Detección de caras

La función Detección de caras de la API Video Intelligence busca caras en un vídeo.

Detección de caras en un archivo de Cloud Storage

En los siguientes ejemplos se muestra cómo detectar caras en un archivo ubicado en Cloud Storage.

REST

Enviar solicitud de anotación de vídeo

A continuación, se muestra cómo enviar una solicitud POST al método videos:annotate. En el ejemplo se usa Google Cloud CLI para crear un token de acceso. Para obtener instrucciones sobre cómo instalar gcloud CLI, consulta la guía de inicio rápido de la API Video Intelligence.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • INPUT_URI: un segmento de Cloud Storage que contiene el archivo que quieres anotar, incluido el nombre del archivo. Debe empezar por gs://.
    Por ejemplo: `"inputUri": "gs://cloud-samples-data/video/googlework_short.mp4"`
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Cuerpo JSON de la solicitud:

{
    "inputUri": "INPUT_URI",
    "features": ["FACE_DETECTION"]
}

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Si la respuesta es correcta, la API Video Intelligence devuelve el name de tu operación. Arriba se muestra un ejemplo de este tipo de respuesta, donde:

  • PROJECT_NUMBER: el número de tu proyecto
  • LOCATION_ID: la región de Cloud en la que se debe realizar la anotación. Las regiones de nube admitidas son us-east1, us-west1, europe-west1 y asia-east1. Si no se especifica ninguna región, se selecciona una en función de la ubicación del archivo de vídeo.
  • OPERATION_ID: el ID de la operación de larga duración creada para la solicitud y proporcionada en la respuesta cuando iniciaste la operación. Por ejemplo, 12345....

Obtener resultados de anotación

Para obtener el resultado de la operación, haz una solicitud GET con el nombre de la operación devuelto por la llamada a videos:annotate, como se muestra en el siguiente ejemplo.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • OPERATION_NAME: el nombre de la operación tal como lo devuelve la API Video Intelligence. El nombre de la operación tiene el formato projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Las anotaciones de detección de caras se devuelven como una lista faceAnnotations. Nota: El campo done solo se devuelve cuando su valor es True. No se incluye en las respuestas de las operaciones que no se han completado.

Java

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.FaceDetectionAnnotation;
import com.google.cloud.videointelligence.v1.FaceDetectionConfig;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;

public class DetectFacesGcs {

  public static void detectFacesGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String gcsUri = "gs://cloud-samples-data/video/googlework_short.mp4";
    detectFacesGcs(gcsUri);
  }

  // Detects faces in a video stored in Google Cloud Storage using the Cloud Video Intelligence API.
  public static void detectFacesGcs(String gcsUri) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {

      FaceDetectionConfig faceDetectionConfig =
          FaceDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get facial attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setFaceDetectionConfig(faceDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.FACE_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects faces in a video
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();

      // Gets annotations for video
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of people detected, tracked and recognized in video.
      for (FaceDetectionAnnotation faceDetectionAnnotation :
          annotationResult.getFaceDetectionAnnotationsList()) {
        System.out.print("Face detected:\n");
        for (Track track : faceDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that
          // include characteristics of the face detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            // Attributes include glasses, headwear, smiling, direction of gaze
            System.out.printf(
                "\tAttribute %s: %s %s\n",
                attribute.getName(), attribute.getValue(), attribute.getConfidence());
          }
        }
      }
    }
  }
}

Node.js

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

async function detectFacesGCS() {
  const request = {
    inputUri: gcsUri,
    features: ['FACE_DETECTION'],
    videoContext: {
      faceDetectionConfig: {
        // Must set includeBoundingBoxes to true to get facial attributes.
        includeBoundingBoxes: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const faceAnnotations =
    results[0].annotationResults[0].faceDetectionAnnotations;

  for (const {tracks} of faceAnnotations) {
    console.log('Face detected:');

    for (const {segment, timestampedObjects} of tracks) {
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}.` +
          `${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristics of the face detected.
      const [firstTimestapedObject] = timestampedObjects;

      for (const {name} of firstTimestapedObject.attributes) {
        // Attributes include 'glasses', 'headwear', 'smiling'.
        console.log(`\tAttribute: ${name}; `);
      }
    }
  }
}

detectFacesGCS();

Python

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

from google.cloud import videointelligence_v1 as videointelligence


def detect_faces(gcs_uri="gs://YOUR_BUCKET_ID/path/to/your/video.mp4"):
    """Detects faces in a video."""

    client = videointelligence.VideoIntelligenceServiceClient()

    # Configure the request
    config = videointelligence.FaceDetectionConfig(
        include_bounding_boxes=True, include_attributes=True
    )
    context = videointelligence.VideoContext(face_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.FACE_DETECTION],
            "input_uri": gcs_uri,
            "video_context": context,
        }
    )

    print("\nProcessing video for face detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.face_detection_annotations:
        print("Face detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped faces that include
            # characteristics of the face detected.
            # Grab the first timestamped face
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include glasses, headwear, smiling, direction of gaze
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

Idiomas adicionales

C#: Sigue las instrucciones de configuración de C# en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para .NET.

PHP Sigue las instrucciones de configuración de PHP en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para Ruby.

Detección de caras en archivos locales

En el siguiente ejemplo se usa la detección de caras para encontrar entidades en un vídeo de un archivo de vídeo subido desde tu máquina local.

