Vertex AI SDK の生成 AI モジュールは非推奨になり、2026 年 6 月 24 日以降は使用できなくなります。Google Gen AI SDK には Vertex AI SDK のすべての機能が含まれており、多くの追加機能をサポートしています。
この移行ガイドを使用して、Vertex AI SDK を使用する Python、Java、JavaScript、Go のコードを Google Gen AI SDK に変換します。
主な変更点
Vertex AI SDK の次の名前空間は非推奨フェーズに入っています。2026 年 6 月 24 日以降の SDK リリースには、これらのモジュールは含まれません。非推奨のモジュールとパッケージと同等の機能を備えた Google Gen AI SDK の同等の名前空間を使用します。
Vertex AI SDK | 影響を受けるコード | Google Gen AI SDK の置き換え |
---|---|---|
google-cloud-aiplatform |
削除されたモジュール: |
google-genai |
cloud.google.com/go/vertexai/genai |
削除されたパッケージ: |
google.golang.org/genai |
@google-cloud/vertexai |
削除されたモジュール: |
@google/genai |
com.google.cloud:google-cloud-vertexai |
削除されたパッケージ: |
com.google.genai:google-genai |
コードの移行
以降のセクションでは、Vertex AI SDK から Google Gen AI SDK に特定のコード スニペットを移行する方法について説明します。
インストール
Vertex AI SDK の依存関係を Google Gen AI SDK の依存関係に置き換えます。
変更前
Python
pip install -U -q "google-cloud-aiplatform"
Java
Gradle:
gradle:
implementation 'com.google.cloud:google-cloud-vertexai:1.26.0'
maven:
<dependency>
<groupId>com.google.cloud</groupId>
<artifactId>google-cloud-vertexai</artifactId>
<version>1.26.0</version>
</dependency>
JavaScript
npm install @google-cloud/vertexai
Go
go get cloud.google.com/go/vertexai/genai
変更後
Python
pip install -U -q "google-genai"
Java
gradle:
implementation 'com.google.genai:google-genai:1.5.0'
maven:
<dependency>
<groupId>com.google.genai</groupId>
<artifactId>google-genai</artifactId>
<version>1.5.0</version>
</dependency>
JavaScript
npm install @google/genai
Go
go get google.golang.org/genai
コンテキストのキャッシュ保存
コンテキスト キャッシュ保存では、類似するリクエストでよく使用されるモデル プロンプトの部分を保存して再利用します。Vertex AI SDK の実装を Google Gen AI SDK の依存関係に置き換えます。
変更前
Python
インポート
from google.cloud import aiplatform
import vertexai
import datetime
作成
vertexai.init(project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION)
cache_content = vertexai.caching.CachedContent.create(
model_name=MODEL_NAME,
system_instruction='Please answer my question formally',
contents=['user content'],
ttl=datetime.timedelta(days=1),
)
取得
vertexai.init(project=GOOGLE_CLOUD_PROJECT, location=GOOGLE_CLOUD_LOCATION)
cache_content = vertexai.caching.CachedContent.get(cached_content_name="projects/{project}/locations/{location}/cachedContents/{cached_content}")
削除
cache_content.delete()
更新
cache_content.update(ttl=datetime.timedelta(days=2))
リスト
cache_contents = vertexai.caching.CachedContent.list()
Java
コンテキスト キャッシュ保存は、Java Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
JavaScript
コンテキスト キャッシュは JavaScript Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
Go
インポート
package contextcaching
// [START generativeaionvertexai_gemini_create_context_cache]
import (
"context"
"fmt"
"io"
"time"
"cloud.google.com/go/vertexai/genai"
)
作成
content := &genai.CachedContent{
Model: modelName,
SystemInstruction: &genai.Content{
Parts: []genai.Part{genai.Text(systemInstruction)},
},
Expiration: genai.ExpireTimeOrTTL{TTL: 60 * time.Minute},
Contents: []*genai.Content{
{
Role: "user",
Parts: []genai.Part{part1, part2},
},
},
}
result, err := client.CreateCachedContent(context, content)
取得
cachedContent, err := client.GetCachedContent(context, contentName)
削除
err = client.DeleteCachedContent(context, contentName)
更新
newExpireTime := cc.Expiration.ExpireTime.Add(15 * time.Minute)
ccUpdated := client.UpdateCachedContent(context, cc, &genai.CachedContentToUpdate{
Expiration: &genai.ExpireTimeOrTTL{ExpireTime: newExpireTime},
})
リスト
iter, err := client.ListCachedContents(context, contentName)
変更後
Python
インポート
from google import genai
from google.genai.types import Content, CreateCachedContentConfig, HttpOptions, Part
作成
client = genai.Client(http_options=HttpOptions(api_version="v1"))
content_cache = client.caches.create(
model="gemini-2.5-flash",
config=CreateCachedContentConfig(
contents=contents,
system_instruction=system_instruction,
display_name="example-cache",
ttl="86400s",
),
)
取得
content_cache_list = client.caches.list()
# Access individual properties of a ContentCache object(s)
for content_cache in content_cache_list:
print(f"Cache `{content_cache.name}` for model `{content_cache.model}`")
print(f"Last updated at: {content_cache.update_time}")
print(f"Expires at: {content_cache.expire_time}")
削除
client.caches.delete(name=cache_name)
更新
content_cache = client.caches.update(
name=cache_name, config=UpdateCachedContentConfig(ttl="36000s")
)
リスト
cache_contents = client.caches.list(config={'page_size': 2})
Java
インポート
