
TypeDescription
Model.Builder

This builder for chaining.

build()

public Model build()
Returns
TypeDescription
Model

buildPartial()

public Model buildPartial()
Returns
TypeDescription
Model

clear()

public Model.Builder clear()
Returns
TypeDescription
Model.Builder
Overrides

clearArtifactUri()

public Model.Builder clearArtifactUri()

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.

string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearContainerSpec()

public Model.Builder clearContainerSpec()

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.

.google.cloud.aiplatform.v1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];

Returns
TypeDescription
Model.Builder

clearCreateTime()

public Model.Builder clearCreateTime()

Output only. Timestamp when this Model was uploaded into Vertex AI.

.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

clearDeployedModels()

public Model.Builder clearDeployedModels()

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

clearDescription()

public Model.Builder clearDescription()

The description of the Model.

string description = 3;

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearDisplayName()

public Model.Builder clearDisplayName()

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.

string display_name = 2 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearEncryptionSpec()

public Model.Builder clearEncryptionSpec()

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 24;

Returns
TypeDescription
Model.Builder

clearEtag()

public Model.Builder clearEtag()

Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.

string etag = 16;

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearExplanationSpec()

public Model.Builder clearExplanationSpec()

The default explanation specification for this Model.

The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated.

All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob.

If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.

.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 23;

Returns
TypeDescription
Model.Builder

clearField(Descriptors.FieldDescriptor field)

public Model.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
NameDescription
fieldFieldDescriptor
Returns
TypeDescription
Model.Builder
Overrides

clearLabels()

public Model.Builder clearLabels()
Returns
TypeDescription
Model.Builder

clearMetadata()

public Model.Builder clearMetadata()

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.

.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
Model.Builder

clearMetadataArtifact()

public Model.Builder clearMetadataArtifact()

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}.

string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearMetadataSchemaUri()

public Model.Builder clearMetadataSchemaUri()

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.

string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearModelSourceInfo()

public Model.Builder clearModelSourceInfo()

Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.

.google.cloud.aiplatform.v1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

clearName()

public Model.Builder clearName()

The resource name of the Model.

string name = 1;

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearOneof(Descriptors.OneofDescriptor oneof)

public Model.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
NameDescription
oneofOneofDescriptor
Returns
TypeDescription
Model.Builder
Overrides

clearOriginalModelInfo()

public Model.Builder clearOriginalModelInfo()

Output only. If this Model is a copy of another Model, this contains info about the original.

.google.cloud.aiplatform.v1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

clearPipelineJob()

public Model.Builder clearPipelineJob()

Optional. This field is populated if the model is produced by a pipeline job.

string pipeline_job = 47 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearPredictSchemata()

public Model.Builder clearPredictSchemata()

The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.

.google.cloud.aiplatform.v1.PredictSchemata predict_schemata = 4;

Returns
TypeDescription
Model.Builder

clearSupportedDeploymentResourcesTypes()

public Model.Builder clearSupportedDeploymentResourcesTypes()

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearSupportedExportFormats()

public Model.Builder clearSupportedExportFormats()

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

clearSupportedInputStorageFormats()

public Model.Builder clearSupportedInputStorageFormats()

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearSupportedOutputStorageFormats()

public Model.Builder clearSupportedOutputStorageFormats()

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearTrainingPipeline()

public Model.Builder clearTrainingPipeline()

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.

string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearUpdateTime()

public Model.Builder clearUpdateTime()

Output only. Timestamp when this Model was most recently updated.

.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

clearVersionAliases()

public Model.Builder clearVersionAliases()

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearVersionCreateTime()

public Model.Builder clearVersionCreateTime()

Output only. Timestamp when this version was created.

.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

clearVersionDescription()

public Model.Builder clearVersionDescription()

The description of this version.

string version_description = 30;

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearVersionId()

public Model.Builder clearVersionId()

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.

string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

This builder for chaining.

clearVersionUpdateTime()

public Model.Builder clearVersionUpdateTime()

Output only. Timestamp when this version was most recently updated.

.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.Builder

clone()

public Model.Builder clone()
Returns
TypeDescription
Model.Builder
Overrides

containsLabels(String key)

public boolean containsLabels(String key)

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 17;

Parameter
NameDescription
keyString
Returns
TypeDescription
boolean

getArtifactUri()

public String getArtifactUri()

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.

string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
String

The artifactUri.

getArtifactUriBytes()

public ByteString getArtifactUriBytes()

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.

string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
ByteString

The bytes for artifactUri.

getContainerSpec()

public ModelContainerSpec getContainerSpec()

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.

.google.cloud.aiplatform.v1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];

Returns
TypeDescription
ModelContainerSpec

The containerSpec.

getContainerSpecBuilder()

public ModelContainerSpec.Builder getContainerSpecBuilder()

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.

.google.cloud.aiplatform.v1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];

Returns
TypeDescription
ModelContainerSpec.Builder

getContainerSpecOrBuilder()

public ModelContainerSpecOrBuilder getContainerSpecOrBuilder()

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.

.google.cloud.aiplatform.v1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];

Returns
TypeDescription
ModelContainerSpecOrBuilder

getCreateTime()

public Timestamp getCreateTime()

Output only. Timestamp when this Model was uploaded into Vertex AI.

.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Timestamp

The createTime.

getCreateTimeBuilder()

public Timestamp.Builder getCreateTimeBuilder()

Output only. Timestamp when this Model was uploaded into Vertex AI.

