您可以使用 OpenAI 程式庫 (Python 和 TypeScript/Javascript) 搭配 REST API 存取 Gemini 模型。Vertex AI 僅支援使用 OpenAI 程式庫的 Google Cloud Auth。如果您尚未使用 OpenAI 程式庫,建議您直接呼叫 Gemini API。
Python
import openai
from google.auth import default
import google.auth.transport.requests
# TODO(developer): Update and un-comment below lines
#project_id = "PROJECT_ID"
location = "us-central1"
# # Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())
# OpenAI Client
client = openai.OpenAI(
base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
api_key=credentials.token
)
response = client.chat.completions.create(
model="google/gemini-2.0-flash-001",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Explain to me how AI works"}
]
)
print(response.choices[0].message)
異動內容
api_key=credentials.token
:如要使用 Google Cloud 驗證,請使用範例程式碼取得Google Cloud 驗證權杖。base_url
:這會指示 OpenAI 程式庫將要求傳送至 Google Cloud,而非預設網址。model="google/gemini-2.0-flash-001"
:從 Vertex 代管的模型中選擇相容的 Gemini 模型。
思考
Gemini 2.5 模型經過訓練,能夠思考複雜問題,推理能力大幅提升。Gemini API 提供「思考預算」參數,可精細控管模型的思考量。
與 Gemini API 不同,OpenAI API 提供三種思考控制選項:「低」、「中」和「高」,這些選項會在幕後對應至 1K、8K 和 24K 思考符記預算。
如要停用思考功能,請將推理努力程度設為「none」。
Python
import openai
from google.auth import default
import google.auth.transport.requests
# TODO(developer): Update and un-comment below lines
#project_id = PROJECT_ID
location = "us-central1"
# # Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())
# OpenAI Client
client = openai.OpenAI(
base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
api_key=credentials.token
)
response = client.chat.completions.create(
model="google/gemini-2.5-flash-preview-04-17",
reasoning_effort="low",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "Explain to me how AI works"
}
]
)
print(response.choices[0].message)
串流
Gemini API 支援串流回應。
Python
import openai
from google.auth import default
import google.auth.transport.requests
# TODO(developer): Update and un-comment below lines
#project_id = PROJECT_ID
location = "us-central1"
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())
client = openai.OpenAI(
base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
api_key=credentials.token
)
response = client.chat.completions.create(
model="google/gemini-2.0-flash",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta)
函式呼叫
呼叫函式可讓您更輕鬆地從生成式模型取得結構化資料輸出內容,且 Gemini API 支援這項功能。
Python
import openai
from google.auth import default
import google.auth.transport.requests
# TODO(developer): Update and un-comment below lines
#project_id = PROJECT_ID
location = "us-central1"
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())
client = openai.OpenAI(
base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
api_key=credentials.token
)
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. Chicago, IL",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
}
}
]
messages = [{"role": "user", "content": "What's the weather like in Chicago today?"}]
response = client.chat.completions.create(
model="google/gemini-2.0-flash",
messages=messages,
tools=tools,
tool_choice="auto"
)
print(response)
圖片理解
Gemini 模型原生支援多模態資料,可在許多常見的視覺任務中提供同級最佳成效。
Python
from google.auth import default
import google.auth.transport.requests
import base64
from openai import OpenAI
# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
location = "us-central1"
# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())
# OpenAI Client
client = openai.OpenAI(
base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
api_key=credentials.token,
)
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Getting the base64 string
#base64_image = encode_image("Path/to/image.jpeg")
response = client.chat.completions.create(
model="google/gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
},
},
],
}
],
)
print(response.choices[0])
生成圖片
Python
from google.auth import default
import google.auth.transport.requests
import base64
from openai import OpenAI
# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
location = "us-central1"
# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())
# OpenAI Client
client = openai.OpenAI(
base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
api_key=credentials.token,
)
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Getting the base64 string
#base64_image = encode_image("Path/to/image.jpeg")
base64_image = encode_image("/content/wayfairsofa.jpg")
response = client.chat.completions.create(
model="google/gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What is in this image?",
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
},
},
],
}
],
)
print(response.choices[0])
音訊理解
分析音訊輸入內容:
Python
from google.auth import default
import google.auth.transport.requests
import base64
from openai import OpenAI
# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
location = "us-central1"
# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())
# OpenAI Client
client = openai.OpenAI(
base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
api_key=credentials.token,
)
with open("/path/to/your/audio/file.wav", "rb") as audio_file:
base64_audio = base64.b64encode(audio_file.read()).decode('utf-8')
response = client.chat.completions.create(
model="gemini-2.0-flash",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": "Transcribe this audio",
},
{
"type": "input_audio",
"input_audio": {
"data": base64_audio,
"format": "wav"
}
}
],
}
],
)
print(response.choices[0].message.content)
結構化輸出內容
Gemini 模型可輸出任何您定義的結構中的 JSON 物件。
Python
from google.auth import default
import google.auth.transport.requests
from pydantic import BaseModel
from openai import OpenAI
# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"
location = "us-central1"
# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
credentials.refresh(google.auth.transport.requests.Request())
# OpenAI Client
client = openai.OpenAI(
base_url=f"https://{location}-aiplatform.googleapis.com/v1/projects/{project_id}/locations/{location}/endpoints/openapi",
api_key=credentials.token,
)
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="google/gemini-2.0-flash",
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "John and Susan are going to an AI conference on Friday."},
],
response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
目前限制
我們正在擴大功能支援範圍,因此 OpenAI 程式庫的支援功能仍處於預覽階段。如有任何問題或疑問,請在 Google Cloud 社群中發文提問。
後續步驟
運用 Google Gen AI 程式庫發揮 Gemini 的潛力。
請參閱更多使用 Chat Completions API 與 OpenAI 相容語法的範例。
如要瞭解 Gemini 支援哪些模型和參數,請參閱總覽頁面。