Tutorial do ImageMagick (1a geração)


Neste tutorial, demonstramos como usar o Cloud Run functions, a API Cloud Vision e o ImageMagick para detectar e desfocar imagens ofensivas que são enviadas para um bucket do Cloud Storage.

Objetivos

  • Implantar um Background Cloud Run function acionado por armazenamento.
  • Usar a API Vision para detectar conteúdo violento ou adulto.
  • Usar o ImageMagick para desfocar imagens ofensivas.
  • Testar a função fazendo upload de uma imagem de um zumbi comedor de carne.

Custos

Neste documento, você vai usar os seguintes componentes faturáveis do Google Cloud:

  • Cloud Run functions
  • Cloud Storage
  • Cloud Vision

Para gerar uma estimativa de custo baseada na projeção de uso deste tutorial, use a calculadora de preços.

Novos usuários do Google Cloud podem estar qualificados para uma avaliação gratuita.

Antes de começar

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Functions, Cloud Build, Cloud Storage, and Cloud Vision APIs.

    Enable the APIs

  5. Install the Google Cloud CLI.

  6. Se você estiver usando um provedor de identidade externo (IdP), primeiro faça login na CLI gcloud com sua identidade federada.

  7. Para inicializar a CLI gcloud, execute o seguinte comando:

    gcloud init
  8. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  9. Verify that billing is enabled for your Google Cloud project.

  10. Enable the Cloud Functions, Cloud Build, Cloud Storage, and Cloud Vision APIs.

    Enable the APIs

  11. Install the Google Cloud CLI.

  12. Se você estiver usando um provedor de identidade externo (IdP), primeiro faça login na CLI gcloud com sua identidade federada.

  13. Para inicializar a CLI gcloud, execute o seguinte comando:

    gcloud init
  14. Se a gcloud CLI já estiver instalada, atualize-a executando o seguinte comando:

    gcloud components update
  15. Prepare seu ambiente de desenvolvimento.
  16. Como visualizar o fluxo de dados

    O fluxo de dados no aplicativo do tutorial do ImageMagick envolve vários passos:

    1. Uma imagem é enviada para um bucket do Cloud Storage.
    2. A função analisa a imagem usando a API Vision.
    3. Se for detectado conteúdo violento ou adulto, a função usará o ImageMagick para desfocar a imagem.
    4. É feito o upload da imagem desfocada para outro bucket do Cloud Storage para uso.

    Como preparar o aplicativo

    1. Crie um bucket do Cloud Storage para fazer upload de imagens, onde YOUR_INPUT_BUCKET_NAME é um nome de bucket globalmente exclusivo:

      gcloud storage buckets create gs://YOUR_INPUT_BUCKET_NAME
    2. Criar um bucket do Cloud Storage para receber imagens desfocadas, onde YOUR_OUTPUT_BUCKET_NAME é um nome de bucket exclusivo globalmente:

      gcloud storage buckets create gs://YOUR_OUTPUT_BUCKET_NAME
    3. Clone o repositório do app de amostra na máquina local:

      Node.js

      git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

      Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

      Python

      git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

      Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

      Go

      git clone https://github.com/GoogleCloudPlatform/golang-samples.git

      Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

      Java

      git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

      Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

      Ruby

      git clone https://github.com/GoogleCloudPlatform/ruby-docs-samples.git

      Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

    4. Mude para o diretório que contém o código de amostra do Cloud Run functions:

      Node.js

      cd nodejs-docs-samples/functions/imagemagick/

      Python

      cd python-docs-samples/functions/imagemagick/

      Go

      cd golang-samples/functions/imagemagick/

      Java

      cd java-docs-samples/functions/imagemagick/

      Ruby

      cd ruby-docs-samples/functions/imagemagick/

    Noções básicas sobre o código

    Como importar dependências

    O aplicativo precisa importar várias dependências para interagir com os serviços doGoogle Cloud , o ImageMagick e o sistema de arquivos:

