A API Vision pode detetar e extrair informações sobre entidades numa imagem, num vasto grupo de categorias.
As etiquetas podem identificar objetos gerais, localizações, atividades, espécies de animais, produtos e muito mais. Se precisar de etiquetas personalizadas segmentadas, o Cloud AutoML Vision permite-lhe preparar um modelo de aprendizagem automática personalizado para classificar imagens.
As etiquetas são devolvidas apenas em inglês. A API Cloud Translation pode traduzir etiquetas em inglês para qualquer um dos outros idiomas.

Por exemplo, a imagem acima pode devolver a seguinte lista de etiquetas:
Descrição | Pontuação |
---|---|
Rua | 0,872 |
Instantâneo | 0,852 |
Localidade | 0,848 |
Noite | 0,804 |
Beco | 0,713 |
Pedidos de deteção de etiquetas
Configure o seu Google Cloud projeto e autenticação
Se não tiver criado um Google Cloud projeto, faça-o agora. Expanda esta secção para ver instruções.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
Se estiver a usar um fornecedor de identidade (IdP) externo, primeiro, tem de iniciar sessão na CLI gcloud com a sua identidade federada.
-
Para inicializar a CLI gcloud, execute o seguinte comando:
gcloud init
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
Se estiver a usar um fornecedor de identidade (IdP) externo, primeiro, tem de iniciar sessão na CLI gcloud com a sua identidade federada.
-
Para inicializar a CLI gcloud, execute o seguinte comando:
gcloud init
- BASE64_ENCODED_IMAGE: a representação base64 (string ASCII) dos dados da imagem binária. Esta string deve ser semelhante à
seguinte string:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- RESULTS_INT: (Opcional) Um valor inteiro de resultados a
devolver. Se omitir o campo
"maxResults"
e o respetivo valor, a API devolve o valor predefinido de 10 resultados. Este campo não se aplica aos seguintes tipos de elementos:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
ouCROP_HINTS
. - PROJECT_ID: o ID do seu Google Cloud projeto.
mid
- se estiver presente, contém um identificador gerado pela máquina (MID) correspondente à entrada do Gráfico de Conhecimento da Google da entidade. Tenha em atenção que os valoresmid
permanecem únicos em diferentes idiomas, pelo que pode usar estes valores para associar entidades de diferentes idiomas. Para inspecionar os valores MID, consulte a documentação da API Google Knowledge Graph.description
: a descrição da etiqueta.score
: a pontuação de confiança, que varia de 0 (nenhuma confiança) a 1 (confiança muito elevada).topicality
- A relevância da etiqueta ICA (anotação de conteúdo de imagem) para a imagem. Mede a importância/centralidade de uma etiqueta no contexto geral de uma página.- CLOUD_STORAGE_IMAGE_URI: o caminho para um ficheiro de imagem válido num contentor do Cloud Storage. Tem de ter, pelo menos, privilégios de leitura para o ficheiro.
Exemplo:
gs://cloud-samples-data/vision/label/setagaya.jpeg
- RESULTS_INT: (Opcional) Um valor inteiro de resultados a
devolver. Se omitir o campo
"maxResults"
e o respetivo valor, a API devolve o valor predefinido de 10 resultados. Este campo não se aplica aos seguintes tipos de elementos:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
ouCROP_HINTS
. - PROJECT_ID: o ID do seu Google Cloud projeto.
mid
- se estiver presente, contém um identificador gerado pela máquina (MID) correspondente à entrada do Gráfico de Conhecimento da Google da entidade. Tenha em atenção que os valoresmid
permanecem únicos em diferentes idiomas, pelo que pode usar estes valores para associar entidades de diferentes idiomas. Para inspecionar os valores MID, consulte a documentação da API Google Knowledge Graph.description
: a descrição da etiqueta.score
: a pontuação de confiança, que varia de 0 (nenhuma confiança) a 1 (confiança muito elevada).topicality
- A relevância da etiqueta de anotação de conteúdo de imagem (ICA) para a imagem. Mede a importância/centralidade de uma etiqueta no contexto geral de uma página.
Detete etiquetas numa imagem local
Pode usar a API Vision para realizar a deteção de caraterísticas num ficheiro de imagem local.
