Use FSDP to fine-tune Mixtral-8x7B on an A4 Slurm cluster

This tutorial shows you how to fine-tune a mistralai/Mixtral-8x7B-v0.1 model on a multi-node, multi-GPU Slurm cluster Google Cloud. The cluster uses two a4-highgpu-8g virtual machine (VM) instances, which each have 8 NVIDIA B200 GPUs.

The two main processes described in this tutorial are as follows:

  1. Deploy a production-grade, high-performance Slurm cluster by using the Google Cloud Cluster Toolkit. As part of this deployment, you create a custom VM image with the necessary software pre-installed. You also set up a shared Lustre file system and configure high-speed networking.
  2. After the cluster is deployed, you run a distributed fine-tuning job by using the set of scripts that accompany this tutorial. The job leverages PyTorch Fully Sharded Data Parallel (FSDP), which you access through the Hugging Face Transformer Reinforcement Learning (TRL) library.

This tutorial is intended for machine learning (ML) engineers, researchers, platform administrators and operators, and for data and AI specialists who are interested in distributing an AI workload across multiple nodes and GPUs.

Objectives

  • Access Mixtral by using Hugging Face
  • Prepare your environment
  • Create and deploy a production-grade A4 High-GPU Slurm cluster.
  • Configure a multi-node environment for distributed training with FSDP.
  • Fine-tune the Mixtral model by using the Hugging Face trl.SFTTrainer class.
  • Stage data to local SSDs.
  • Monitor your job.
  • Clean up.

Costs

In this document, you use the following billable components of Google Cloud:

To generate a cost estimate based on your projected usage, use the pricing calculator.

New Google Cloud users might be eligible for a free trial.

Before you begin

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.

  3. If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity.

  4. To initialize the gcloud CLI, run the following command:

    gcloud init
  5. Create or select a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.
    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the required API:

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    gcloud services enable compute.googleapis.com file.googleapis.com logging.googleapis.com cloudresourcemanager.googleapis.com servicenetworking.googleapis.com lustre.googleapis.com
  8. Install the Google Cloud CLI.

  9. If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity.

  10. To initialize the gcloud CLI, run the following command:

    gcloud init
  11. Create or select a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.
    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  12. Verify that billing is enabled for your Google Cloud project.

  13. Enable the required API:

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    gcloud services enable compute.googleapis.com file.googleapis.com logging.googleapis.com cloudresourcemanager.googleapis.com servicenetworking.googleapis.com lustre.googleapis.com
  14. Grant roles to your user account. Run the following command once for each of the following IAM roles: roles/compute.admin, roles/iam.serviceAccountUser, roles/file.editor, roles/storage.admin, roles/serviceusage.serviceUsageAdmin

    gcloud projects add-iam-policy-binding PROJECT_ID --member="user:USER_IDENTIFIER" --role=ROLE

    Replace the following:

    • PROJECT_ID: Your project ID.
    • USER_IDENTIFIER: The identifier for your user account. For example, myemail@example.com.
    • ROLE: The IAM role that you grant to your user account.
  15. Enable the default service account for your Google Cloud project:
    gcloud iam service-accounts enable PROJECT_NUMBER-compute@developer.gserviceaccount.com \
        --project=PROJECT_ID

    Replace PROJECT_NUMBER with your project number. To review your project number, see Get an existing project.

  16. Grant the Editor role (roles/editor) to the default service account:
    gcloud projects add-iam-policy-binding PROJECT_ID \
      --member="serviceAccount:PROJECT_NUMBER-compute@developer.gserviceaccount.com" \
      --role=roles/editor
  17. Create local authentication credentials for your user account:
    gcloud auth application-default login
  18. Enable OS Login for your project:
    gcloud compute project-info add-metadata --metadata=enable-oslogin=TRUE
  19. Sign in to or create a Hugging Face account.
  20. Install the dependencies that you need to use the Cluster Toolkit.

Access Mixtral by using Hugging Face

To use Hugging Face to access Mixtral, do the following:

  1. Create a Hugging Face read access token.
  2. Copy and save the read access token value. You use it later in this tutorial.

Prepare your environment

You do the following steps on your local machine to prepare for deployment of the cluster.

