Vertex AI Vision 是一个由 AI 提供支持的平台,用于提取、分析和存储视频数据。借助 Vertex AI Vision,用户可以使用简化的界面构建和部署应用。
借助 Vertex AI Vision,您可以利用 Vertex AI Vision 与其他主要组件(即实时视频分析、数据流和 Vision Warehouse)的集成,构建端到端计算机图片解决方案。借助 Vertex AI Vision API,您可以使用低级 API 构建高级应用,并创建和更新可组合多个单独 API 调用的高级工作流。然后,您可以向 Vertex AI Vision 平台服务器发出单个部署请求,以整体执行工作流。
借助 Vertex AI Vision,您可以:
提取实时视频数据
使用通用和自定义的视觉 AI 模型分析数据以获得数据洞见
在 Vision Warehouse 中存储数据洞见,以简化查询和元数据信息
Vertex AI Vision 工作流
您需要完成以下步骤才能使用 Vertex AI Vision:
提取实时数据
借助 Vertex AI Vision 的 架构,您可以快速方便地在公共云中流式传输实时视频提取基础架构。
分析数据
数据提取后,Vertex AI Vision 的框架可让您轻松访问和协调不断扩大的通用、自定义和专用分析模型组合。
在 Google Cloud,我们十分重视帮助客户使用 Vertex AI Vision 安全地开发和实现解决方案。对于 Vertex AI Vision,我们一直致力于根据 Google 的 AI 原则开发公平、公正的性能。
这项工作包括在开发过程中进行偏差测试(例如,研究在不同肤色上的表现),以及开发可增强隐私保护和限制个人身份识别的产品功能,例如人物和人脸模糊处理。我们致力于不断迭代和改进,并将继续将最佳实践和经验教训纳入 Vertex AI 产品中。
将 Vertex AI Vision 集成到客户独特的组织环境中时,可能需要考虑其他 Responsible AI 注意事项。我们鼓励客户在实现 Vertex AI Vision 时利用公平性、可解释性、隐私性和安全性最佳实践,尤其是在构建自定义模型或 AutoML 训练模型时。在本技术文档中,我们提供了更多指导和资源来支持此工作。如需了解详情,请参阅 Google 关于 Responsible AI 做法的建议。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-08-11。"],[],[],null,["# Vertex AI Vision overview\n\nVertex AI Vision is an AI-powered platform to ingest, analyze and store video\ndata. Vertex AI Vision lets users build and deploy\napplications with a simplified user interface.\n\nUsing Vertex AI Vision you can build end-to-end computer image solutions by\nleveraging Vertex AI Vision's\nintegration with other major components, namely Live Video Analytics,\ndata streams, and Vision Warehouse. The Vertex AI Vision API allows you to\nbuild a high level app from low level APIs, and create and update a high\nlevel workflow that combines multiple individual API calls. You can then\nexecute your workflow as a unit by making a single deploy request to\nthe Vertex AI Vision platform server.\n\nUsing Vertex AI Vision, you can:\n\n- Ingest real-time video data\n- Analyze data for insights using general and custom vision AI models\n- Store insights in Vision Warehouse for simplified querying and metadata information\n\nVertex AI Vision workflow\n-------------------------\n\nThe steps you complete to use Vertex AI Vision are as follows:\n\n1. **Ingest real-time data**\n\n Vertex AI Vision's architecture allows you to quickly and\n conveniently stream real-time video ingestion infrastructure in a\n public Cloud.\n2. **Analyze data**\n\n After data is ingested, Vertex AI Vision's framework provides you with easy\n access and orchestration of a large and growing portfolio of *general* ,\n *custom* ,\n \\& *specialized* analysis models.\n3. **Store and query output**\n\n After your app analyzes your data you can send this information to a\n storage destination (Vision Warehouse or BigQuery), or\n receive the data live. With Vision Warehouse you can send your app\n output to a warehouse that generalizes your search work and serves\n multiple data types and use cases.\n\n*A graph for a Vertex AI Vision occupancy analytics app in the Google Cloud console*\n\nA note on Responsible AI\n------------------------\n\nAt Google Cloud, we prioritize helping customers safely develop and implement\nsolutions using Vertex AI Vision. For Vertex AI Vision, we've worked to\ndevelop fair and equitable performance in accordance with\n[Google's AI Principles](https://ai.google/principles/).\n\nThis work includes testing for bias during development, for example looking at\nperformance across different skin tones, and developing product features to\nenhance privacy and limit personal identification, like person and face blur.\nWe are committed to iterating and improving, and we will continue to\nincorporate best practices and lessons learned into our Vertex AI\nproducts.\n\nWhen Vertex AI Vision is integrated into a customer's unique organizational\ncontext, there are likely to be additional responsible AI considerations.\nWe encourage customers to leverage fairness, interpretability, privacy and\nsecurity [best practices](https://ai.google/responsibilities/responsible-ai-practices/?category=general) when implementing Vertex AI Vision,\nespecially when building custom or AutoML trained models. Throughout this\ntechnical documentation, we have provided additional guidance and resources to\nsupport this work. To learn more, read about Google's recommendations\nfor [Responsible AI practices](https://ai.google/responsibilities/responsible-ai-practices/?category=general).\n\nWhat's next\n-----------\n\n- Read more in the blog post [\"Vertex AI Vision: Easily build and deploy computer vision\n applications at scale\"](https://cloud.google.com/blog/products/ai-machine-learning/computer-vision-for-vertex-ai).\n- Learn details about specific models in the [Occupancy analytics guide](/vision-ai/docs/occupancy-analytics-model), [Person blur guide](/vision-ai/docs/person-blur-model), [Person/vehicle detector guide](/vision-ai/docs/person-vehicle-model), or [Motion filtering guide](/vision-ai/docs/motion-filtering-model).\n- Try Vertex AI Vision in the Google Cloud console by reading the [Build an app in the console](/vision-ai/docs/build-app-console-quickstart) quickstart.\n- [Set up your local environment](/vision-ai/docs/cloud-environment) to use Vertex AI Vision."]]