.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Builder

getCreateTimeOrBuilder()

public TimestampOrBuilder getCreateTimeOrBuilder()

Output only. Timestamp when this Model was uploaded into Vertex AI.

.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
TimestampOrBuilder

getDefaultInstanceForType()

public Model getDefaultInstanceForType()
Returns
TypeDescription
Model

getDeployedModels(int index)

public DeployedModelRef getDeployedModels(int index)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
DeployedModelRef

getDeployedModelsBuilder(int index)

public DeployedModelRef.Builder getDeployedModelsBuilder(int index)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
DeployedModelRef.Builder

getDeployedModelsBuilderList()

public List<DeployedModelRef.Builder> getDeployedModelsBuilderList()

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<Builder>

getDeployedModelsCount()

public int getDeployedModelsCount()

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
int

getDeployedModelsList()

public List<DeployedModelRef> getDeployedModelsList()

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<DeployedModelRef>

getDeployedModelsOrBuilder(int index)

public DeployedModelRefOrBuilder getDeployedModelsOrBuilder(int index)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
DeployedModelRefOrBuilder

getDeployedModelsOrBuilderList()

public List<? extends DeployedModelRefOrBuilder> getDeployedModelsOrBuilderList()

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<? extends com.google.cloud.aiplatform.v1.DeployedModelRefOrBuilder>

getDescription()

public String getDescription()

The description of the Model.

string description = 3;

Returns
TypeDescription
String

The description.

getDescriptionBytes()

public ByteString getDescriptionBytes()

The description of the Model.

string description = 3;

Returns
TypeDescription
ByteString

The bytes for description.

getDescriptorForType()

public Descriptors.Descriptor getDescriptorForType()
Returns
TypeDescription
Descriptor
Overrides

getDisplayName()

public String getDisplayName()

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.

string display_name = 2 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
String

The displayName.

getDisplayNameBytes()

public ByteString getDisplayNameBytes()

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.

string display_name = 2 [(.google.api.field_behavior) = REQUIRED];

Returns
TypeDescription
ByteString

The bytes for displayName.

getEncryptionSpec()

public EncryptionSpec getEncryptionSpec()

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 24;

Returns
TypeDescription
EncryptionSpec

The encryptionSpec.

getEncryptionSpecBuilder()

public EncryptionSpec.Builder getEncryptionSpecBuilder()

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 24;

Returns
TypeDescription
EncryptionSpec.Builder

getEncryptionSpecOrBuilder()

public EncryptionSpecOrBuilder getEncryptionSpecOrBuilder()

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 24;

Returns
TypeDescription
EncryptionSpecOrBuilder

getEtag()

public String getEtag()

Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.

string etag = 16;

Returns
TypeDescription
String

The etag.

getEtagBytes()

public ByteString getEtagBytes()

Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.

string etag = 16;

Returns
TypeDescription
ByteString

The bytes for etag.

getExplanationSpec()

public ExplanationSpec getExplanationSpec()

The default explanation specification for this Model.

The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated.

All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob.

If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.

.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 23;

Returns
TypeDescription
ExplanationSpec

The explanationSpec.

getExplanationSpecBuilder()

public ExplanationSpec.Builder getExplanationSpecBuilder()

The default explanation specification for this Model.

The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated.

All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob.

If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.

.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 23;

Returns
TypeDescription
ExplanationSpec.Builder

getExplanationSpecOrBuilder()

public ExplanationSpecOrBuilder getExplanationSpecOrBuilder()

The default explanation specification for this Model.

The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated.

All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob.

If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.

.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 23;

Returns
TypeDescription
ExplanationSpecOrBuilder

getLabels()

public Map<String,String> getLabels()

Use #getLabelsMap() instead.

Returns
TypeDescription
Map<String,String>

getLabelsCount()

public int getLabelsCount()

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 17;

Returns
TypeDescription
int

getLabelsMap()

public Map<String,String> getLabelsMap()

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 17;

Returns
TypeDescription
Map<String,String>

getLabelsOrDefault(String key, String defaultValue)

public String getLabelsOrDefault(String key, String defaultValue)

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 17;

Parameters
NameDescription
keyString
defaultValueString
Returns
TypeDescription
String

getLabelsOrThrow(String key)

public String getLabelsOrThrow(String key)

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 17;

Parameter
NameDescription
keyString
Returns
TypeDescription
String

getMetadata()

public Value getMetadata()

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.

.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
Value

The metadata.

getMetadataArtifact()

public String getMetadataArtifact()

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}.

string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
String

The metadataArtifact.

getMetadataArtifactBytes()

public ByteString getMetadataArtifactBytes()

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}.

string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ByteString

The bytes for metadataArtifact.

getMetadataBuilder()

public Value.Builder getMetadataBuilder()

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.

.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
Builder

getMetadataOrBuilder()

public ValueOrBuilder getMetadataOrBuilder()

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.

.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
ValueOrBuilder

getMetadataSchemaUri()

public String getMetadataSchemaUri()

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.

string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
String

The metadataSchemaUri.

getMetadataSchemaUriBytes()

public ByteString getMetadataSchemaUriBytes()

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.

string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
ByteString

The bytes for metadataSchemaUri.

getModelSourceInfo()

public ModelSourceInfo getModelSourceInfo()

Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.