    Node.js

    const gm = require('gm').subClass({imageMagick: true});
    const fs = require('fs').promises;
    const path = require('path');
    const vision = require('@google-cloud/vision');
    
    const {Storage} = require('@google-cloud/storage');
    const storage = new Storage();
    const client = new vision.ImageAnnotatorClient();
    
    const {BLURRED_BUCKET_NAME} = process.env;

    Python

    import os
    import tempfile
    
    from google.cloud import storage, vision
    from wand.image import Image
    
    storage_client = storage.Client()
    vision_client = vision.ImageAnnotatorClient()

    Go

    
    // Package imagemagick contains an example of using ImageMagick to process a
    // file uploaded to Cloud Storage.
    package imagemagick
    
    import (
    	"context"
    	"errors"
    	"fmt"
    	"log"
    	"os"
    	"os/exec"
    
    	"cloud.google.com/go/storage"
    	vision "cloud.google.com/go/vision/apiv1"
    	"cloud.google.com/go/vision/v2/apiv1/visionpb"
    )
    
    // Global API clients used across function invocations.
    var (
    	storageClient *storage.Client
    	visionClient  *vision.ImageAnnotatorClient
    )
    
    func init() {
    	// Declare a separate err variable to avoid shadowing the client variables.
    	var err error
    
    	storageClient, err = storage.NewClient(context.Background())
    	if err != nil {
    		log.Fatalf("storage.NewClient: %v", err)
    	}
    
    	visionClient, err = vision.NewImageAnnotatorClient(context.Background())
    	if err != nil {
    		log.Fatalf("vision.NewAnnotatorClient: %v", err)
    	}
    }
    

    Java

    
    
    import com.google.cloud.functions.BackgroundFunction;
    import com.google.cloud.functions.Context;
    import com.google.cloud.storage.Blob;
    import com.google.cloud.storage.BlobId;
    import com.google.cloud.storage.BlobInfo;
    import com.google.cloud.storage.Storage;
    import com.google.cloud.storage.StorageOptions;
    import com.google.cloud.vision.v1.AnnotateImageRequest;
    import com.google.cloud.vision.v1.AnnotateImageResponse;
    import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
    import com.google.cloud.vision.v1.Feature;
    import com.google.cloud.vision.v1.Feature.Type;
    import com.google.cloud.vision.v1.Image;
    import com.google.cloud.vision.v1.ImageAnnotatorClient;
    import com.google.cloud.vision.v1.ImageSource;
    import com.google.cloud.vision.v1.SafeSearchAnnotation;
    import functions.eventpojos.GcsEvent;
    import java.io.IOException;
    import java.nio.file.Files;
    import java.nio.file.Path;
    import java.nio.file.Paths;
    import java.util.List;
    import java.util.logging.Level;
    import java.util.logging.Logger;
    
    public class ImageMagick implements BackgroundFunction<GcsEvent> {
    
      private static Storage storage = StorageOptions.getDefaultInstance().getService();
      private static final String BLURRED_BUCKET_NAME = System.getenv("BLURRED_BUCKET_NAME");
      private static final Logger logger = Logger.getLogger(ImageMagick.class.getName());
    }

    Ruby

    require "functions_framework"
    
    FunctionsFramework.on_startup do
      set_global :storage_client do
        require "google/cloud/storage"
        Google::Cloud::Storage.new
      end
    
      set_global :vision_client do
        require "google/cloud/vision"
        Google::Cloud::Vision.image_annotator
      end
    end

    Como analisar imagens

    A função a seguir é invocada quando é feito upload de uma imagem no bucket do Cloud Storage criado para o armazenamento de imagens. A função usa a API Vision para detectar conteúdo violento ou adulto em imagens enviadas.