import com.google.genai.types.CachedContent;
import com.google.genai.types.Content;
import com.google.genai.types.CreateCachedContentConfig;
import com.google.genai.types.DeleteCachedContentResponse;
import com.google.genai.types.ListCachedContentsConfig;
作成
Content content =
Content.fromParts(
fetchPdfPart(
"https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"));
CreateCachedContentConfig config =
CreateCachedContentConfig.builder()
.systemInstruction(Content.fromParts(Part.fromText("summarize the pdf")))
.expireTime(Instant.now().plus(Duration.ofHours(1)))
.contents(content)
.build();
CachedContent cachedContent1 = client.caches.create("gemini-2.5-flash", config);
取得
CachedContent cachedContent2 = client.caches.get(cachedContent1.name().get(), null);
System.out.println("get cached content: " + cachedContent2);
削除
DeleteCachedContentResponse unused = client.caches.delete(cachedContent1.name().get(), null);
System.out.println("Deleted cached content: " + cachedContent1.name().get());
更新
CachedContent cachedContentUpdate =
client.caches.update(
cachedContent.name().get(),
UpdateCachedContentConfig.builder().ttl(Duration.ofMinutes(10)).build());
System.out.println("Update cached content: " + cachedContentUpdate);
リスト
System.out.println("List cached contents resrouce names: ");
for (CachedContent cachedContent :
client.caches.list(ListCachedContentsConfig.builder().pageSize(5).build())) {
System.out.println(cachedContent.name().get());
}
JavaScript
インポート
import {GoogleGenAI, Part} from '@google/genai';
作成
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const cachedContent1: Part = {
fileData: {
fileUri: 'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',
mimeType: 'application/pdf',
},
};
const cachedContent2: Part = {
fileData: {
fileUri: 'gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf',
mimeType: 'application/pdf',
},
};
const cache = await ai.caches.create({
model: 'gemini-1.5-pro-002',
config: {contents: [cachedContent1, cachedContent2]},
});
取得
const getResponse = await ai.caches.get({name: cacheName});
削除
await ai.caches.delete({name: cacheName});
更新
const updateResponse = await ai.caches.update({
name: cacheName,
config: {ttl: '86400s'},
});
リスト
const listResponse = await ai.caches.list();
let i = 1;
for await (const cachedContent of listResponse) {
console.debug(`List response ${i++}: `, JSON.stringify(cachedContent));
}
Go
インポート
import (
"context"
"encoding/json"
"fmt"
"io"
genai "google.golang.org/genai"
)
作成
cacheContents := []*genai.Content{
{
Parts: []*genai.Part{
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
MIMEType: "application/pdf",
}},
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
MIMEType: "application/pdf",
}},
},
Role: "user",
},
}
config := &genai.CreateCachedContentConfig{
Contents: cacheContents,
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: systemInstruction},
},
},
DisplayName: "example-cache",
TTL: "86400s",
}
res, err := client.Caches.Create(ctx, modelName, config)
取得
cachedContent, err := client.GetCachedContent(ctx, contentName)
削除
_, err = client.Caches.Delete(ctx, result.Name, &genai.DeleteCachedContentConfig{})
更新
result, err = client.Caches.Update(ctx, result.Name, &genai.UpdateCachedContentConfig{
ExpireTime: time.Now().Add(time.Hour),
})
リスト
// List the first page.
page, err := client.Caches.List(ctx, &genai.ListCachedContentsConfig{PageSize: 2})
// Continue to the next page.
page, err = page.Next(ctx)
// Resume the page iteration using the next page token.
page, err = client.Caches.List(ctx, &genai.ListCachedContentsConfig{PageSize: 2, PageToken: page.NextPageToken})
構成とシステム指示
構成では、モデルの動作を制御するパラメータを定義します。システム指示では、モデルのレスポンスを特定のペルソナ、スタイル、タスクに向けるためのガイドラインが提供されます。Vertex AI SDK の構成とシステム手順を、Google Gen AI SDK を使用する次のコードに置き換えます。
変更前
Python
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
system_instruction=[
"Talk like a pirate.",
"Don't use rude words.",
],
)
response = model.generate_content(
contents="Why is sky blue?",
generation_config=generative_models.GenerationConfig(
temperature=0,
top_p=0.95,
top_k=20,
candidate_count=1,
max_output_tokens=100,
stop_sequences=["STOP!"],
response_logprobs=True,
logprobs=3,
),
safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_NONE,
},
)
Java
import com.google.cloud.vertexai.api.GenerationConfig;
GenerationConfig generationConfig =
GenerationConfig.newBuilder().setMaxOutputTokens(50).build();
// Use the builder to instantialize the model with the configuration.