  1. Clone the Google Cloud Cluster Toolkit repository:

    git clone https://github.com/GoogleCloudPlatform/cluster-toolkit.git
    
  2. Create a Cloud Storage bucket:

    export BUCKET_NAME="your-unique-bucket-name"
    gcloud storage buckets create gs://${BUCKET_NAME}
    

Create an A4 Slurm cluster

To create an A4 Slurm cluster, do the following:

  1. Go to the cloned cluster-toolkit directory:

    cd cluster-toolkit
    
  2. If it's your first time using Cluster Toolkit, then build the gcluster binary:

    make
    
  3. Go to the examples/machine-learning/a4-highgpu-8g directory.

    Open the a4high-slurm-deployment.yaml file and edit it as follows:

    terraform_backend_defaults:
      type: gcs
      configuration:
        bucket: BUCKET_NAME
    
    vars:
      deployment_name: DEPLOYMENT_NAME
      project_id: PROJECT_ID
      region: REGION
      zone: ZONE
      a4h_cluster_size: 2
      a4h_reservation_name: RESERVATION_NAME
    

    Replace the following:

    • BUCKET_NAME: : the name of the Cloud Storage bucket that you created in the previous section.
    • PROJECT_ID: the ID of the Google Cloud project where your Cloud Storage exists and where you want to create your Slurm cluster.
    • REGION: the region where your reservation exists.
    • ZONE: the zone where your reservation exists.
    • A4h_reservation_name: use the name of your A4 reservation.
  4. Open the a4high-slurm-blueprint.yaml file and edit it as follows:

    • Remove the filestore_homefs module.
    • Enable the lustrefs and private-service-access modules.
    • In the vars block, configure the following:
      1. Find slurm_vars and set install_managed_lustre to true.
      2. Set the per_unit_storage_throughput parameter to 500.
      3. Set the size_gib parameter to 36000.
  5. Deploy the cluster:

    ./gcluster deploy -d examples/machine-learning/a4-highgpu-8g/a4high-slurm-deployment.yaml \
      examples/machine-learning/a4-highgpu-8g/a4high-slurm-blueprint.yaml \
      --auto-approve
    

    The ./gcluster deploy command starts a two-phase process, which is as follows:

    • The first phase builds a custom image with all software pre-installed, which can take up to 35 minutes to complete.
    • The second phase deploys the cluster by using that custom image. This process should complete more quickly than the first phase.

Prepare your workload

To prepare your workload, follow these steps:

  1. Create workload scripts.

  2. Upload scripts to the Slurm cluster.

  3. Connect to the Slurm cluster .

  4. Install frameworks and tools.

Create workload scripts

To create the scripts that your fine-tuning workload will use, follow these steps:

  1. To set up the Python virtual environment, create the install_environment.sh file with the following content:

    #!/bin/bash
    # This script sets a reliable environment for FSDP training.
    # It is meant to be run on a compute node.
    set -e
    
    # --- 1. Create the Python virtual environment ---
    VENV_PATH="$HOME/.venv/venv-fsdp"
    if [ ! -d "$VENV_PATH" ]; then
      echo "--- Creating Python virtual environment at $VENV_PATH ---"
      python3 -m venv $VENV_PATH
    else
      echo "--- Virtual environment already exists at $VENV_PATH ---"
    fi
    
    source $VENV_PATH/bin/activate
    
    # --- 2. Install Dependencies ---
    echo "--- [STEP 2.1] Upgrading build toolchain ---"
    pip install --upgrade pip wheel packaging
    
    echo "--- [STEP 2.2] Installing PyTorch Nightly ---"
    pip install --force-reinstall --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128
    
    echo "--- [STEP 2.3] Installing application dependencies ---"
    if [ -f "requirements-fsdp.txt" ]; then
        pip install -r requirements-fsdp.txt
    else
        echo "ERROR: requirements-fsdp.txt not found!"
        exit 1
    fi
    
    # --- [STEP 2.4] Build Flash Attention from Source ---
    echo "--- Building flash-attn from source... This will take a while. ---"
    # Use all available CPU cores to speed up the build
    MAX_JOBS=$(nproc) pip install flash-attn --no-build-isolation
    
    # --- 3. Download the Model ---
    echo "--- [STEP 2.5] Downloading Mixtral model ---"
    if [ -z "$HF_TOKEN" ]; then
      echo "ERROR: The HF_TOKEN environment variable is not set."; exit 1;
    fi
    pip install huggingface_hub[cli]
    
    # Execute the CLI using its full, explicit path
    $VENV_PATH/bin/huggingface-cli download mistralai/Mixtral-8x7B-v0.1 --local-dir ~/Mixtral-8x7B-v0.1 --token $HF_TOKEN
    
    echo "--- Environment setup complete. ---"
    
  2. To specify the Python dependencies for the training script, create a requirements-fsdp.txt file with the following content:

    transformers==4.55.0
    datasets==4.0.0
    peft==0.16.0
    accelerate==1.9.0
    trl==0.21.0
    