    Node.js

    // Blurs uploaded images that are flagged as Adult or Violence.
    exports.blurOffensiveImages = async event => {
      // This event represents the triggering Cloud Storage object.
      const object = event;
    
      const file = storage.bucket(object.bucket).file(object.name);
      const filePath = `gs://${object.bucket}/${object.name}`;
    
      console.log(`Analyzing ${file.name}.`);
    
      try {
        const [result] = await client.safeSearchDetection(filePath);
        const detections = result.safeSearchAnnotation || {};
    
        if (
          // Levels are defined in https://cloud.google.com/vision/docs/reference/rest/v1/AnnotateImageResponse#likelihood
          detections.adult === 'VERY_LIKELY' ||
          detections.violence === 'VERY_LIKELY'
        ) {
          console.log(`Detected ${file.name} as inappropriate.`);
          return await blurImage(file, BLURRED_BUCKET_NAME);
        } else {
          console.log(`Detected ${file.name} as OK.`);
        }
      } catch (err) {
        console.error(`Failed to analyze ${file.name}.`, err);
        throw err;
      }
    };

    Python

    # Blurs uploaded images that are flagged as Adult or Violence.
    def blur_offensive_images(data, context):
        file_data = data
    
        file_name = file_data["name"]
        bucket_name = file_data["bucket"]
    
        blob = storage_client.bucket(bucket_name).get_blob(file_name)
        blob_uri = f"gs://{bucket_name}/{file_name}"
        blob_source = vision.Image(source=vision.ImageSource(gcs_image_uri=blob_uri))
    
        # Ignore already-blurred files
        if file_name.startswith("blurred-"):
            print(f"The image {file_name} is already blurred.")
            return
    
        print(f"Analyzing {file_name}.")
    
        result = vision_client.safe_search_detection(image=blob_source)
        detected = result.safe_search_annotation
    
        # Process image
        if detected.adult == 5 or detected.violence == 5:
            print(f"The image {file_name} was detected as inappropriate.")
            return __blur_image(blob)
        else:
            print(f"The image {file_name} was detected as OK.")
    
    

    Go

    
    // GCSEvent is the payload of a GCS event.
    type GCSEvent struct {
    	Bucket string `json:"bucket"`
    	Name   string `json:"name"`
    }
    
    // BlurOffensiveImages blurs offensive images uploaded to GCS.
    func BlurOffensiveImages(ctx context.Context, e GCSEvent) error {
    	outputBucket := os.Getenv("BLURRED_BUCKET_NAME")
    	if outputBucket == "" {
    		return errors.New("BLURRED_BUCKET_NAME must be set")
    	}
    
    	img := vision.NewImageFromURI(fmt.Sprintf("gs://%s/%s", e.Bucket, e.Name))
    
    	resp, err := visionClient.DetectSafeSearch(ctx, img, nil)
    	if err != nil {
    		return fmt.Errorf("AnnotateImage: %w", err)
    	}
    
    	if resp.GetAdult() == visionpb.Likelihood_VERY_LIKELY ||
    		resp.GetViolence() == visionpb.Likelihood_VERY_LIKELY {
    		return blur(ctx, e.Bucket, outputBucket, e.Name)
    	}
    	log.Printf("The image %q was detected as OK.", e.Name)
    	return nil
    }
    

    Java

    @Override
    // Blurs uploaded images that are flagged as Adult or Violence.
    public void accept(GcsEvent event, Context context) {
      // Validate parameters
      if (event.getBucket() == null || event.getName() == null) {
        logger.severe("Error: Malformed GCS event.");
        return;
      }
    
      BlobInfo blobInfo = BlobInfo.newBuilder(event.getBucket(), event.getName()).build();
    
      // Construct URI to GCS bucket and file.
      String gcsPath = String.format("gs://%s/%s", event.getBucket(), event.getName());
      logger.info(String.format("Analyzing %s", event.getName()));
    
      // Construct request.
      ImageSource imgSource = ImageSource.newBuilder().setImageUri(gcsPath).build();
      Image img = Image.newBuilder().setSource(imgSource).build();
      Feature feature = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
      AnnotateImageRequest request =
          AnnotateImageRequest.newBuilder().addFeatures(feature).setImage(img).build();
      List<AnnotateImageRequest> requests = List.of(request);
    
