Detectar personas

En el siguiente código de ejemplo se muestra cómo detectar personas en un archivo de vídeo mediante la API Video Intelligence.

Video Intelligence puede detectar la presencia de personas en un archivo de vídeo y hacer un seguimiento de las personas a lo largo de un vídeo o un segmento de vídeo.

Detección de personas en un archivo de Cloud Storage

A continuación, se muestra cómo enviar una solicitud de anotación a Video Intelligence con la función de detección de personas.

REST

Enviar solicitud de anotación de vídeo

A continuación, se muestra cómo enviar una solicitud POST al método videos:annotate. En el ejemplo se usa Google Cloud CLI para crear un token de acceso. Para obtener instrucciones sobre cómo instalar gcloud CLI, consulta la guía de inicio rápido de la API Video Intelligence. Consulta también PersonDetectionConfig.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • INPUT_URI: un segmento de Cloud Storage que contiene el archivo que quieres anotar, incluido el nombre del archivo. Debe empezar por gs://.
    Por ejemplo:
    "inputUri": "gs://cloud-samples-data/video/googlework_short.mp4"
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Cuerpo JSON de la solicitud:

{
  "inputUri": "INPUT_URI",
  "features": ["PERSON_DETECTION"],
  "videoContext": {
    "personDetectionConfig": {
      "includeBoundingBoxes": true,
      "includePoseLandmarks": true,
      "includeAttributes": true
     }
  }
}

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Si la respuesta es correcta, la API Video Intelligence devuelve el name de tu operación. Arriba se muestra un ejemplo de este tipo de respuesta, donde:

  • PROJECT_NUMBER: el número de tu proyecto
  • LOCATION_ID: la región de Cloud en la que se debe realizar la anotación. Las regiones de nube admitidas son us-east1, us-west1, europe-west1 y asia-east1. Si no se especifica ninguna región, se determinará una en función de la ubicación del archivo de vídeo.
  • OPERATION_ID: el ID de la operación de larga duración creada para la solicitud y proporcionada en la respuesta cuando iniciaste la operación. Por ejemplo, 12345....

Obtener resultados de anotación

Para obtener el resultado de la operación, haz una solicitud GET con el nombre de la operación devuelto por la llamada a videos:annotate, como se muestra en el siguiente ejemplo.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • OPERATION_NAME: el nombre de la operación tal como lo devuelve la API Video Intelligence. El nombre de la operación tiene el formato projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Las anotaciones de detección de planos se devuelven como una lista shotAnnotations. Nota: El campo done solo se devuelve cuando su valor es True. No se incluye en las respuestas de las operaciones que no se han completado.

Descargar resultados de anotación

Copia la anotación del segmento de origen al de destino (consulta Copiar archivos y objetos).

gcloud storage cp gcs_uri gs://my-bucket

Nota: Si el usuario proporciona el URI de GCS de salida, la anotación se almacenará en ese URI.

Java

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.DetectedLandmark;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.PersonDetectionAnnotation;
import com.google.cloud.videointelligence.v1.PersonDetectionConfig;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;

public class DetectPersonGcs {

  public static void detectPersonGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String gcsUri = "gs://cloud-samples-data/video/googlework_short.mp4";
    detectPersonGcs(gcsUri);
  }

  // Detects people in a video stored in Google Cloud Storage using
  // the Cloud Video Intelligence API.
  public static void detectPersonGcs(String gcsUri) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.

      PersonDetectionConfig personDetectionConfig =
          PersonDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get poses and attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludePoseLandmarks(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setPersonDetectionConfig(personDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.PERSON_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects people in a video
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();
      // Get the first response, since we sent only one video.
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of people detected, tracked and recognized in video.
      for (PersonDetectionAnnotation personDetectionAnnotation :
          annotationResult.getPersonDetectionAnnotationsList()) {
        System.out.print("Person detected:\n");
        for (Track track : personDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that include characteristic--e.g. clothes,
          // posture of the person detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          // Attributes include unique pieces of clothing, poses (i.e., body landmarks)
          // of the person detected.
          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            System.out.printf(
                "\tAttribute: %s; Value: %s\n", attribute.getName(), attribute.getValue());
          }

          // Landmarks in person detection include body parts.
          for (DetectedLandmark attribute : firstTimestampedObject.getLandmarksList()) {
            System.out.printf(
                "\tLandmark: %s; Vertex: %f, %f\n",
                attribute.getName(), attribute.getPoint().getX(), attribute.getPoint().getY());
          }
        }
      }
    }
  }
}