    # Other dependencies
    sentencepiece==0.2.0
    protobuf==6.31.1
    
  3. Specify train-mixtral.py as the main training script:

    import torch
    from torch.distributed.fsdp import MixedPrecision
    from datasets import load_dataset
    import shutil
    import os
    import torch.distributed as dist
    
    from peft import LoraConfig, PeftModel, get_peft_model
    from transformers import (
        AutoModelForCausalLM,
        AutoTokenizer,
        TrainingArguments,
        HfArgumentParser,
    )
    
    from torch.distributed import get_rank, get_world_size
    
    from transformers.models.mixtral.modeling_mixtral import MixtralDecoderLayer
    from trl import SFTTrainer
    from dataclasses import dataclass, field
    from typing import Optional
    
    @dataclass
    class ScriptArguments:
        model_id: str = field(default="mistralai/Mixtral-8x7B-v0.1", metadata={"help": "Hugging Face model ID from the Hub"})
        dataset_name: str = field(default="philschmid/gretel-synthetic-text-to-sql", metadata={"help": "Dataset from the Hub"})
        run_inference_after_training: bool = field(default=False, metadata={"help": "Run sample inference on rank 0 after training"})
        dataset_subset_size: Optional[int] = field(default=None, metadata={"help": "Number of samples to use from the dataset for training. If None, uses the full dataset."})
    
    @dataclass
    class PeftArguments:
        lora_r: int = field(default=16, metadata={"help": "LoRA attention dimension"})
        lora_alpha: int = field(default=32, metadata={"help": "LoRA alpha scaling factor"})
        lora_dropout: float = field(default=0.05, metadata={"help": "LoRA dropout probability"})
    
    @dataclass
    class SftTrainingArguments(TrainingArguments):
        max_length: Optional[int] = field(default=2048, metadata={"help": "The maximum sequence length for SFTTrainer"})
        packing: Optional[bool] = field(default=False, metadata={"help": "Enable packing for SFTTrainer"})
        ddp_find_unused_parameters: Optional[bool] = field(default=False, metadata={"help": "When using FSDP activation checkpointing, this must be set to False for Mixtral"})
    
    def formatting_prompts_func(example):
        system_message = "You are a text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA."
        user_prompt = f"### SCHEMA:\n{example['sql_context']}\n\n### USER QUERY:\n{example['sql_prompt']}"
        response = f"\n\n### SQL QUERY:\n{example['sql']}"
        return f"{system_message}\n\n{user_prompt}{response}"
    
    def main():
        parser = HfArgumentParser((ScriptArguments, PeftArguments, SftTrainingArguments))
        script_args, peft_args, training_args = parser.parse_args_into_dataclasses()
    
        training_args.gradient_checkpointing = True
        training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
    
        training_args.optim = "adamw_torch_fused"
    
        bf16_policy = MixedPrecision(
            param_dtype=torch.bfloat16,
            reduce_dtype=torch.bfloat16,
            buffer_dtype=torch.bfloat16,
        )
    
        training_args.fsdp = "full_shard"
        training_args.fsdp_config = {
            "fsdp_auto_wrap_policy": "TRANSFORMER_BASED_WRAP",
            "fsdp_transformer_layer_cls_to_wrap": [MixtralDecoderLayer],
            "fsdp_state_dict_type": "SHARDED_STATE_DICT",
            "fsdp_offload_params": False,
            "fsdp_forward_prefetch": True,
            "fsdp_mixed_precision_policy": bf16_policy
        }
    
        tokenizer = AutoTokenizer.from_pretrained(script_args.model_id, trust_remote_code=True)
    
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "right"
    
        model = AutoModelForCausalLM.from_pretrained(
            script_args.model_id,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
            attn_implementation="flash_attention_2",
        )
    
        peft_config = LoraConfig(
            r=peft_args.lora_r,
            lora_alpha=peft_args.lora_alpha,
            lora_dropout=peft_args.lora_dropout,
            bias="none",
            task_type="CAUSAL_LM",
            target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
        )
    
        model = get_peft_model(model, peft_config)
    
        data_splits = load_dataset(script_args.dataset_name)
    
        dataset = data_splits["train"]
        eval_dataset = data_splits["test"]
    
        if script_args.dataset_subset_size is not None:
            dataset = dataset.select(range(script_args.dataset_subset_size))
    
        dataset = dataset.shuffle(seed=training_args.seed)
    
        trainer = SFTTrainer(
            model=model,
            args=training_args,
            train_dataset=dataset,
            eval_dataset=eval_dataset,
            formatting_func=formatting_prompts_func,
            processing_class=tokenizer,
        )
    
