Class ActiveLearningConfig (3.13.0)

See more code actions.
public final class ActiveLearningConfig extends GeneratedMessageV3 implements ActiveLearningConfigOrBuilder

Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.

Protobuf type google.cloud.aiplatform.v1beta1.ActiveLearningConfig

Static Fields

MAX_DATA_ITEM_COUNT_FIELD_NUMBER

public static final int MAX_DATA_ITEM_COUNT_FIELD_NUMBER
Field Value
TypeDescription
int

MAX_DATA_ITEM_PERCENTAGE_FIELD_NUMBER

public static final int MAX_DATA_ITEM_PERCENTAGE_FIELD_NUMBER
Field Value
TypeDescription
int

SAMPLE_CONFIG_FIELD_NUMBER

public static final int SAMPLE_CONFIG_FIELD_NUMBER
Field Value
TypeDescription
int

TRAINING_CONFIG_FIELD_NUMBER

public static final int TRAINING_CONFIG_FIELD_NUMBER
Field Value
TypeDescription
int

Static Methods

getDefaultInstance()

public static ActiveLearningConfig getDefaultInstance()
Returns
TypeDescription
ActiveLearningConfig

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
TypeDescription
Descriptor

newBuilder()

public static ActiveLearningConfig.Builder newBuilder()
Returns

newBuilder(ActiveLearningConfig prototype)

public static ActiveLearningConfig.Builder newBuilder(ActiveLearningConfig prototype)
Parameter
NameDescription
prototypeActiveLearningConfig
Returns

parseDelimitedFrom(InputStream input)

public static ActiveLearningConfig parseDelimitedFrom(InputStream input)
Parameter
NameDescription
inputInputStream
Returns
TypeDescription
ActiveLearningConfig
Exceptions
TypeDescription
IOException

parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

public static ActiveLearningConfig parseDelimitedFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputInputStream
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
ActiveLearningConfig
Exceptions
TypeDescription
IOException

parseFrom(byte[] data)

public static ActiveLearningConfig parseFrom(byte[] data)
Parameter
NameDescription
databyte[]
Returns
TypeDescription
ActiveLearningConfig
Exceptions

parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)

public static ActiveLearningConfig parseFrom(byte[] data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
databyte[]
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
ActiveLearningConfig
Exceptions

parseFrom(ByteString data)

public static ActiveLearningConfig parseFrom(ByteString data)
Parameter
NameDescription
dataByteString
Returns
TypeDescription
ActiveLearningConfig
Exceptions

parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)

public static ActiveLearningConfig parseFrom(ByteString data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
dataByteString
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
ActiveLearningConfig
Exceptions

parseFrom(CodedInputStream input)

public static ActiveLearningConfig parseFrom(CodedInputStream input)
Parameter
NameDescription
inputCodedInputStream
Returns
TypeDescription
ActiveLearningConfig
Exceptions
TypeDescription
IOException

parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public static ActiveLearningConfig parseFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputCodedInputStream
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
ActiveLearningConfig
Exceptions
TypeDescription
IOException

parseFrom(InputStream input)

public static ActiveLearningConfig parseFrom(InputStream input)
Parameter
NameDescription
inputInputStream
Returns
TypeDescription
ActiveLearningConfig
Exceptions
TypeDescription
IOException

parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)

public static ActiveLearningConfig parseFrom(InputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
inputInputStream
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
ActiveLearningConfig
Exceptions
TypeDescription
IOException

parseFrom(ByteBuffer data)

public static ActiveLearningConfig parseFrom(ByteBuffer data)
Parameter
NameDescription
dataByteBuffer
Returns
TypeDescription
ActiveLearningConfig
Exceptions

parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)

public static ActiveLearningConfig parseFrom(ByteBuffer data, ExtensionRegistryLite extensionRegistry)
Parameters
NameDescription
dataByteBuffer
extensionRegistryExtensionRegistryLite
Returns
TypeDescription
ActiveLearningConfig
Exceptions

parser()

public static Parser<ActiveLearningConfig> parser()
Returns

Methods

equals(Object obj)

public boolean equals(Object obj)
Parameter
NameDescription
objObject
Returns
TypeDescription
boolean
Overrides

getDefaultInstanceForType()

public ActiveLearningConfig getDefaultInstanceForType()
Returns
TypeDescription
ActiveLearningConfig

getHumanLabelingBudgetCase()

public ActiveLearningConfig.HumanLabelingBudgetCase getHumanLabelingBudgetCase()
Returns

getMaxDataItemCount()

public long getMaxDataItemCount()