.google.cloud.aiplatform.v1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ModelSourceInfo

The modelSourceInfo.

getModelSourceInfoBuilder()

public ModelSourceInfo.Builder getModelSourceInfoBuilder()

Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.

.google.cloud.aiplatform.v1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ModelSourceInfo.Builder

getModelSourceInfoOrBuilder()

public ModelSourceInfoOrBuilder getModelSourceInfoOrBuilder()

Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.

.google.cloud.aiplatform.v1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ModelSourceInfoOrBuilder

getMutableLabels()

public Map<String,String> getMutableLabels()

Use alternate mutation accessors instead.

Returns
TypeDescription
Map<String,String>

getName()

public String getName()

The resource name of the Model.

string name = 1;

Returns
TypeDescription
String

The name.

getNameBytes()

public ByteString getNameBytes()

The resource name of the Model.

string name = 1;

Returns
TypeDescription
ByteString

The bytes for name.

getOriginalModelInfo()

public Model.OriginalModelInfo getOriginalModelInfo()

Output only. If this Model is a copy of another Model, this contains info about the original.

.google.cloud.aiplatform.v1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.OriginalModelInfo

The originalModelInfo.

getOriginalModelInfoBuilder()

public Model.OriginalModelInfo.Builder getOriginalModelInfoBuilder()

Output only. If this Model is a copy of another Model, this contains info about the original.

.google.cloud.aiplatform.v1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.OriginalModelInfo.Builder

getOriginalModelInfoOrBuilder()

public Model.OriginalModelInfoOrBuilder getOriginalModelInfoOrBuilder()

Output only. If this Model is a copy of another Model, this contains info about the original.

.google.cloud.aiplatform.v1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Model.OriginalModelInfoOrBuilder

getPipelineJob()

public String getPipelineJob()

Optional. This field is populated if the model is produced by a pipeline job.

string pipeline_job = 47 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }

Returns
TypeDescription
String

The pipelineJob.

getPipelineJobBytes()

public ByteString getPipelineJobBytes()

Optional. This field is populated if the model is produced by a pipeline job.

string pipeline_job = 47 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }

Returns
TypeDescription
ByteString

The bytes for pipelineJob.

getPredictSchemata()

public PredictSchemata getPredictSchemata()

The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.

.google.cloud.aiplatform.v1.PredictSchemata predict_schemata = 4;

Returns
TypeDescription
PredictSchemata

The predictSchemata.

getPredictSchemataBuilder()

public PredictSchemata.Builder getPredictSchemataBuilder()

The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.

.google.cloud.aiplatform.v1.PredictSchemata predict_schemata = 4;

Returns
TypeDescription
PredictSchemata.Builder

getPredictSchemataOrBuilder()

public PredictSchemataOrBuilder getPredictSchemataOrBuilder()

The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.

.google.cloud.aiplatform.v1.PredictSchemata predict_schemata = 4;

Returns
TypeDescription
PredictSchemataOrBuilder

getSupportedDeploymentResourcesTypes(int index)

public Model.DeploymentResourcesType getSupportedDeploymentResourcesTypes(int index)

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint

The index of the element to return.

Returns
TypeDescription
Model.DeploymentResourcesType

The supportedDeploymentResourcesTypes at the given index.

getSupportedDeploymentResourcesTypesCount()

public int getSupportedDeploymentResourcesTypesCount()

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
int

The count of supportedDeploymentResourcesTypes.

getSupportedDeploymentResourcesTypesList()

public List<Model.DeploymentResourcesType> getSupportedDeploymentResourcesTypesList()

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<DeploymentResourcesType>

A list containing the supportedDeploymentResourcesTypes.

getSupportedDeploymentResourcesTypesValue(int index)

public int getSupportedDeploymentResourcesTypesValue(int index)

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint

The index of the value to return.

Returns
TypeDescription
int

The enum numeric value on the wire of supportedDeploymentResourcesTypes at the given index.

getSupportedDeploymentResourcesTypesValueList()

public List<Integer> getSupportedDeploymentResourcesTypesValueList()

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<Integer>

A list containing the enum numeric values on the wire for supportedDeploymentResourcesTypes.

getSupportedExportFormats(int index)

public Model.ExportFormat getSupportedExportFormats(int index)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
Model.ExportFormat

getSupportedExportFormatsBuilder(int index)

public Model.ExportFormat.Builder getSupportedExportFormatsBuilder(int index)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
Model.ExportFormat.Builder

getSupportedExportFormatsBuilderList()

public List<Model.ExportFormat.Builder> getSupportedExportFormatsBuilderList()

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<Builder>

getSupportedExportFormatsCount()

public int getSupportedExportFormatsCount()

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
int

getSupportedExportFormatsList()

public List<Model.ExportFormat> getSupportedExportFormatsList()

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<ExportFormat>

getSupportedExportFormatsOrBuilder(int index)

public Model.ExportFormatOrBuilder getSupportedExportFormatsOrBuilder(int index)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
Model.ExportFormatOrBuilder

getSupportedExportFormatsOrBuilderList()

public List<? extends Model.ExportFormatOrBuilder> getSupportedExportFormatsOrBuilderList()

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
List<? extends com.google.cloud.aiplatform.v1.Model.ExportFormatOrBuilder>

getSupportedInputStorageFormats(int index)

public String getSupportedInputStorageFormats(int index)

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint

The index of the element to return.