GenerativeModel model =
new GenerativeModel.Builder()
.setModelName("gemino-pro")
.setVertexAi(vertexAi)
.setGenerationConfig(generationConfig)
.build();
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const generativeModel = vertexAI.getGenerativeModel({
model: 'gemini-2.5-flash',
systemInstruction: {
parts: [
{text: 'You are a helpful language translator.'},
{text: 'Your mission is to translate text in English to French.'},
],
},
});
const textPart = {
text: `
User input: I like bagels.
Answer:`,
};
const request = {
contents: [{role: 'user', parts: [textPart]}],
};
const resp = await generativeModel.generateContent(request);
const contentResponse = await resp.response;
console.log(JSON.stringify(contentResponse));
Go
import (
"context"
"cloud.google.com/go/vertexai/genai"
)
model := client.GenerativeModel(modelName)
model.GenerationConfig = genai.GenerationConfig{
TopP: proto.Float32(1),
TopK: proto.Int32(32),
Temperature: proto.Float32(0.4),
MaxOutputTokens: proto.Int32(2048),
}
systemInstruction := fmt.Sprintf("Your mission is to translate text from %xs to %s", sourceLanguageCode, targetLanguageCode)
model.SystemInstruction = &genai.Content{
Role: "user",
Parts: []genai.Part{genai.Text(systemInstruction)},
}
変更後
Python
from google.genai import types
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='high',
config=types.GenerateContentConfig(
system_instruction='I say high, you say low',
max_output_tokens=3,
temperature=0.3,
response_logprobs=True,
logprobs=3,
),
)
Java
GenerateContentConfig
をインポートします。
import com.google.genai.types.GenerateContentConfig;
システム指示を作成します。
Content systemInstruction = Content.fromParts(Part.fromText("You are a history teacher."));
コンテンツ構成にシステム指示を追加します。
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.systemInstruction(systemInstruction)
.build();
完全な実装については、GenerateContentWithConfigs.java をご覧ください。
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'high',
config: {systemInstruction: 'I say high you say low.'},
});
console.debug(response.text);
await generateContentFromVertexAI().catch((e) =>
console.error('got error', e),
);
Go
import (
"context"
genai "google.golang.org/genai"
)
config := &genai.GenerateContentConfig{
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: "You're a language translator. Your mission is to translate text in English to French."},
},
},
}
resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
エンベディング
エンベディングは、テキスト、画像、動画の数値ベクトル表現であり、高次元空間で意味的または視覚的な意味と関係性を捉えます。Vertex AI SDK のエンベディング実装を、Google Gen AI SDK を使用する次のコードに置き換えます。
変更前
Python
model = vertexai.vision_models.MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
image = Image.load_from_file("image.png")
video = Video.load_from_file("video.mp4")
embeddings = model.get_embeddings(
# One of image, video or contextual_text is required.
image=image,
video=video,
contextual_text="Hello world",
)
image_embedding = embeddings.image_embedding
video_embeddings = embeddings.video_embeddings
text_embedding = embeddings.text_embedding
Java
エンベディングは Java Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
JavaScript
エンベディングは JavaScript Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
Go
エンベディングは Go Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
変更後
Python
from google.genai.types import EmbedContentConfig
client = genai.Client()
response = client.models.embed_content(
model="gemini-embedding-001",
contents="How do I get a driver's license/learner's permit?",
config=EmbedContentConfig(
task_type="RETRIEVAL_DOCUMENT", # Optional
output_dimensionality=3072, # Optional
title="Driver's License", # Optional
),
)
Java
import com.google.genai.Client;
import com.google.genai.types.EmbedContentResponse;
EmbedContentResponse response =
client.models.embedContent("text-embedding-005", "why is the sky blue?", null);
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.embedContent({
model: 'text-embedding-005',
contents: 'Hello world!',
});
console.debug(JSON.stringify(response));
await embedContentFromVertexAI().catch((e) =>
console.error('got error', e),
);
Go
import (
"context"
"fmt"
"google.golang.org/genai"
)
result, err := client.Models.EmbedContent(ctx, *model, genai.Text("What is your name?"), &genai.EmbedContentConfig{TaskType: "RETRIEVAL_QUERY"})
fmt.Printf("%#v\n", result.Embeddings[0])
fmt.Println("Embed content RETRIEVAL_DOCUMENT task type example.")