        trainer.train()
    
        dist.barrier()
        if trainer.is_world_process_zero():
            best_model_path = trainer.state.best_model_checkpoint
    
            final_model_dir = os.path.join(training_args.output_dir, "final_best_model")
            print(f"Copying best model to: {final_model_dir}")
    
            if os.path.exists(final_model_dir):
                shutil.rmtree(final_model_dir)
            shutil.copytree(best_model_path, final_model_dir)
    
            if script_args.run_inference_after_training:
                del model, trainer
                torch.cuda.empty_cache()
                run_post_training_inference(script_args, final_model_dir, tokenizer)
    
    def run_post_training_inference(script_args, best_model_path, tokenizer):
        print("\n" + "="*50)
        print("=== RUNNING POST-TRAINING INFERENCE TEST ===")
        print("="*50 + "\n")
    
        base_model = AutoModelForCausalLM.from_pretrained(
            script_args.model_id,
            torch_dtype=torch.bfloat16,
            trust_remote_code=True,
            device_map="auto"
        )
        model = PeftModel.from_pretrained(base_model, best_model_path)
        model = model.merge_and_unload()
        model.eval()
    
        # Define the test case
        schema = "CREATE TABLE artists (Name TEXT, Country TEXT, Genre TEXT)"
        system_message = "You are a text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA."
        question = "Show me all artists from the Country just north of the USA."
    
        prompt = f"{system_message}\n\n### SCHEMA:\n{schema}\n\n### USER QUERY:\n{question}\n\n### SQL QUERY:\n"
    
        print(f"Test Prompt:\n{prompt}")
    
        inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
    
        print("\n--- Generating SQL... ---")
        outputs = model.generate(
            **inputs,
            max_new_tokens=100,
            pad_token_id=tokenizer.eos_token_id,
            do_sample=False,
            temperature=None,
            top_p=None,
        )
    
        generated_sql = tokenizer.decode(outputs[0], skip_special_tokens=True)[len(prompt):].strip()
    
        print(f"\n--- Generated SQL Query ---")
        print(generated_sql)
        print("\n" + "="*50)
        print("=== INFERENCE TEST COMPLETE ===")
        print("="*50 + "\n")
    
    if __name__ == "__main__":
        main()
    
  4. To specify the tasks for the jobs to run on your Slurm cluster, create the train-mixtral.sh file with the following content:

    #!/bin/bash
    #SBATCH --job-name=mixtral-fsdp
    #SBATCH --nodes=2
    #SBATCH --ntasks-per-node=8
    #SBATCH --gpus-per-node=8
    #SBATCH --partition=a4high
    #SBATCH --output=mixtral-%j.out
    #SBATCH --error=mixtral-%j.err
    
    set -e
    set -x
    
    echo "--- Slurm Job Started ---"
    
    # --- Define Paths ---
    LOCAL_SSD_PATH="/mnt/localssd/job_${SLURM_JOB_ID}"
    VENV_PATH="${HOME}/.venv/venv-fsdp"
    MODEL_PATH="${HOME}/Mixtral-8x7B-v0.1"
    
    # --- STAGE 1: Stage Data to Local SSD on Each Node ---
    srun --ntasks=$SLURM_NNODES --ntasks-per-node=1 bash -c "
    echo '--- Staging on node: $(hostname) ---'
    mkdir -p ${LOCAL_SSD_PATH}
    
    echo 'Copying virtual environment...'
    rsync -a -q ${VENV_PATH}/ ${LOCAL_SSD_PATH}/venv/
    
    echo 'Copying model weights...'
    rsync -a ${MODEL_PATH}/ ${LOCAL_SSD_PATH}/model/
    
    mkdir -p ${LOCAL_SSD_PATH}/hf_cache
    
    echo '--- Staging on $(hostname) complete ---'
    "
    echo "--- Staging complete on all nodes ---"
    
    # --- STAGE 2: Run the Training Job ---
    echo "--- Launching Distributed Training with GIB NCCL Plugin ---"
    nodes=( $( scontrol show hostnames "$SLURM_JOB_NODELIST" ) )
    head_node=${nodes[0]}
    head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address)
    
    export MASTER_ADDR=$head_node_ip
    export MASTER_PORT=29500
    
    export NCCL_SOCKET_IFNAME=enp0s19
    
    export NCCL_NET=gIB
    
    # export NCCL_DEBUG=INFO # Un-comment to diagnose NCCL issues if needed
    
    srun --cpu-bind=none --accel-bind=g bash -c '
    # Activate the environment from the local copy
    source '${LOCAL_SSD_PATH}'/venv/bin/activate
    