Max number of human labeled DataItems.

int64 max_data_item_count = 1;

Returns
TypeDescription
long

The maxDataItemCount.

getMaxDataItemPercentage()

public int getMaxDataItemPercentage()

Max percent of total DataItems for human labeling.

int32 max_data_item_percentage = 2;

Returns
TypeDescription
int

The maxDataItemPercentage.

getParserForType()

public Parser<ActiveLearningConfig> getParserForType()
Returns Overrides

getSampleConfig()

public SampleConfig getSampleConfig()

Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.

.google.cloud.aiplatform.v1beta1.SampleConfig sample_config = 3;

Returns
TypeDescription
SampleConfig

The sampleConfig.

getSampleConfigOrBuilder()

public SampleConfigOrBuilder getSampleConfigOrBuilder()

Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.

.google.cloud.aiplatform.v1beta1.SampleConfig sample_config = 3;

Returns
TypeDescription
SampleConfigOrBuilder

getSerializedSize()

public int getSerializedSize()
Returns
TypeDescription
int
Overrides

getTrainingConfig()

public TrainingConfig getTrainingConfig()

CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.

.google.cloud.aiplatform.v1beta1.TrainingConfig training_config = 4;

Returns
TypeDescription
TrainingConfig

The trainingConfig.

getTrainingConfigOrBuilder()

public TrainingConfigOrBuilder getTrainingConfigOrBuilder()

CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.

.google.cloud.aiplatform.v1beta1.TrainingConfig training_config = 4;

Returns

getUnknownFields()

public final UnknownFieldSet getUnknownFields()
Returns
TypeDescription
UnknownFieldSet
Overrides

hasMaxDataItemCount()

public boolean hasMaxDataItemCount()

Max number of human labeled DataItems.

int64 max_data_item_count = 1;

Returns
TypeDescription
boolean

Whether the maxDataItemCount field is set.

hasMaxDataItemPercentage()

public boolean hasMaxDataItemPercentage()

Max percent of total DataItems for human labeling.

int32 max_data_item_percentage = 2;

Returns
TypeDescription
boolean

Whether the maxDataItemPercentage field is set.

hasSampleConfig()

public boolean hasSampleConfig()

Active learning data sampling config. For every active learning labeling iteration, it will select a batch of data based on the sampling strategy.

.google.cloud.aiplatform.v1beta1.SampleConfig sample_config = 3;

Returns
TypeDescription
boolean

Whether the sampleConfig field is set.

hasTrainingConfig()

public boolean hasTrainingConfig()

CMLE training config. For every active learning labeling iteration, system will train a machine learning model on CMLE. The trained model will be used by data sampling algorithm to select DataItems.

.google.cloud.aiplatform.v1beta1.TrainingConfig training_config = 4;

Returns
TypeDescription
boolean

Whether the trainingConfig field is set.

hashCode()

public int hashCode()
Returns
TypeDescription
int
Overrides

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
TypeDescription
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
TypeDescription
boolean
Overrides

newBuilderForType()

public ActiveLearningConfig.Builder newBuilderForType()
Returns

newBuilderForType(GeneratedMessageV3.BuilderParent parent)

protected ActiveLearningConfig.Builder newBuilderForType(GeneratedMessageV3.BuilderParent parent)
Parameter
NameDescription
parentBuilderParent
Returns Overrides

newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)

protected Object newInstance(GeneratedMessageV3.UnusedPrivateParameter unused)
Parameter
NameDescription
unusedUnusedPrivateParameter
Returns
TypeDescription
Object
Overrides

toBuilder()

public ActiveLearningConfig.Builder toBuilder()
Returns

writeTo(CodedOutputStream output)

public void writeTo(CodedOutputStream output)
Parameter
NameDescription
outputCodedOutputStream
Overrides Exceptions
TypeDescription
IOException