Node.js

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

async function detectPersonGCS() {
  const request = {
    inputUri: gcsUri,
    features: ['PERSON_DETECTION'],
    videoContext: {
      personDetectionConfig: {
        // Must set includeBoundingBoxes to true to get poses and attributes.
        includeBoundingBoxes: true,
        includePoseLandmarks: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const personAnnotations =
    results[0].annotationResults[0].personDetectionAnnotations;

  for (const {tracks} of personAnnotations) {
    console.log('Person detected:');

    for (const {segment, timestampedObjects} of tracks) {
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristic--e.g. clothes, posture
      // of the person detected.
      const [firstTimestampedObject] = timestampedObjects;

      // Attributes include unique pieces of clothing, poses (i.e., body
      // landmarks) of the person detected.
      for (const {name, value} of firstTimestampedObject.attributes) {
        console.log(`\tAttribute: ${name}; Value: ${value}`);
      }

      // Landmarks in person detection include body parts.
      for (const {name, point} of firstTimestampedObject.landmarks) {
        console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
      }
    }
  }
}

detectPersonGCS();

Python

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

from google.cloud import videointelligence_v1 as videointelligence


def detect_person(gcs_uri="gs://YOUR_BUCKET_ID/path/to/your/video.mp4"):
    """Detects people in a video."""

    client = videointelligence.VideoIntelligenceServiceClient()

    # Configure the request
    config = videointelligence.types.PersonDetectionConfig(
        include_bounding_boxes=True,
        include_attributes=True,
        include_pose_landmarks=True,
    )
    context = videointelligence.types.VideoContext(person_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.PERSON_DETECTION],
            "input_uri": gcs_uri,
            "video_context": context,
        }
    )

    print("\nProcessing video for person detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.person_detection_annotations:
        print("Person detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped objects that include
            # characteristics - -e.g.clothes, posture of the person detected.
            # Grab the first timestamped object
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include unique pieces of clothing,
            # poses, or hair color.
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

            # Landmarks in person detection include body parts such as
            # left_shoulder, right_ear, and right_ankle
            print("Landmarks:")
            for landmark in timestamped_object.landmarks:
                print(
                    "\t{}: {} (x={}, y={})".format(
                        landmark.name,
                        landmark.confidence,
                        landmark.point.x,  # Normalized vertex
                        landmark.point.y,  # Normalized vertex
                    )
                )

Idiomas adicionales

C#: Sigue las instrucciones de configuración de C# en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para .NET.

PHP Sigue las instrucciones de configuración de PHP en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para Ruby.

Detección de personas en archivos locales

En el siguiente ejemplo se usa la detección de personas para encontrar entidades en un vídeo de un archivo de vídeo subido desde tu máquina local.

REST

Enviar la solicitud de proceso

Para detectar personas en un archivo de vídeo local, codifica en Base64 el contenido del archivo de vídeo. Para obtener información sobre cómo codificar en Base64 el contenido de un archivo de vídeo, consulta Codificación Base64. A continuación, haz una solicitud POST al método videos:annotate. Incluye el contenido codificado en Base64 en el campo inputContent de la solicitud y especifica la función PERSON_DETECTION.

A continuación, se muestra un ejemplo de una solicitud POST que utiliza curl. En el ejemplo se usa Google Cloud CLI para crear un token de acceso. Para obtener instrucciones sobre cómo instalar gcloud CLI, consulta la guía de inicio rápido de la API Video Intelligence.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • inputContent: Archivo de vídeo local en formato binario.
    Por ejemplo: "AAAAGGZ0eXBtcDQyAAAAAGlzb21tcDQyAAGVYW1vb3YAAABsbXZoZAAAAADWvhlR1r4ZUQABX5ABCOxo AAEAAAEAAAAAAA4..."
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Cuerpo JSON de la solicitud:

{
  "inputUri": "Local video file in binary format",
  "features": ["PERSON_DETECTION"],
  "videoContext": {
    "personDetectionConfig": {
      "includeBoundingBoxes": true,
      "includePoseLandmarks": true,
      "includeAttributes": true
     }
  }
}

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Si la solicitud se realiza correctamente, Video Intelligence devolverá el name de tu operación. Arriba se muestra un ejemplo de este tipo de respuesta, donde project-number es el número de tu proyecto y operation-id es el ID de la operación de larga duración creada para la solicitud.