REST

Enviar la solicitud de proceso

Para detectar caras en un archivo de vídeo local, codifica en base64 el contenido del archivo de vídeo. Para obtener información sobre cómo codificar en Base64 el contenido de un archivo de vídeo, consulta Codificación Base64. A continuación, haz una solicitud POST al método videos:annotate. Incluye el contenido codificado en Base64 en el campo inputContent de la solicitud y especifica la función FACE_DETECTION.

A continuación, se muestra un ejemplo de una solicitud POST que utiliza curl. En el ejemplo se usa la CLI de Google Cloud para crear un token de acceso. Para obtener instrucciones sobre cómo instalar gcloud CLI, consulta la guía de inicio rápido de la API Video Intelligence.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • inputContent: Archivo de vídeo local en formato binario
    Por ejemplo: "AAAAGGZ0eXBtcDQyAAAAAGlzb21tcDQyAAGVYW1vb3YAAABsbXZoZAAAAADWvhlR1r4ZUQABX5ABCOxo AAEAAAEAAAAAAA4..."
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Cuerpo JSON de la solicitud:

{
    inputContent: "Local video file in binary format",
    "features": ["FACE_DETECTION"]
}

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Si la solicitud se realiza correctamente, Video Intelligence devolverá el name de tu operación. Arriba se muestra un ejemplo de este tipo de respuesta, donde project-number es el número de tu proyecto y operation-id es el ID de la operación de larga duración creada para la solicitud.

{ "name": "us-west1.17122464255125931980" }

Obtener los resultados

Para obtener el resultado de la operación, haz una solicitud GET al endpoint operations y especifica el nombre de la operación.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • OPERATION_NAME: el nombre de la operación tal como lo devuelve la API Video Intelligence. El nombre de la operación tiene el formato projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: identificador numérico de tu Google Cloud proyecto

Método HTTP y URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

Java

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.FaceDetectionAnnotation;
import com.google.cloud.videointelligence.v1.FaceDetectionConfig;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DetectFaces {

  public static void detectFaces() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "resources/googlework_short.mp4";
    detectFaces(localFilePath);
  }

  // Detects faces in a video stored in a local file using the Cloud Video Intelligence API.
  public static void detectFaces(String localFilePath) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.
      Path path = Paths.get(localFilePath);
      byte[] data = Files.readAllBytes(path);
      ByteString inputContent = ByteString.copyFrom(data);

      FaceDetectionConfig faceDetectionConfig =
          FaceDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get facial attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setFaceDetectionConfig(faceDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputContent(inputContent)
              .addFeatures(Feature.FACE_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects faces in a video
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();

      // Gets annotations for video
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of faces detected, tracked and recognized in video.
      for (FaceDetectionAnnotation faceDetectionAnnotation :
          annotationResult.getFaceDetectionAnnotationsList()) {
        System.out.print("Face detected:\n");
        for (Track track : faceDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that
          // include characteristics of the face detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            // Attributes include glasses, headwear, smiling, direction of gaze
            System.out.printf(
                "\tAttribute %s: %s %s\n",
                attribute.getName(), attribute.getValue(), attribute.getConfidence());
          }
        }
      }
    }
  }
}

Node.js

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;
const fs = require('fs');

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

// Reads a local video file and converts it to base64
const file = fs.readFileSync(path);
const inputContent = file.toString('base64');

async function detectFaces() {
  const request = {
    inputContent: inputContent,
    features: ['FACE_DETECTION'],
    videoContext: {
      faceDetectionConfig: {
        // Must set includeBoundingBoxes to true to get facial attributes.
        includeBoundingBoxes: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const faceAnnotations =
    results[0].annotationResults[0].faceDetectionAnnotations;
  for (const {tracks} of faceAnnotations) {
    console.log('Face detected:');
    for (const {segment, timestampedObjects} of tracks) {
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristics of the face detected.
      const [firstTimestapedObject] = timestampedObjects;

      for (const {name} of firstTimestapedObject.attributes) {
        // Attributes include 'glasses', 'headwear', 'smiling'.
        console.log(`\tAttribute: ${name}; `);
      }
    }
  }
}

detectFaces();

Python

Para autenticarte en Video Intelligence, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import io

from google.cloud import videointelligence_v1 as videointelligence


def detect_faces(local_file_path="path/to/your/video-file.mp4"):
    """Detects faces in a video from a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()

    # Configure the request
    config = videointelligence.FaceDetectionConfig(
        include_bounding_boxes=True, include_attributes=True
    )
    context = videointelligence.VideoContext(face_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.FACE_DETECTION],
            "input_content": input_content,
            "video_context": context,
        }
    )

    print("\nProcessing video for face detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.face_detection_annotations:
        print("Face detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped faces that include
            # characteristics of the face detected.
            # Grab the first timestamped face
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include glasses, headwear, smiling, direction of gaze
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

Idiomas adicionales

C#: Sigue las instrucciones de configuración de C# en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para .NET.

PHP Sigue las instrucciones de configuración de PHP en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para PHP.

Ruby: Sigue las instrucciones de configuración de Ruby en la página de bibliotecas de cliente y, a continuación, consulta la documentación de referencia de Video Intelligence para Ruby.