result, err = client.Models.EmbedContent(ctx, *model, genai.Text("What is your name?"), &genai.EmbedContentConfig{TaskType: "RETRIEVAL_DOCUMENT"})
fmt.Printf("%#v\n", result.Embeddings[0])
関数呼び出し
関数呼び出しにより、モデルは外部ツールや API を呼び出すタイミングを特定し、実行に必要な関数と引数を含む構造化データを生成できます。関数呼び出しの実装を Vertex AI SDK に置き換えます。次のコードは、Google Gen AI SDK を使用しています。
変更前
Python
get_current_weather_func = generative_models.FunctionDeclaration(
name="get_current_weather",
description="Get the current weather in a given location",
parameters=_REQUEST_FUNCTION_PARAMETER_SCHEMA_STRUCT,
)
weather_tool = generative_models.Tool(
function_declarations=[get_current_weather_func],
)
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
tools=[weather_tool],
)
chat = model.start_chat()
response1 = chat.send_message("What is the weather like in Boston?")
assert (
response1.candidates[0].content.parts[0].function_call.name
== "get_current_weather"
)
response2 = chat.send_message(
generative_models.Part.from_function_response(
name="get_current_weather",
response={
"content": {"weather": "super nice"},
},
),
)
assert response2.text
Java
Tool tool =
Tool.newBuilder()
.addFunctionDeclarations(
FunctionDeclarationMaker.fromJsonString(jsonString)
)
.build();
// Start a chat session from a model, with the use of the declared
// function.
GenerativeModel model =
new GenerativeModel.Builder()
.setModelName(MODEL_NAME)
.setVertexAi(vertexAi)
.setTools(Arrays.asList(tool))
.build();
ChatSession chat = model.startChat();
System.out.println(String.format("Ask the question: %s", TEXT));
GenerateContentResponse response = chat.sendMessage(TEXT);
// Provide an answer to the model so that it knows what the result of a
// "function call" is.
Content content =
ContentMaker.fromMultiModalData(
PartMaker.fromFunctionResponse(
"getCurrentWeather", Collections.singletonMap("currentWeather", "snowing")));
response = chat.sendMessage(content);
JavaScript
const {
VertexAI,
FunctionDeclarationSchemaType,
} = require('@google-cloud/vertexai');
const functionDeclarations = [
{
function_declarations: [
{
name: 'get_current_weather',
description: 'get weather in a given location',
parameters: {
type: FunctionDeclarationSchemaType.OBJECT,
properties: {
location: {type: FunctionDeclarationSchemaType.STRING},
unit: {
type: FunctionDeclarationSchemaType.STRING,
enum: ['celsius', 'fahrenheit'],
},
},
required: ['location'],
},
},
],
},
];
async function functionCallingBasic(
projectId = 'PROJECT_ID',
location = 'us-central1',
model = 'gemini-2.5-flash'
) {
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.preview.getGenerativeModel({
model: model,
});
const request = {
contents: [
{role: 'user', parts: [{text: 'What is the weather in Boston?'}]},
],
tools: functionDeclarations,
};
const result = await generativeModel.generateContent(request);
console.log(JSON.stringify(result.response.candidates[0].content));
}
Go
package functioncalling
import (
"context"
"encoding/json"
"errors"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
funcName := "getCurrentWeather"
funcDecl := &genai.FunctionDeclaration{
Name: funcName,
Description: "Get the current weather in a given location",
Parameters: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"location": {
Type: genai.TypeString,
Description: "location",
},
},
Required: []string{"location"},
},
}
// Add the weather function to our model toolbox.
model.Tools = []*genai.Tool{
{
FunctionDeclarations: []*genai.FunctionDeclaration{funcDecl},
},
}
prompt := genai.Text("What's the weather like in Boston?")
resp, err := model.GenerateContent(ctx, prompt)
if len(resp.Candidates) == 0 {
return errors.New("got empty response from model")
} else if len(resp.Candidates[0].FunctionCalls()) == 0 {
return errors.New("got no function call suggestions from model")
}
funcResp := &genai.FunctionResponse{
Name: funcName,
Response: map[string]any{
"content": mockAPIResp,
},
}
// Return the API response to the model allowing it to complete its response.
resp, err = model.GenerateContent(ctx, prompt, funcResp)
if err != nil {
return fmt.Errorf("failed to generate content: %w", err)
}
if len(resp.Candidates) == 0 || len(resp.Candidates[0].Content.Parts) == 0 {
return errors.New("got empty response from model")
}
変更後
Python
from google.genai import types
def get_current_weather(location: str) -> str:
"""Returns the current weather.