{ "name": "us-west1.17122464255125931980" }

Obtener los resultados

Para obtener el resultado de la operación, haz una solicitud GET al endpoint operations y especifica el nombre de la operación.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • OPERATION_NAME: el nombre de la operación tal como lo devuelve la API Video Intelligence. El nombre de la operación tiene el formato projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Java

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.DetectedLandmark;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.PersonDetectionAnnotation;
import com.google.cloud.videointelligence.v1.PersonDetectionConfig;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DetectPerson {

  public static void detectPerson() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "resources/googlework_short.mp4";
    detectPerson(localFilePath);
  }

  // Detects people in a video stored in a local file using the Cloud Video Intelligence API.
  public static void detectPerson(String localFilePath) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.
      Path path = Paths.get(localFilePath);
      byte[] data = Files.readAllBytes(path);
      ByteString inputContent = ByteString.copyFrom(data);

      PersonDetectionConfig personDetectionConfig =
          PersonDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get poses and attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludePoseLandmarks(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setPersonDetectionConfig(personDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputContent(inputContent)
              .addFeatures(Feature.PERSON_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects people in a video
      // We get the first result because only one video is processed.
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();

      // Gets annotations for video
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of people detected, tracked and recognized in video.
      for (PersonDetectionAnnotation personDetectionAnnotation :
          annotationResult.getPersonDetectionAnnotationsList()) {
        System.out.print("Person detected:\n");
        for (Track track : personDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that include characteristic--e.g. clothes,
          // posture of the person detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          // Attributes include unique pieces of clothing, poses (i.e., body landmarks)
          // of the person detected.
          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            System.out.printf(
                "\tAttribute: %s; Value: %s\n", attribute.getName(), attribute.getValue());
          }

          // Landmarks in person detection include body parts.
          for (DetectedLandmark attribute : firstTimestampedObject.getLandmarksList()) {
            System.out.printf(
                "\tLandmark: %s; Vertex: %f, %f\n",
                attribute.getName(), attribute.getPoint().getX(), attribute.getPoint().getY());
          }
        }
      }
    }
  }
}

Node.js

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;
const fs = require('fs');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = fs.readFileSync(path);
const inputContent = file.toString('base64');

async function detectPerson() {
  const request = {
    inputContent: inputContent,
    features: ['PERSON_DETECTION'],
    videoContext: {
      personDetectionConfig: {
        // Must set includeBoundingBoxes to true to get poses and attributes.
        includeBoundingBoxes: true,
        includePoseLandmarks: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const personAnnotations =
    results[0].annotationResults[0].personDetectionAnnotations;

  for (const {tracks} of personAnnotations) {
    console.log('Person detected:');

    for (const {segment, timestampedObjects} of tracks) {
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristic--e.g. clothes, posture
      // of the person detected.
      const [firstTimestampedObject] = timestampedObjects;

      // Attributes include unique pieces of clothing, poses (i.e., body
      // landmarks) of the person detected.
      for (const {name, value} of firstTimestampedObject.attributes) {
        console.log(`\tAttribute: ${name}; Value: ${value}`);
      }

      // Landmarks in person detection include body parts.
      for (const {name, point} of firstTimestampedObject.landmarks) {
        console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
      }
    }
  }
}

detectPerson();

Python

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import io

from google.cloud import videointelligence_v1 as videointelligence


def detect_person(local_file_path="path/to/your/video-file.mp4"):
    """Detects people in a video from a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()

    # Configure the request
    config = videointelligence.types.PersonDetectionConfig(
        include_bounding_boxes=True,
        include_attributes=True,
        include_pose_landmarks=True,
    )
    context = videointelligence.types.VideoContext(person_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.PERSON_DETECTION],
            "input_content": input_content,
            "video_context": context,
        }
    )

    print("\nProcessing video for person detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.person_detection_annotations:
        print("Person detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped objects that include
            # characteristic - -e.g.clothes, posture of the person detected.
            # Grab the first timestamped object
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include unique pieces of clothing,
            # poses, or hair color.
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

            # Landmarks in person detection include body parts such as
            # left_shoulder, right_ear, and right_ankle
            print("Landmarks:")
            for landmark in timestamped_object.landmarks:
                print(
                    "\t{}: {} (x={}, y={})".format(
                        landmark.name,
                        landmark.confidence,
                        landmark.point.x,  # Normalized vertex
                        landmark.point.y,  # Normalized vertex
                    )
                )

Idiomas adicionales

C#: Sigue las instrucciones de configuración de C# en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para .NET.

PHP Sigue las instrucciones de configuración de PHP en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para Ruby.