    # Point Hugging Face cache to the local SSD
    export HF_HOME='${LOCAL_SSD_PATH}'/hf_cache
    
    export RANK=$SLURM_PROCID
    export WORLD_SIZE=$SLURM_NTASKS
    export LOCAL_RANK=$SLURM_LOCALID
    
    export LD_LIBRARY_PATH=/usr/local/gib/lib64:$LD_LIBRARY_PATH
    source /usr/local/gib/scripts/set_nccl_env.sh
    
    # --- Launch the training ---
    python \
        '${SLURM_SUBMIT_DIR}'/train-mixtral.py \
        --model_id="'${LOCAL_SSD_PATH}'/model/" \
        --output_dir="${HOME}/outputs/mixtral_job_${SLURM_JOB_ID}" \
        --dataset_name="philschmid/gretel-synthetic-text-to-sql" \
        --seed=900913 \
        --bf16=True \
        --num_train_epochs=3 \
        --per_device_train_batch_size=32 \
        --gradient_accumulation_steps=4 \
        --learning_rate=4e-5 \
        --logging_steps=3 \
        --lora_r=32 \
        --lora_alpha=32 \
        --lora_dropout=0.05 \
        --eval_strategy=steps \
        --eval_steps=10 \
        --save_strategy=steps \
        --save_steps=10 \
        --load_best_model_at_end=False \
        --metric_for_best_model=eval_loss \
        --run_inference_after_training \
        --dataset_subset_size=67000
    '
    
    # --- STAGE 3: Cleanup ---
    echo "--- Cleaning up local SSD on all nodes ---"
    srun --ntasks=$SLURM_NNODES --ntasks-per-node=1 bash -c "rm -rf ${LOCAL_SSD_PATH}"
    
    echo "--- Slurm Job Finished ---"
    

Upload Scripts to the Slurm cluster

To upload the scripts that you created in the previous section to the Slurm cluster, do the following:

  1. To identify your login node, list all of the VMs in your project:

    gcloud compute instances list
    

    The name of the login node is similar to a4-high-login-001.

  2. Upload your scripts to the login node's home directory:

    # Run this from your local machine where you created the files
    LOGIN_NODE_NAME="your-login-node-name" # e.g., a4high-login-001
    PROJECT_ID="your-gcp-project-id"
    ZONE="your-cluster-zone" # e.g., us-west4-a
    
    gcloud compute scp --project="$PROJECT_ID" --zone="$ZONE" --tunnel-through-iap \
      ./install_environment.sh \
      ./requirements-fsdp.txt \
      ./train-mixtral.py \
      ./train-mixtral.sh \
      "${LOGIN_NODE_NAME}":~/
    

Connect to the Slurm cluster

Connect to the Slurm cluster by connecting to the login node through SSH:

gcloud compute ssh $LOGIN_NODE_NAME \
    --project=$PROJECT_ID \
    --tunnel-through-iap \
    --zone=$ZONE

Install frameworks and tools

After you connect to the login node, install frameworks and tools.

  1. Export your Hugging Face token:

    # On the login node
    export HF_TOKEN="hf_..." # Replace with your token
    
  2. Run the installation script on a compute node.

    # On the login node
    srun \
      --job-name=env-setup \
      --nodes=1 \
      --ntasks=1 \
      --gpus-per-node=1 \
      --partition=a4high \
      bash ./install_environment.sh
    

    This command sets up the virtual environment, installs all dependencies, and downloads the Mixtral model weights into ~/Mixtral-8x7B-v0.1. This process can take over 30 minutes to complete.

Start your fine-tuning workload

To start your training your workload, do the following:

  1. Submit the job to the Slurm scheduler:

    # On the login node
    sbatch train-mixtral.sh
    
  2. On the login node in your Slurm cluster, you can monitor the job's progress by checking the output files created in your home directory:

    # On the login node
    tail -f mixtral-*.out
    

    If your job successfully starts, then the .err file shows a progress bar that updates as your job progresses.

    The job has two main phases:

    • Copying the large base model to the local SSD of each compute node.
    • The training job, which begins once the copying of the model is complete.

    The whole job takes about 40 minutes to run.

Clean up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial, either delete the project that contains the resources, or keep the project and delete the individual resources.

Delete your Slurm cluster

To delete your Slurm cluster, follow these steps:

  1. Go to the cluster-toolkit directory.

  2. Destroy the Terraform file and all created resources:

    ./gcluster destroy DEPLOYMENT_NAME --auto-approve
    

Delete your project

Delete a Google Cloud project:

gcloud projects delete PROJECT_ID

What's next