      // Send request to the Vision API.
      try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
        BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
        List<AnnotateImageResponse> responses = response.getResponsesList();
        for (AnnotateImageResponse res : responses) {
          if (res.hasError()) {
            logger.info(String.format("Error: %s", res.getError().getMessage()));
            return;
          }
          // Get Safe Search Annotations
          SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
          if (annotation.getAdultValue() == 5 || annotation.getViolenceValue() == 5) {
            logger.info(String.format("Detected %s as inappropriate.", event.getName()));
            blur(blobInfo);
          } else {
            logger.info(String.format("Detected %s as OK.", event.getName()));
          }
        }
      } catch (IOException e) {
        logger.log(Level.SEVERE, "Error with Vision API: " + e.getMessage(), e);
      }
    }

    Ruby

    # Blurs uploaded images that are flagged as Adult or Violence.
    FunctionsFramework.cloud_event "blur_offensive_images" do |event|
      # Event-triggered Ruby functions receive a CloudEvents::Event::V1 object.
      # See https://cloudevents.github.io/sdk-ruby/latest/CloudEvents/Event/V1.html
      # The storage event payload can be obtained from the event data.
      payload = event.data
      file_name = payload["name"]
      bucket_name = payload["bucket"]
    
      # Ignore already-blurred files
      if file_name.start_with? "blurred-"
        logger.info "The image #{file_name} is already blurred."
        return
      end
    
      # Get image annotations from the Vision service
      logger.info "Analyzing #{file_name}."
      gs_uri = "gs://#{bucket_name}/#{file_name}"
      result = global(:vision_client).safe_search_detection image: gs_uri
      annotation = result.responses.first.safe_search_annotation
    
      # Respond to annotations by possibly blurring the image
      if annotation.adult == :VERY_LIKELY || annotation.violence == :VERY_LIKELY
        logger.info "The image #{file_name} was detected as inappropriate."
        blur_image bucket_name, file_name
      else
        logger.info "The image #{file_name} was detected as OK."
      end
    end

    Imagens desfocadas

    A função a seguir é chamada quando conteúdo violento ou adulto é detectado em uma imagem enviada. A função faz o download da imagem ofensiva, usa o ImageMagick para desfocar a imagem e depois faz upload da imagem desfocada sobre a imagem original.

    Node.js

    // Blurs the given file using ImageMagick, and uploads it to another bucket.
    const blurImage = async (file, blurredBucketName) => {
      const tempLocalPath = `/tmp/${path.parse(file.name).base}`;
    
      // Download file from bucket.
      try {
        await file.download({destination: tempLocalPath});
    
        console.log(`Downloaded ${file.name} to ${tempLocalPath}.`);
      } catch (err) {
        throw new Error(`File download failed: ${err}`);
      }
    
      await new Promise((resolve, reject) => {
        gm(tempLocalPath)
          .blur(0, 16)
          .write(tempLocalPath, (err, stdout) => {
            if (err) {
              console.error('Failed to blur image.', err);
              reject(err);
            } else {
              console.log(`Blurred image: ${file.name}`);
              resolve(stdout);
            }
          });
      });
    
      // Upload result to a different bucket, to avoid re-triggering this function.
      const blurredBucket = storage.bucket(blurredBucketName);
    
      // Upload the Blurred image back into the bucket.
      const gcsPath = `gs://${blurredBucketName}/${file.name}`;
      try {
        await blurredBucket.upload(tempLocalPath, {destination: file.name});
        console.log(`Uploaded blurred image to: ${gcsPath}`);
      } catch (err) {
        throw new Error(`Unable to upload blurred image to ${gcsPath}: ${err}`);
      }
    
      // Delete the temporary file.
      return fs.unlink(tempLocalPath);
    };

    Python

    # Blurs the given file using ImageMagick.
    def __blur_image(current_blob):
        file_name = current_blob.name
        _, temp_local_filename = tempfile.mkstemp()
    
        # Download file from bucket.
        current_blob.download_to_filename(temp_local_filename)
        print(f"Image {file_name} was downloaded to {temp_local_filename}.")
    