Args:
location: The city and state, e.g. San Francisco, CA
"""
return 'sunny'
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='What is the weather like in Boston?',
config=types.GenerateContentConfig(tools=[get_current_weather]),
)
Java
Chat
メソッドまたは GenerateContent
メソッドを使用して、関数呼び出しを実装します。
Chat
の使用
呼び出し可能関数になるメソッドを宣言します。
Method method1 =
ChatWithFunctionCall.class.getDeclaredMethod("getCurrentWeather", String.class);
Method method2 =
ChatWithFunctionCall.class.getDeclaredMethod("divideTwoIntegers", int.class, int.class);
コンテンツ構成内のツールに、呼び出し可能な関数として 2 つのメソッドを追加します。
GenerateContentConfig config =
GenerateContentConfig.builder().tools(Tool.builder().functions(method1, method2)).build();
構成を使用してチャット セッションを作成します。
Chat chatSession = client.chats.create("gemini-2.5-flash", config);
GenerateContentResponse response1 =
chatSession.sendMessage("what is the weather in San Francisco?");
完全な実装については、ChatWithFunctionCall.java をご覧ください。
GenerateContent
の使用
呼び出し可能関数になるメソッドを宣言します。
Method method1 =
GenerateContentWithFunctionCall.class.getMethod(
"getCurrentWeather", String.class, String.class);
Method method2 =
GenerateContentWithFunctionCall.class.getMethod(
"divideTwoIntegers", Integer.class, Integer.class);
コンテンツ構成内のツールに、呼び出し可能な関数として 2 つのメソッドを追加します。
GenerateContentConfig config =
GenerateContentConfig.builder().tools(Tool.builder().functions(method1, method2)).build();
構成で generateContent
を使用します。
GenerateContentResponse response =
client.models.generateContent(
"gemini-2.5-flash",
"What is the weather in Vancouver? And can you divide 10 by 0?",
config);
完全な実装については、GenerateContentWithFunctionCall.java をご覧ください。
JavaScript
import {
FunctionCall,
FunctionCallingConfigMode,
FunctionDeclaration,
GoogleGenAI,
Type,
} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const controlLightFunctionDeclaration: FunctionDeclaration = {
name: 'controlLight',
parameters: {
type: Type.OBJECT,
description: 'Set the brightness and color temperature of a room light.',
properties: {
brightness: {
type: Type.NUMBER,
description:
'Light level from 0 to 100. Zero is off and 100 is full brightness.',
},
colorTemperature: {
type: Type.STRING,
description:
'Color temperature of the light fixture which can be `daylight`, `cool` or `warm`.',
},
},
required: ['brightness', 'colorTemperature'],
},
};
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Dim the lights so the room feels cozy and warm.',
config: {
tools: [{functionDeclarations: [controlLightFunctionDeclaration]}],
toolConfig: {
functionCallingConfig: {
mode: FunctionCallingConfigMode.ANY,
allowedFunctionNames: ['controlLight'],
},
},
},
});
console.debug(response.functionCalls);
Go
package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
funcName := "getCurrentWeather"
funcDecl := &genai.FunctionDeclaration{
Name: funcName,
Description: "Get the current weather in a given location",
Parameters: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"location": {
Type: genai.TypeString,
Description: "location",
},
},
Required: []string{"location"},
},
}
// Add the weather function to our model toolbox.
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{
FunctionDeclarations: []*genai.FunctionDeclaration{funcDecl},
},
},
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What's the weather like in Boston?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Candidates[0].Content.Parts[0].FunctionCall.Name)
// Use synthetic data to simulate a response from the external API.
// In a real application, this would come from an actual weather API.
mockAPIResp, err := json.Marshal(map[string]string{
"location": "Boston",
"temperature": "38",
"temperature_unit": "F",
"description": "Cold and cloudy",
"humidity": "65",
"wind": `{"speed": "10", "direction": "NW"}`,
})
if err != nil {
log.Fatal(err)
}
funcResp := &genai.FunctionResponse{
Name: funcName,
Response: map[string]any{
"content": mockAPIResp,
},
}
// Return the API response to the model allowing it to complete its response.