Returns
TypeDescription
String

The supportedInputStorageFormats at the given index.

getSupportedInputStorageFormatsBytes(int index)

public ByteString getSupportedInputStorageFormatsBytes(int index)

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint

The index of the value to return.

Returns
TypeDescription
ByteString

The bytes of the supportedInputStorageFormats at the given index.

getSupportedInputStorageFormatsCount()

public int getSupportedInputStorageFormatsCount()

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
int

The count of supportedInputStorageFormats.

getSupportedInputStorageFormatsList()

public ProtocolStringList getSupportedInputStorageFormatsList()

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ProtocolStringList

A list containing the supportedInputStorageFormats.

getSupportedOutputStorageFormats(int index)

public String getSupportedOutputStorageFormats(int index)

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint

The index of the element to return.

Returns
TypeDescription
String

The supportedOutputStorageFormats at the given index.

getSupportedOutputStorageFormatsBytes(int index)

public ByteString getSupportedOutputStorageFormatsBytes(int index)

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint

The index of the value to return.

Returns
TypeDescription
ByteString

The bytes of the supportedOutputStorageFormats at the given index.

getSupportedOutputStorageFormatsCount()

public int getSupportedOutputStorageFormatsCount()

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
int

The count of supportedOutputStorageFormats.

getSupportedOutputStorageFormatsList()

public ProtocolStringList getSupportedOutputStorageFormatsList()

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ProtocolStringList

A list containing the supportedOutputStorageFormats.

getTrainingPipeline()

public String getTrainingPipeline()

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.

string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }

Returns
TypeDescription
String

The trainingPipeline.

getTrainingPipelineBytes()

public ByteString getTrainingPipelineBytes()

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.

string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }

Returns
TypeDescription
ByteString

The bytes for trainingPipeline.

getUpdateTime()

public Timestamp getUpdateTime()

Output only. Timestamp when this Model was most recently updated.

.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Timestamp

The updateTime.

getUpdateTimeBuilder()

public Timestamp.Builder getUpdateTimeBuilder()

Output only. Timestamp when this Model was most recently updated.

.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Builder

getUpdateTimeOrBuilder()

public TimestampOrBuilder getUpdateTimeOrBuilder()

Output only. Timestamp when this Model was most recently updated.

.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
TimestampOrBuilder

getVersionAliases(int index)

public String getVersionAliases(int index)

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Parameter
NameDescription
indexint

The index of the element to return.

Returns
TypeDescription
String

The versionAliases at the given index.

getVersionAliasesBytes(int index)

public ByteString getVersionAliasesBytes(int index)

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Parameter
NameDescription
indexint

The index of the value to return.

Returns
TypeDescription
ByteString

The bytes of the versionAliases at the given index.

getVersionAliasesCount()

public int getVersionAliasesCount()

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Returns
TypeDescription
int

The count of versionAliases.

getVersionAliasesList()

public ProtocolStringList getVersionAliasesList()

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Returns
TypeDescription
ProtocolStringList

A list containing the versionAliases.

getVersionCreateTime()

public Timestamp getVersionCreateTime()

Output only. Timestamp when this version was created.

.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Timestamp

The versionCreateTime.

getVersionCreateTimeBuilder()

public Timestamp.Builder getVersionCreateTimeBuilder()

Output only. Timestamp when this version was created.

.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Builder

getVersionCreateTimeOrBuilder()

public TimestampOrBuilder getVersionCreateTimeOrBuilder()

Output only. Timestamp when this version was created.

.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
TimestampOrBuilder

getVersionDescription()

public String getVersionDescription()

The description of this version.

string version_description = 30;

Returns
TypeDescription
String

The versionDescription.

getVersionDescriptionBytes()

public ByteString getVersionDescriptionBytes()

The description of this version.

string version_description = 30;

Returns
TypeDescription
ByteString

The bytes for versionDescription.

getVersionId()

public String getVersionId()

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.

string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
String

The versionId.

getVersionIdBytes()

public ByteString getVersionIdBytes()

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.

string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
ByteString

The bytes for versionId.

getVersionUpdateTime()

public Timestamp getVersionUpdateTime()

Output only. Timestamp when this version was most recently updated.

.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Timestamp

The versionUpdateTime.

getVersionUpdateTimeBuilder()

public Timestamp.Builder getVersionUpdateTimeBuilder()

Output only. Timestamp when this version was most recently updated.

.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
Builder

getVersionUpdateTimeOrBuilder()

public TimestampOrBuilder getVersionUpdateTimeOrBuilder()

Output only. Timestamp when this version was most recently updated.

.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
TimestampOrBuilder

hasContainerSpec()

public boolean hasContainerSpec()

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.

.google.cloud.aiplatform.v1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];

Returns
TypeDescription
boolean

Whether the containerSpec field is set.

hasCreateTime()

public boolean hasCreateTime()

Output only. Timestamp when this Model was uploaded into Vertex AI.

.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the createTime field is set.

hasEncryptionSpec()

public boolean hasEncryptionSpec()

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 24;

Returns
TypeDescription
boolean

Whether the encryptionSpec field is set.

hasExplanationSpec()

public boolean hasExplanationSpec()

The default explanation specification for this Model.

The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated.

All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob.

If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.

.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 23;

Returns
TypeDescription
boolean

Whether the explanationSpec field is set.

hasMetadata()

public boolean hasMetadata()

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.