        # Blur the image using ImageMagick.
        with Image(filename=temp_local_filename) as image:
            image.blur(radius=0, sigma=16)
            image.save(filename=temp_local_filename)
    
        print(f"Image {file_name} was blurred.")
    
        # Upload result to a second bucket, to avoid re-triggering the function.
        # You could instead re-upload it to the same bucket + tell your function
        # to ignore files marked as blurred (e.g. those with a "blurred" prefix)
        blur_bucket_name = os.getenv("BLURRED_BUCKET_NAME")
        blur_bucket = storage_client.bucket(blur_bucket_name)
        new_blob = blur_bucket.blob(file_name)
        new_blob.upload_from_filename(temp_local_filename)
        print(f"Blurred image uploaded to: gs://{blur_bucket_name}/{file_name}")
    
        # Delete the temporary file.
        os.remove(temp_local_filename)
    
    

    Go

    
    // blur blurs the image stored at gs://inputBucket/name and stores the result in
    // gs://outputBucket/name.
    func blur(ctx context.Context, inputBucket, outputBucket, name string) error {
    	inputBlob := storageClient.Bucket(inputBucket).Object(name)
    	r, err := inputBlob.NewReader(ctx)
    	if err != nil {
    		return fmt.Errorf("NewReader: %w", err)
    	}
    
    	outputBlob := storageClient.Bucket(outputBucket).Object(name)
    	w := outputBlob.NewWriter(ctx)
    	defer w.Close()
    
    	// Use - as input and output to use stdin and stdout.
    	cmd := exec.Command("convert", "-", "-blur", "0x8", "-")
    	cmd.Stdin = r
    	cmd.Stdout = w
    
    	if err := cmd.Run(); err != nil {
    		return fmt.Errorf("cmd.Run: %w", err)
    	}
    
    	log.Printf("Blurred image uploaded to gs://%s/%s", outputBlob.BucketName(), outputBlob.ObjectName())
    
    	return nil
    }
    

    Java

    // Blurs the file described by blobInfo using ImageMagick,
    // and uploads it to the blurred bucket.
    private static void blur(BlobInfo blobInfo) throws IOException {
      String bucketName = blobInfo.getBucket();
      String fileName = blobInfo.getName();
    
      // Download image
      Blob blob = storage.get(BlobId.of(bucketName, fileName));
      Path download = Paths.get("/tmp/", fileName);
      blob.downloadTo(download);
    
      // Construct the command.
      Path upload = Paths.get("/tmp/", "blurred-" + fileName);
      List<String> args = List.of("convert", download.toString(), "-blur", "0x8", upload.toString());
      try {
        ProcessBuilder pb = new ProcessBuilder(args);
        Process process = pb.start();
        process.waitFor();
      } catch (Exception e) {
        logger.info(String.format("Error: %s", e.getMessage()));
      }
    
      // Upload image to blurred bucket.
      BlobId blurredBlobId = BlobId.of(BLURRED_BUCKET_NAME, fileName);
      BlobInfo blurredBlobInfo =
          BlobInfo.newBuilder(blurredBlobId).setContentType(blob.getContentType()).build();
    
      byte[] blurredFile = Files.readAllBytes(upload);
      storage.create(blurredBlobInfo, blurredFile);
      logger.info(
          String.format("Blurred image uploaded to: gs://%s/%s", BLURRED_BUCKET_NAME, fileName));
    
      // Remove images from fileSystem
      Files.delete(download);
      Files.delete(upload);
    }

    Ruby

    require "tempfile"
    require "mini_magick"
    
    # Blurs the given file using ImageMagick.
    def blur_image bucket_name, file_name
      tempfile = Tempfile.new
      begin
        # Download the image file
        bucket = global(:storage_client).bucket bucket_name
        file = bucket.file file_name
        file.download tempfile
        tempfile.close
    