Para pedidos REST, envie o conteúdo do ficheiro de imagem como uma string codificada em base64 no corpo do pedido.
Para pedidos da gcloud
e da biblioteca de cliente, especifique o caminho para uma imagem local no seu pedido.
REST
Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:
Método HTTP e URL:
POST https://vision.googleapis.com/v1/images:annotate
Corpo JSON do pedido:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "maxResults": RESULTS_INT, "type": "LABEL_DETECTION" } ] } ] }
Para enviar o seu pedido, escolha uma destas opções:
curl
Guarde o corpo do pedido num ficheiro com o nome request.json
,
e execute o seguinte comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Guarde o corpo do pedido num ficheiro com o nome request.json
,
e execute o seguinte comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Se o pedido for bem-sucedido, o servidor devolve um código de estado HTTP 200 OK
e a resposta no formato JSON.
Uma resposta LABEL_DETECTION
inclui as etiquetas detetadas, a respetiva pontuação, a topicalidade e um ID de etiqueta opaco, onde:
{ "responses": [ { "labelAnnotations": [ { "mid": "/m/01c8br", "description": "Street", "score": 0.87294734, "topicality": 0.87294734 }, { "mid": "/m/06pg22", "description": "Snapshot", "score": 0.8523099, "topicality": 0.8523099 }, { "mid": "/m/0dx1j", "description": "Town", "score": 0.8481104, "topicality": 0.8481104 }, { "mid": "/m/01d74z", "description": "Night", "score": 0.80408716, "topicality": 0.80408716 }, { "mid": "/m/01lwf0", "description": "Alley", "score": 0.7133322, "topicality": 0.7133322 } ] } ] }
Go
Antes de experimentar este exemplo, siga as Goinstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Go Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
// detectLabels gets labels from the Vision API for an image at the given file path.
func detectLabels(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
f, err := os.Open(file)
if err != nil {
return err
}
defer f.Close()
image, err := vision.NewImageFromReader(f)
if err != nil {
return err
}
annotations, err := client.DetectLabels(ctx, image, nil, 10)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No labels found.")
} else {
fmt.Fprintln(w, "Labels:")
for _, annotation := range annotations {
fmt.Fprintln(w, annotation.Description)
}
}
return nil
}
Java
Antes de experimentar este exemplo, siga as instruções de configuração do Java no guia de início rápido da API Vision com as bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Vision Java.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectLabels {
public static void detectLabels() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "path/to/your/image/file.jpg";
detectLabels(filePath);
}
// Detects labels in the specified local image.
public static void detectLabels(String filePath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));
Image img = Image.newBuilder().setContent(imgBytes).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.LABEL_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
annotation
.getAllFields()
.forEach((k, v) -> System.out.format("%s : %s%n", k, v.toString()));
}
}
}
}
}
Node.js
Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Node.js Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const fileName = 'Local image file, e.g. /path/to/image.png';
// Performs label detection on the local file
const [result] = await client.labelDetection(fileName);
const labels = result.labelAnnotations;
console.log('Labels:');
labels.forEach(label => console.log(label.description));
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Python Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
def detect_labels(path):
"""Detects labels in the file."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
with open(path, "rb") as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.label_detection(image=image)
labels = response.label_annotations
print("Labels:")
for label in labels:
print(label.description)
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
Idiomas adicionais
C#: Siga as instruções de configuração do C# na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para .NET.
PHP: Siga as instruções de configuração do PHP na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para PHP.
Ruby: Siga as instruções de configuração do Ruby na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para Ruby.
Detete etiquetas numa imagem remota
Pode usar a API Vision para realizar a deteção de funcionalidades num ficheiro de imagem remoto localizado no Cloud Storage ou na Web. Para enviar um pedido de ficheiro remoto, especifique o URL da Web do ficheiro ou o URI do Google Cloud Storage no corpo do pedido.