.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];

Returns
TypeDescription
boolean

Whether the metadata field is set.

hasModelSourceInfo()

public boolean hasModelSourceInfo()

Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.

.google.cloud.aiplatform.v1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the modelSourceInfo field is set.

hasOriginalModelInfo()

public boolean hasOriginalModelInfo()

Output only. If this Model is a copy of another Model, this contains info about the original.

.google.cloud.aiplatform.v1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the originalModelInfo field is set.

hasPredictSchemata()

public boolean hasPredictSchemata()

The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.

.google.cloud.aiplatform.v1.PredictSchemata predict_schemata = 4;

Returns
TypeDescription
boolean

Whether the predictSchemata field is set.

hasUpdateTime()

public boolean hasUpdateTime()

Output only. Timestamp when this Model was most recently updated.

.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the updateTime field is set.

hasVersionCreateTime()

public boolean hasVersionCreateTime()

Output only. Timestamp when this version was created.

.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the versionCreateTime field is set.

hasVersionUpdateTime()

public boolean hasVersionUpdateTime()

Output only. Timestamp when this version was most recently updated.

.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];

Returns
TypeDescription
boolean

Whether the versionUpdateTime field is set.

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
TypeDescription
FieldAccessorTable
Overrides

internalGetMapField(int number)

protected MapField internalGetMapField(int number)
Parameter
NameDescription
numberint
Returns
TypeDescription
MapField
Overrides

internalGetMutableMapField(int number)

protected MapField internalGetMutableMapField(int number)
Parameter
NameDescription
numberint
Returns
TypeDescription
MapField
Overrides

isInitialized()

public final boolean isInitialized()
Returns
TypeDescription
boolean
Overrides

mergeContainerSpec(ModelContainerSpec value)

public Model.Builder mergeContainerSpec(ModelContainerSpec value)

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.

.google.cloud.aiplatform.v1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];

Parameter
NameDescription
valueModelContainerSpec
Returns
TypeDescription
Model.Builder

mergeCreateTime(Timestamp value)

public Model.Builder mergeCreateTime(Timestamp value)

Output only. Timestamp when this Model was uploaded into Vertex AI.

.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueTimestamp
Returns
TypeDescription
Model.Builder

mergeEncryptionSpec(EncryptionSpec value)

public Model.Builder mergeEncryptionSpec(EncryptionSpec value)

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 24;

Parameter
NameDescription
valueEncryptionSpec
Returns
TypeDescription
Model.Builder

mergeExplanationSpec(ExplanationSpec value)

public Model.Builder mergeExplanationSpec(ExplanationSpec value)

The default explanation specification for this Model.

The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated.

All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob.

If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.

.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 23;

Parameter
NameDescription
valueExplanationSpec
Returns
TypeDescription
Model.Builder

mergeFrom(Model other)

public Model.Builder mergeFrom(Model other)
Parameter
NameDescription
otherModel
Returns
TypeDescription
Model.Builder

mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public Model.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputCodedInputStream
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
Model.Builder
Overrides
Exceptions
TypeDescription
IOException

mergeFrom(Message other)

public Model.Builder mergeFrom(Message other)
Parameter
NameDescription
otherMessage
Returns
TypeDescription
Model.Builder
Overrides

mergeMetadata(Value value)

public Model.Builder mergeMetadata(Value value)

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.

.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueValue
Returns
TypeDescription
Model.Builder

mergeModelSourceInfo(ModelSourceInfo value)

public Model.Builder mergeModelSourceInfo(ModelSourceInfo value)

Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.

.google.cloud.aiplatform.v1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueModelSourceInfo
Returns
TypeDescription
Model.Builder

mergeOriginalModelInfo(Model.OriginalModelInfo value)

public Model.Builder mergeOriginalModelInfo(Model.OriginalModelInfo value)

Output only. If this Model is a copy of another Model, this contains info about the original.

.google.cloud.aiplatform.v1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueModel.OriginalModelInfo
Returns
TypeDescription
Model.Builder

mergePredictSchemata(PredictSchemata value)

public Model.Builder mergePredictSchemata(PredictSchemata value)

The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.

.google.cloud.aiplatform.v1.PredictSchemata predict_schemata = 4;

Parameter
NameDescription
valuePredictSchemata
Returns
TypeDescription
Model.Builder

mergeUnknownFields(UnknownFieldSet unknownFields)

public final Model.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
NameDescription
unknownFieldsUnknownFieldSet
Returns
TypeDescription
Model.Builder
Overrides

mergeUpdateTime(Timestamp value)

public Model.Builder mergeUpdateTime(Timestamp value)

Output only. Timestamp when this Model was most recently updated.

.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueTimestamp
Returns
TypeDescription
Model.Builder

mergeVersionCreateTime(Timestamp value)

public Model.Builder mergeVersionCreateTime(Timestamp value)

Output only. Timestamp when this version was created.

.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueTimestamp
Returns
TypeDescription
Model.Builder

mergeVersionUpdateTime(Timestamp value)

public Model.Builder mergeVersionUpdateTime(Timestamp value)

Output only. Timestamp when this version was most recently updated.