        # Blur the image using ImageMagick
        MiniMagick::Image.new tempfile.path do |image|
          image.blur "0x16"
        end
        logger.info "Image #{file_name} was blurred"
    
        # Upload result to a second bucket, to avoid re-triggering the function.
        # You could instead re-upload it to the same bucket and tell your function
        # to ignore files marked as blurred (e.g. those with a "blurred" prefix.)
        blur_bucket_name = ENV["BLURRED_BUCKET_NAME"]
        blur_bucket = global(:storage_client).bucket blur_bucket_name
        blur_bucket.create_file tempfile.path, file_name
        logger.info "Blurred image uploaded to gs://#{blur_bucket_name}/#{file_name}"
      ensure
        # Ruby will remove the temp file when garbage collecting the object,
        # but it is good practice to remove it explicitly.
        tempfile.unlink
      end
    end

    Como implantar a função

    Para implantar a função com um gatilho de armazenamento, execute o seguinte comando no diretório que contém o código de amostra (ou, no caso de Java, o arquivo pom.xml):

    Node.js

    gcloud functions deploy blurOffensiveImages \
    --no-gen2 \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Python

    gcloud functions deploy blur_offensive_images \
    --no-gen2 \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Go

    gcloud functions deploy BlurOffensiveImages \
    --no-gen2 \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Java

    gcloud functions deploy java-blur-function \
    --no-gen2 \
    --entry-point=functions.ImageMagick \
    --runtime=RUNTIME \
    --memory 512MB \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    C#

    gcloud functions deploy csharp-blur-function \
    --no-gen2 \
    --entry-point=ImageMagick.Function \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Ruby

    gcloud functions deploy blur_offensive_images \
    --no-gen2 \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Substitua:

    • RUNTIME: um ambiente de execução baseado no Ubuntu 18.04. Os ambientes de execução posteriores não incluem compatibilidade com o ImageMagick.
    • YOUR_INPUT_BUCKET_NAME: o nome do bucket do Cloud Storage para fazer upload de imagens.
    • YOUR_OUTPUT_BUCKET_NAME: o nome do bucket em que as imagens desfocadas serão salvas.

    Para esse exemplo específico, não inclua gs:// como parte dos nomes dos buckets no comando deploy.

    Como fazer upload de uma imagem

    1. Faça upload de uma imagem ofensiva, como essa imagem de um zumbi comedor de carne:

      gcloud storage cp zombie.jpg gs://YOUR_INPUT_BUCKET_NAME

      onde YOUR_INPUT_BUCKET_NAME é o bucket do Cloud Storage criado anteriormente para o upload de imagens.

    2. Verifique os registros para ter certeza de que as execuções foram concluídas:

      gcloud functions logs read --limit 100
    3. É possível visualizar as imagens desfocadas no bucket do Cloud Storage YOUR_OUTPUT_BUCKET_NAME criado anteriormente.

    Limpar

    Para evitar cobranças na sua conta do Google Cloud pelos recursos usados no tutorial, exclua o projeto que os contém ou mantenha o projeto e exclua os recursos individuais.

    Excluir o projeto

    O jeito mais fácil de evitar cobranças é excluindo o projeto que você criou para o tutorial.

    Para excluir o projeto:

    1. In the Google Cloud console, go to the Manage resources page.

      Go to Manage resources

    2. In the project list, select the project that you want to delete, and then click Delete.
    3. In the dialog, type the project ID, and then click Shut down to delete the project.

    Como excluir a função

    A exclusão de funções do Cloud Run não remove nenhum recurso armazenado no Cloud Storage.

    Para excluir o Cloud Function implantado neste tutorial, execute o seguinte comando:

    Node.js

    gcloud functions delete blurOffensiveImages 

    Python

    gcloud functions delete blur_offensive_images 

    Go

    gcloud functions delete BlurOffensiveImages 

    Java

    gcloud functions delete java-blur-function 

    Ruby

    gcloud functions delete blur_offensive_images 

    Também é possível excluir funções do Cloud Run pelo consoleGoogle Cloud .