mockedFunctionResponse := []*genai.Content{
&genai.Content{
Role: "user",
Parts: []*genai.Part{
&genai.Part{Text: "What's the weather like in Boston?"},
},
},
result.Candidates[0].Content,
&genai.Content{
Role: "tool",
Parts: []*genai.Part{
&genai.Part{FunctionResponse: funcResp},
},
},
}
result, err = client.Models.GenerateContent(ctx, *model, mockedFunctionResponse, config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
グラウンディング
グラウンディングとは、モデルに外部のドメイン固有の情報を提供して、回答の精度、関連性、一貫性を高めるプロセスです。グラウンディングの実装を Vertex AI SDK から Google Gen AI SDK を使用する次のコードに置き換えます。
変更前
Python
model = generative_models.GenerativeModel(GEMINI_MODEL_NAME)
google_search_retriever_tool = (
generative_models.Tool.from_google_search_retrieval(
generative_models.grounding.GoogleSearchRetrieval()
)
)
response = model.generate_content(
"Why is sky blue?",
tools=[google_search_retriever_tool],
generation_config=generative_models.GenerationConfig(temperature=0),
)
Java
import com.google.cloud.vertexai.api.GroundingMetadata;
Tool googleSearchTool =
Tool.newBuilder()
.setGoogleSearch(GoogleSearch.newBuilder())
.build();
GenerativeModel model =
new GenerativeModel(modelName, vertexAI)
.withTools(Collections.singletonList(googleSearchTool));
GenerateContentResponse response = model.generateContent("Why is the sky blue?");
GroundingMetadata groundingMetadata = response.getCandidates(0).getGroundingMetadata();
String answer = ResponseHandler.getText(response);
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const vertexAI = new VertexAI({project: projectId, location: location});
const generativeModelPreview = vertexAI.preview.getGenerativeModel({
model: model,
generationConfig: {maxOutputTokens: 256},
});
const googleSearchTool = {
googleSearch: {},
};
const request = {
contents: [{role: 'user', parts: [{text: 'Why is the sky blue?'}]}],
tools: [googleSearchTool],
};
const result = await generativeModelPreview.generateContent(request);
const response = await result.response;
const groundingMetadata = response.candidates[0].groundingMetadata;
console.log(
'Response: ',
JSON.stringify(response.candidates[0].content.parts[0].text)
);
console.log('GroundingMetadata is: ', JSON.stringify(groundingMetadata));
Go
グラウンディングは Go Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
変更後
Python
from google.genai import types
from google.genai import Client
client = Client(
vertexai=True,
project=GOOGLE_CLOUD_PROJECT,
location=GOOGLE_CLOUD_LOCATION
)
response = client.models.generate_content(
model='gemini-2.5-flash-exp',
contents='Why is the sky blue?',
config=types.GenerateContentConfig(
tools=[types.Tool(google_search=types.GoogleSearch())]),
)
Java
Tool
モジュールをインポートします。
import com.google.genai.types.Tool;
構成で Google 検索ツールを設定します。
Tool googleSearchTool = Tool.builder().googleSearch(GoogleSearch.builder()).build();
コンテンツ構成にツールを追加します。
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.tools(googleSearchTool)
.build();
完全な実装については、GenerateContentWithConfigs.java をご覧ください。
JavaScript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents:
'What is the sum of the first 50 prime numbers? Generate and run code for the calculation, and make sure you get all 50.',
config: {
tools: [{googleSearch: {}}],
},
});
console.debug(JSON.stringify(response?.candidates?.[0]?.groundingMetadata));
Go
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
// Add the Google Search grounding tool to the GenerateContentConfig.
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
Tools: []*genai.Tool{
{
GoogleSearch: &genai.GoogleSearch{},
},
},
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("Why is the sky blue?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
安全性設定
安全性設定は、ユーザーがモデルのレスポンスを管理できるようにする構成可能なパラメータです。ヘイトスピーチ、性的コンテンツ、暴力など、特定の有害なカテゴリに関連するコンテンツをフィルタリングまたはブロックできます。安全性設定の実装を、Google Gen AI SDK を使用する次のコードを含む Vertex AI SDK に置き換えます。
変更前
Python
model = generative_models.GenerativeModel(
GEMINI_MODEL_NAME,
system_instruction=[
"Talk like a pirate.",
"Don't use rude words.",
],
)
response = model.generate_content(
contents="Why is sky blue?",
generation_config=generative_models.GenerationConfig(
temperature=0,
top_p=0.95,
top_k=20,
candidate_count=1,
max_output_tokens=100,
stop_sequences=["STOP!"],
response_logprobs=True,
logprobs=3,
),
safety_settings={
generative_models.HarmCategory.HARM_CATEGORY_HATE_SPEECH: generative_models.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: generative_models.HarmBlockThreshold.BLOCK_ONLY_HIGH,
generative_models.HarmCategory.HARM_CATEGORY_HARASSMENT: generative_models.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
generative_models.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: generative_models.HarmBlockThreshold.BLOCK_NONE,
},
)
Java
import com.google.cloud.vertexai.api.SafetySetting;
import com.google.cloud.vertexai.api.SafetySetting.HarmBlockThreshold;
SafetySetting safetySetting =
SafetySetting.newBuilder()
.setCategory(HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT)
.setThreshold(HarmBlockThreshold.BLOCK_LOW_AND_ABOVE)
.build();
GenerateContentResponse response =
model
.withSafetySetting(Arrays.asList(SafetySetting))
.generateContent("Please explain LLM?");
JavaScript
const {
VertexAI,
HarmCategory,
HarmBlockThreshold,
} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: PROJECT_ID, location: LOCATION});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: MODEL,
safetySettings: [
{
category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
{
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
});
const request = {
contents: [{role: 'user', parts: [{text: 'Tell me something dangerous.'}]}],
};
console.log('Prompt:');
console.log(request.contents[0].parts[0].text);
console.log('Streaming Response Text:');
// Create the response stream
const responseStream = await generativeModel.generateContentStream(request);
// Log the text response as it streams
for await (const item of responseStream.stream) {
if (item.candidates[0].finishReason === 'SAFETY') {
console.log('This response stream terminated due to safety concerns.');
break;
} else {
process.stdout.write(item.candidates[0].content.parts[0].text);
}
}
console.log('This response stream terminated due to safety concerns.');
Go
package safetysettings
import (
"context"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
// generateContent generates text from prompt and configurations provided.