.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueTimestamp
Returns
TypeDescription
Model.Builder

putAllLabels(Map<String,String> values)

public Model.Builder putAllLabels(Map<String,String> values)

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 17;

Parameter
NameDescription
valuesMap<String,String>
Returns
TypeDescription
Model.Builder

putLabels(String key, String value)

public Model.Builder putLabels(String key, String value)

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 17;

Parameters
NameDescription
keyString
valueString
Returns
TypeDescription
Model.Builder

removeDeployedModels(int index)

public Model.Builder removeDeployedModels(int index)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
Model.Builder

removeLabels(String key)

public Model.Builder removeLabels(String key)

The labels with user-defined metadata to organize your Models.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

map<string, string> labels = 17;

Parameter
NameDescription
keyString
Returns
TypeDescription
Model.Builder

removeSupportedExportFormats(int index)

public Model.Builder removeSupportedExportFormats(int index)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
indexint
Returns
TypeDescription
Model.Builder

setArtifactUri(String value)

public Model.Builder setArtifactUri(String value)

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.

string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueString

The artifactUri to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setArtifactUriBytes(ByteString value)

public Model.Builder setArtifactUriBytes(ByteString value)

Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not present for AutoML Models or Large Models.

string artifact_uri = 26 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueByteString

The bytes for artifactUri to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setContainerSpec(ModelContainerSpec value)

public Model.Builder setContainerSpec(ModelContainerSpec value)

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.

.google.cloud.aiplatform.v1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];

Parameter
NameDescription
valueModelContainerSpec
Returns
TypeDescription
Model.Builder

setContainerSpec(ModelContainerSpec.Builder builderForValue)

public Model.Builder setContainerSpec(ModelContainerSpec.Builder builderForValue)

Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not present for AutoML Models or Large Models.

.google.cloud.aiplatform.v1.ModelContainerSpec container_spec = 9 [(.google.api.field_behavior) = INPUT_ONLY];

Parameter
NameDescription
builderForValueModelContainerSpec.Builder
Returns
TypeDescription
Model.Builder

setCreateTime(Timestamp value)

public Model.Builder setCreateTime(Timestamp value)

Output only. Timestamp when this Model was uploaded into Vertex AI.

.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueTimestamp
Returns
TypeDescription
Model.Builder

setCreateTime(Timestamp.Builder builderForValue)

public Model.Builder setCreateTime(Timestamp.Builder builderForValue)

Output only. Timestamp when this Model was uploaded into Vertex AI.

.google.protobuf.Timestamp create_time = 13 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
builderForValueBuilder
Returns
TypeDescription
Model.Builder

setDeployedModels(int index, DeployedModelRef value)

public Model.Builder setDeployedModels(int index, DeployedModelRef value)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint
valueDeployedModelRef
Returns
TypeDescription
Model.Builder

setDeployedModels(int index, DeployedModelRef.Builder builderForValue)

public Model.Builder setDeployedModels(int index, DeployedModelRef.Builder builderForValue)

Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.

repeated .google.cloud.aiplatform.v1.DeployedModelRef deployed_models = 15 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint
builderForValueDeployedModelRef.Builder
Returns
TypeDescription
Model.Builder

setDescription(String value)

public Model.Builder setDescription(String value)

The description of the Model.

string description = 3;

Parameter
NameDescription
valueString

The description to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setDescriptionBytes(ByteString value)

public Model.Builder setDescriptionBytes(ByteString value)

The description of the Model.

string description = 3;

Parameter
NameDescription
valueByteString

The bytes for description to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setDisplayName(String value)

public Model.Builder setDisplayName(String value)

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.

string display_name = 2 [(.google.api.field_behavior) = REQUIRED];

Parameter
NameDescription
valueString

The displayName to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setDisplayNameBytes(ByteString value)

public Model.Builder setDisplayNameBytes(ByteString value)

Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.

string display_name = 2 [(.google.api.field_behavior) = REQUIRED];

Parameter
NameDescription
valueByteString

The bytes for displayName to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setEncryptionSpec(EncryptionSpec value)

public Model.Builder setEncryptionSpec(EncryptionSpec value)

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 24;

Parameter
NameDescription
valueEncryptionSpec
Returns
TypeDescription
Model.Builder

setEncryptionSpec(EncryptionSpec.Builder builderForValue)

public Model.Builder setEncryptionSpec(EncryptionSpec.Builder builderForValue)

Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.

.google.cloud.aiplatform.v1.EncryptionSpec encryption_spec = 24;

Parameter
NameDescription
builderForValueEncryptionSpec.Builder
Returns
TypeDescription
Model.Builder

setEtag(String value)

public Model.Builder setEtag(String value)

Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.

string etag = 16;

Parameter
NameDescription
valueString

The etag to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setEtagBytes(ByteString value)

public Model.Builder setEtagBytes(ByteString value)

Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.

string etag = 16;

Parameter
NameDescription
valueByteString

The bytes for etag to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setExplanationSpec(ExplanationSpec value)

public Model.Builder setExplanationSpec(ExplanationSpec value)

The default explanation specification for this Model.

The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated.

All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob.

If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.

.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 23;

Parameter
NameDescription
valueExplanationSpec
Returns
TypeDescription
Model.Builder

setExplanationSpec(ExplanationSpec.Builder builderForValue)

public Model.Builder setExplanationSpec(ExplanationSpec.Builder builderForValue)

The default explanation specification for this Model.

The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated.

All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob.

If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.

.google.cloud.aiplatform.v1.ExplanationSpec explanation_spec = 23;

Parameter
NameDescription
builderForValueExplanationSpec.Builder
Returns
TypeDescription
Model.Builder

setField(Descriptors.FieldDescriptor field, Object value)

public Model.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
NameDescription
fieldFieldDescriptor
valueObject
Returns
TypeDescription
Model.Builder
Overrides

setMetadata(Value value)

public Model.Builder setMetadata(Value value)

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.