REST
Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:
Método HTTP e URL:
POST https://vision.googleapis.com/v1/images:annotate
Corpo JSON do pedido:
{ "requests": [ { "image": { "source": { "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "maxResults": RESULTS_INT, "type": "LABEL_DETECTION" }, ] } ] }
Para enviar o seu pedido, escolha uma destas opções:
curl
Guarde o corpo do pedido num ficheiro com o nome request.json
,
e execute o seguinte comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Guarde o corpo do pedido num ficheiro com o nome request.json
,
e execute o seguinte comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Se o pedido for bem-sucedido, o servidor devolve um código de estado HTTP 200 OK
e a resposta no formato JSON.
Uma resposta LABEL_DETECTION
inclui as etiquetas detetadas, a respetiva pontuação, a topicalidade e um ID de etiqueta opaco, onde:
{ "responses": [ { "labelAnnotations": [ { "mid": "/m/01c8br", "description": "Street", "score": 0.87294734, "topicality": 0.87294734 }, { "mid": "/m/06pg22", "description": "Snapshot", "score": 0.8523099, "topicality": 0.8523099 }, { "mid": "/m/0dx1j", "description": "Town", "score": 0.8481104, "topicality": 0.8481104 }, { "mid": "/m/01d74z", "description": "Night", "score": 0.80408716, "topicality": 0.80408716 }, { "mid": "/m/01lwf0", "description": "Alley", "score": 0.7133322, "topicality": 0.7133322 } ] } ] }
Go
Antes de experimentar este exemplo, siga as Goinstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Go Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
// detectLabels gets labels from the Vision API for an image at the given file path.
func detectLabelsURI(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
image := vision.NewImageFromURI(file)
annotations, err := client.DetectLabels(ctx, image, nil, 10)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No labels found.")
} else {
fmt.Fprintln(w, "Labels:")
for _, annotation := range annotations {
fmt.Fprintln(w, annotation.Description)
}
}
return nil
}
Java
Antes de experimentar este exemplo, siga as instruções de configuração do Java no guia de início rápido da API Vision com as bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Vision Java.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectLabelsGcs {
public static void detectLabelsGcs() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
detectLabelsGcs(filePath);
}
// Detects labels in the specified remote image on Google Cloud Storage.
public static void detectLabelsGcs(String gcsPath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
Image img = Image.newBuilder().setSource(imgSource).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.LABEL_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
annotation
.getAllFields()
.forEach((k, v) -> System.out.format("%s : %s%n", k, v.toString()));
}
}
}
}
}
Node.js
Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Node.js Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';
// Performs label detection on the gcs file
const [result] = await client.labelDetection(
`gs://${bucketName}/${fileName}`
);
const labels = result.labelAnnotations;
console.log('Labels:');
labels.forEach(label => console.log(label.description));
Python
Antes de experimentar este exemplo, siga as Pythoninstruções de configuração no início rápido do Vision usando bibliotecas cliente. Para mais informações, consulte a documentação de referência da API Python Vision.
Para se autenticar no Vision, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.
def detect_labels_uri(uri):
"""Detects labels in the file located in Google Cloud Storage or on the
Web."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
image = vision.Image()
image.source.image_uri = uri
response = client.label_detection(image=image)
labels = response.label_annotations
print("Labels:")
for label in labels:
print(label.description)
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
gcloud
Para detetar etiquetas numa imagem, use o comando
gcloud ml vision detect-labels
, conforme mostrado no exemplo seguinte:
gcloud ml vision detect-labels gs://cloud-samples-data/vision/label/setagaya.jpeg
Idiomas adicionais
C#: Siga as instruções de configuração do C# na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para .NET.
PHP: Siga as instruções de configuração do PHP na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para PHP.
Ruby: Siga as instruções de configuração do Ruby na página das bibliotecas cliente e, em seguida, visite a documentação de referência do Vision para Ruby.
Experimentar
Experimente a deteção de etiquetas abaixo. Pode usar a imagem já especificada (gs://cloud-samples-data/vision/label/setagaya.jpeg
) ou especificar a sua própria imagem em alternativa. Envie o pedido selecionando
Executar.

Corpo do pedido:
{ "requests": [ { "features": [ { "maxResults": 5, "type": "LABEL_DETECTION" } ], "image": { "source": { "imageUri": "gs://cloud-samples-data/vision/label/setagaya.jpeg" } } } ] }