func generateContent(w io.Writer, projectID, location, modelName string) error {
// location := "us-central1"
// model := "gemini-2.5-flash"
ctx := context.Background()
client, err := genai.NewClient(ctx, projectID, location)
if err != nil {
return err
}
defer client.Close()
model := client.GenerativeModel(modelName)
model.SetTemperature(0.8)
// configure the safety settings thresholds
model.SafetySettings = []*genai.SafetySetting{
{
Category: genai.HarmCategoryHarassment,
Threshold: genai.HarmBlockLowAndAbove,
},
{
Category: genai.HarmCategoryDangerousContent,
Threshold: genai.HarmBlockLowAndAbove,
},
}
res, err := model.GenerateContent(ctx, genai.Text("Hello, say something mean to me."))
if err != nil {
return fmt.Errorf("unable to generate content: %v", err)
}
fmt.Fprintf(w, "generate-content response: %v\n", res.Candidates[0].Content.Parts[0])
fmt.Fprintf(w, "safety ratings:\n")
for _, r := range res.Candidates[0].SafetyRatings {
fmt.Fprintf(w, "\t%+v\n", r)
}
return nil
}
変更後
Python
from google.genai import types
response = client.models.generate_content(
model='gemini-2.5-flash',
contents='Say something bad.',
config=types.GenerateContentConfig(
safety_settings=[
types.SafetySetting(
category='HARM_CATEGORY_HATE_SPEECH',
threshold='BLOCK_ONLY_HIGH',
)
]
),
)
Java
HarmBlockThreshold
、HarmCategory
、SafetySetting
の各モジュールをインポートします。
import com.google.genai.types.HarmBlockThreshold;
import com.google.genai.types.HarmCategory;
import com.google.genai.types.SafetySetting;
構成で安全性設定を設定します。
ImmutableList<SafetySetting> safetySettings =
ImmutableList.of(
SafetySetting.builder()
.category(HarmCategory.Known.HARM_CATEGORY_HATE_SPEECH)
.threshold(HarmBlockThreshold.Known.BLOCK_ONLY_HIGH)
.build(),
SafetySetting.builder()
.category(HarmCategory.Known.HARM_CATEGORY_DANGEROUS_CONTENT)
.threshold(HarmBlockThreshold.Known.BLOCK_LOW_AND_ABOVE)
.build());
コンテンツ構成に安全性設定を追加します。
GenerateContentConfig config =
GenerateContentConfig.builder()
...
.safetySettings(safetySettings)
.build();
完全な実装については、GenerateContentWithConfigs.java をご覧ください。
JavaScript
import {
GoogleGenAI,
HarmBlockMethod,
HarmBlockThreshold,
HarmCategory,
} from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'say something bad',
config: {
safetySettings: [
{
method: HarmBlockMethod.SEVERITY,
category: HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
{
method: HarmBlockMethod.SEVERITY,
category: HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
},
],
},
});
console.debug(JSON.stringify(response?.candidates?.[0]?.safetyRatings));
Go
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
func run(ctx context.Context) {
client, err := genai.NewClient(ctx, nil)
if err != nil {
log.Fatal(err)
}
var safetySettings []*genai.SafetySetting = []*genai.SafetySetting{
{
Category: genai.HarmCategoryHarassment,
Threshold: genai.HarmBlockThresholdBlockMediumAndAbove,
},
{
Category: genai.HarmCategoryDangerousContent,
Threshold: genai.HarmBlockThresholdBlockMediumAndAbove,
},
}
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{
SafetySettings: safetySettings,
}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What is your name?"), config)
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
}
func main() {
ctx := context.Background()
flag.Parse()
run(ctx)
}
チャット セッション
チャット セッションは、会話型のインタラクションです。モデルは、以前のメッセージを呼び出して現在のレスポンスの情報として使用することで、複数のターンにわたってコンテキストを維持します。Vertex AI SDK の実装を、Google Gen AI SDK を使用する次のコードに置き換えます。
変更前
Python
model = GenerativeModel(
"gemini-2.5-flash",
# You can specify tools when creating a model to avoid having to send them with every request.
tools=[weather_tool],
tool_config=tool_config,
)
chat = model.start_chat()
print(chat.send_message("What is the weather like in Boston?"))
print(chat.send_message(
Part.from_function_response(
name="get_current_weather",
response={
"content": {"weather_there": "super nice"},
}
),
))
Java
import com.google.cloud.vertexai.generativeai.ChatSession;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ChatSession chat = model.startChat();
ResponseStream<GenerateContentResponse> response = chat
.sendMessageStream("Can you tell me a story about cheese in 100 words?");
ResponseStream<GenerateContentResponse> anotherResponse = chat
.sendMessageStream("Can you modify the story to be written for a 5 year old?");
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
const chat = generativeModel.startChat({});
const result1 = await chat.sendMessage('Hello');
const response1 = await result1.response;
console.log('Chat response 1: ', JSON.stringify(response1));
const result2 = await chat.sendMessage(
'Can you tell me a scientific fun fact?'