.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueValue
Returns
TypeDescription
Model.Builder

setMetadata(Value.Builder builderForValue)

public Model.Builder setMetadata(Value.Builder builderForValue)

Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.

.google.protobuf.Value metadata = 6 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
builderForValueBuilder
Returns
TypeDescription
Model.Builder

setMetadataArtifact(String value)

public Model.Builder setMetadataArtifact(String value)

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}.

string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueString

The metadataArtifact to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setMetadataArtifactBytes(ByteString value)

public Model.Builder setMetadataArtifactBytes(ByteString value)

Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}.

string metadata_artifact = 44 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueByteString

The bytes for metadataArtifact to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setMetadataSchemaUri(String value)

public Model.Builder setMetadataSchemaUri(String value)

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.

string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueString

The metadataSchemaUri to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setMetadataSchemaUriBytes(ByteString value)

public Model.Builder setMetadataSchemaUriBytes(ByteString value)

Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.

string metadata_schema_uri = 5 [(.google.api.field_behavior) = IMMUTABLE];

Parameter
NameDescription
valueByteString

The bytes for metadataSchemaUri to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setModelSourceInfo(ModelSourceInfo value)

public Model.Builder setModelSourceInfo(ModelSourceInfo value)

Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.

.google.cloud.aiplatform.v1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueModelSourceInfo
Returns
TypeDescription
Model.Builder

setModelSourceInfo(ModelSourceInfo.Builder builderForValue)

public Model.Builder setModelSourceInfo(ModelSourceInfo.Builder builderForValue)

Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or existing Vertex AI Model.

.google.cloud.aiplatform.v1.ModelSourceInfo model_source_info = 38 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
builderForValueModelSourceInfo.Builder
Returns
TypeDescription
Model.Builder

setName(String value)

public Model.Builder setName(String value)

The resource name of the Model.

string name = 1;

Parameter
NameDescription
valueString

The name to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setNameBytes(ByteString value)

public Model.Builder setNameBytes(ByteString value)

The resource name of the Model.

string name = 1;

Parameter
NameDescription
valueByteString

The bytes for name to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setOriginalModelInfo(Model.OriginalModelInfo value)

public Model.Builder setOriginalModelInfo(Model.OriginalModelInfo value)

Output only. If this Model is a copy of another Model, this contains info about the original.

.google.cloud.aiplatform.v1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueModel.OriginalModelInfo
Returns
TypeDescription
Model.Builder

setOriginalModelInfo(Model.OriginalModelInfo.Builder builderForValue)

public Model.Builder setOriginalModelInfo(Model.OriginalModelInfo.Builder builderForValue)

Output only. If this Model is a copy of another Model, this contains info about the original.

.google.cloud.aiplatform.v1.Model.OriginalModelInfo original_model_info = 34 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
builderForValueModel.OriginalModelInfo.Builder
Returns
TypeDescription
Model.Builder

setPipelineJob(String value)

public Model.Builder setPipelineJob(String value)

Optional. This field is populated if the model is produced by a pipeline job.

string pipeline_job = 47 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }

Parameter
NameDescription
valueString

The pipelineJob to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setPipelineJobBytes(ByteString value)

public Model.Builder setPipelineJobBytes(ByteString value)

Optional. This field is populated if the model is produced by a pipeline job.

string pipeline_job = 47 [(.google.api.field_behavior) = OPTIONAL, (.google.api.resource_reference) = { ... }

Parameter
NameDescription
valueByteString

The bytes for pipelineJob to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setPredictSchemata(PredictSchemata value)

public Model.Builder setPredictSchemata(PredictSchemata value)

The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.

.google.cloud.aiplatform.v1.PredictSchemata predict_schemata = 4;

Parameter
NameDescription
valuePredictSchemata
Returns
TypeDescription
Model.Builder

setPredictSchemata(PredictSchemata.Builder builderForValue)

public Model.Builder setPredictSchemata(PredictSchemata.Builder builderForValue)

The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.

.google.cloud.aiplatform.v1.PredictSchemata predict_schemata = 4;

Parameter
NameDescription
builderForValuePredictSchemata.Builder
Returns
TypeDescription
Model.Builder

setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)

public Model.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
NameDescription
fieldFieldDescriptor
indexint
valueObject
Returns
TypeDescription
Model.Builder
Overrides

setSupportedDeploymentResourcesTypes(int index, Model.DeploymentResourcesType value)

public Model.Builder setSupportedDeploymentResourcesTypes(int index, Model.DeploymentResourcesType value)

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint

The index to set the value at.

valueModel.DeploymentResourcesType

The supportedDeploymentResourcesTypes to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setSupportedDeploymentResourcesTypesValue(int index, int value)

public Model.Builder setSupportedDeploymentResourcesTypesValue(int index, int value)

Output only. When this Model is deployed, its prediction resources are described by the prediction_resources field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.

repeated .google.cloud.aiplatform.v1.Model.DeploymentResourcesType supported_deployment_resources_types = 10 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint

The index to set the value at.

valueint

The enum numeric value on the wire for supportedDeploymentResourcesTypes to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setSupportedExportFormats(int index, Model.ExportFormat value)

public Model.Builder setSupportedExportFormats(int index, Model.ExportFormat value)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint
valueModel.ExportFormat
Returns
TypeDescription
Model.Builder

setSupportedExportFormats(int index, Model.ExportFormat.Builder builderForValue)

public Model.Builder setSupportedExportFormats(int index, Model.ExportFormat.Builder builderForValue)

Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.

repeated .google.cloud.aiplatform.v1.Model.ExportFormat supported_export_formats = 20 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint
builderForValueModel.ExportFormat.Builder
Returns
TypeDescription
Model.Builder

setSupportedInputStorageFormats(int index, String value)

public Model.Builder setSupportedInputStorageFormats(int index, String value)

Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema.

The possible formats are:

  • jsonl The JSON Lines format, where each instance is a single line. Uses GcsSource.

  • csv The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource.

  • tf-record The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource.

  • tf-record-gzip Similar to tf-record, but the file is gzipped. Uses GcsSource.

  • bigquery Each instance is a single row in BigQuery. Uses BigQuerySource.

  • file-list Each line of the file is the location of an instance to process, uses gcs_source field of the InputConfig object.

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_input_storage_formats = 11 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint

The index to set the value at.

valueString

The supportedInputStorageFormats to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setSupportedOutputStorageFormats(int index, String value)

public Model.Builder setSupportedOutputStorageFormats(int index, String value)

Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).

The possible formats are:

  • jsonl The JSON Lines format, where each prediction is a single line. Uses GcsDestination.

  • csv The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination.

  • bigquery Each prediction is a single row in a BigQuery table, uses BigQueryDestination .

If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.

repeated string supported_output_storage_formats = 12 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameters
NameDescription
indexint

The index to set the value at.

valueString

The supportedOutputStorageFormats to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setTrainingPipeline(String value)

public Model.Builder setTrainingPipeline(String value)

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.

string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }

Parameter
NameDescription
valueString

The trainingPipeline to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setTrainingPipelineBytes(ByteString value)

public Model.Builder setTrainingPipelineBytes(ByteString value)

Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.

string training_pipeline = 7 [(.google.api.field_behavior) = OUTPUT_ONLY, (.google.api.resource_reference) = { ... }

Parameter
NameDescription
valueByteString

The bytes for trainingPipeline to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setUnknownFields(UnknownFieldSet unknownFields)

public final Model.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
NameDescription
unknownFieldsUnknownFieldSet
Returns
TypeDescription
Model.Builder
Overrides

setUpdateTime(Timestamp value)

public Model.Builder setUpdateTime(Timestamp value)

Output only. Timestamp when this Model was most recently updated.

.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueTimestamp
Returns
TypeDescription
Model.Builder

setUpdateTime(Timestamp.Builder builderForValue)

public Model.Builder setUpdateTime(Timestamp.Builder builderForValue)

Output only. Timestamp when this Model was most recently updated.

.google.protobuf.Timestamp update_time = 14 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
builderForValueBuilder
Returns
TypeDescription
Model.Builder

setVersionAliases(int index, String value)

public Model.Builder setVersionAliases(int index, String value)

User provided version aliases so that a model version can be referenced via alias (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_alias} instead of auto-generated version id (i.e. projects/{project}/locations/{location}/models/{model_id}@{version_id}). The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.

repeated string version_aliases = 29;

Parameters
NameDescription
indexint

The index to set the value at.

valueString

The versionAliases to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setVersionCreateTime(Timestamp value)

public Model.Builder setVersionCreateTime(Timestamp value)

Output only. Timestamp when this version was created.

.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueTimestamp
Returns
TypeDescription
Model.Builder

setVersionCreateTime(Timestamp.Builder builderForValue)

public Model.Builder setVersionCreateTime(Timestamp.Builder builderForValue)

Output only. Timestamp when this version was created.

.google.protobuf.Timestamp version_create_time = 31 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
builderForValueBuilder
Returns
TypeDescription
Model.Builder

setVersionDescription(String value)

public Model.Builder setVersionDescription(String value)

The description of this version.

string version_description = 30;

Parameter
NameDescription
valueString

The versionDescription to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setVersionDescriptionBytes(ByteString value)

public Model.Builder setVersionDescriptionBytes(ByteString value)

The description of this version.

string version_description = 30;

Parameter
NameDescription
valueByteString

The bytes for versionDescription to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setVersionId(String value)

public Model.Builder setVersionId(String value)

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.

string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueString

The versionId to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setVersionIdBytes(ByteString value)

public Model.Builder setVersionIdBytes(ByteString value)

Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.

string version_id = 28 [(.google.api.field_behavior) = IMMUTABLE, (.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueByteString

The bytes for versionId to set.

Returns
TypeDescription
Model.Builder

This builder for chaining.

setVersionUpdateTime(Timestamp value)

public Model.Builder setVersionUpdateTime(Timestamp value)

Output only. Timestamp when this version was most recently updated.

.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
valueTimestamp
Returns
TypeDescription
Model.Builder

setVersionUpdateTime(Timestamp.Builder builderForValue)

public Model.Builder setVersionUpdateTime(Timestamp.Builder builderForValue)

Output only. Timestamp when this version was most recently updated.

.google.protobuf.Timestamp version_update_time = 32 [(.google.api.field_behavior) = OUTPUT_ONLY];

Parameter
NameDescription
builderForValueBuilder
Returns
TypeDescription
Model.Builder