);
const response2 = await result2.response;
console.log('Chat response 2: ', JSON.stringify(response2));
Go
import (
"context"
"errors"
"fmt"
"cloud.google.com/go/vertexai/genai"
)
prompt := "Do you have the Pixel 8 Pro in stock?"
fmt.Fprintf(w, "Question: %s\n", prompt)
resp, err := chat.SendMessage(ctx, genai.Text(prompt))
変更後
Python
同期
chat = client.chats.create(model='gemini-2.5-flash')
response = chat.send_message('tell me a story')
print(response.text)
response = chat.send_message('summarize the story you told me in 1 sentence')
print(response.text)
非同期
chat = client.aio.chats.create(model='gemini-2.5-flash')
response = await chat.send_message('tell me a story')
print(response.text)
同期ストリーミング
chat = client.chats.create(model='gemini-2.5-flash')
for chunk in chat.send_message_stream('tell me a story'):
print(chunk.text, end='')
非同期ストリーミング
chat = client.aio.chats.create(model='gemini-2.5-flash')
async for chunk in await chat.send_message_stream('tell me a story'):
print(chunk.text, end='') # end='' is optional, for demo purposes.
Java
Chat
モジュールと GenerateContentResponse
モジュールをインポートします。
import com.google.genai.Chat;
import com.google.genai.types.GenerateContentResponse;
チャット セッションを作成します。
Chat chatSession = client.chats.create("gemini-2.5-flash");
GenerateContentResponse
を使用してプロンプトを指定します。
GenerateContentResponse response =
chatSession
.sendMessage("Can you tell me a story about cheese in 100 words?");
// Gets the text string from the response by the quick accessor method `text()`.
System.out.println("Unary response: " + response.text());
GenerateContentResponse response2 =
chatSession
.sendMessage("Can you modify the story to be written for a 5 year old?");
// Gets the text string from the second response.
System.out.println("Unary response: " + response2.text());
完全な実装については、ChatWithHistory.java をご覧ください。
JavaScript
import {GoogleGenAI} from '@google/genai';
const chat = ai.chats.create({model: 'gemini-2.5-flash'});
const response = await chat.sendMessage({message: 'Why is the sky blue?'});
console.debug('chat response 1: ', response.text);
const response2 = await chat.sendMessage({message: 'Why is the sunset red?'});
console.debug('chat response 2: ', response2.text);
const history = chat.getHistory();
for (const content of history) {
console.debug('chat history: ', JSON.stringify(content, null, 2));
}
Go
package main
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
var model = flag.String("model", "gemini-2.5-flash", "the model name, e.g. gemini-2.5-flash")
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{Temperature: genai.Ptr[float32](0.5)}
// Create a new Chat.
chat, err := client.Chats.Create(ctx, *model, config, nil)
// Send first chat message.
result, err := chat.SendMessage(ctx, genai.Part{Text: "What's the weather in San Francisco?"})
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
// Send second chat message.
result, err = chat.SendMessage(ctx, genai.Part{Text: "How about New York?"})
if err != nil {
log.Fatal(err)
}
fmt.Println(result.Text())
マルチモーダル入力
マルチモーダル入力とは、モデルがテキスト以外のデータ型(画像、音声、動画など)の情報を処理して理解する機能のことです。実装を Vertex AI SDK から Google Gen AI SDK を使用する次のコードに置き換えます。
変更前
Python
from vertexai.generative_models import GenerativeModel, Image
vision_model = GenerativeModel("gemini-2.5-flash-vision")
# Local image
image = Image.load_from_file("image.jpg")
print(vision_model.generate_content(["What is shown in this image?", image]))
# Image from Cloud Storage
image_part = generative_models.Part.from_uri("gs://download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg", mime_type="image/jpeg")
print(vision_model.generate_content([image_part, "Describe this image?"]))
# Text and video
video_part = Part.from_uri("gs://cloud-samples-data/video/animals.mp4", mime_type="video/mp4")
print(vision_model.generate_content(["What is in the video? ", video_part]))
Java
import com.google.cloud.vertexai.generativeai.ContentMaker;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash-vision", vertexAi);
ResponseStream<GenerateContentResponse> stream =
model.generateContentStream(ContentMaker.fromMultiModalData(
"Please describe this image",
PartMaker.fromMimeTypeAndData("image/jpeg", IMAGE_URI)
));
JavaScript
const {VertexAI, HarmBlockThreshold, HarmCategory} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertex_ai = new VertexAI({project: project, location: location});
// Instantiate the model
const generativeVisionModel = vertex_ai.getGenerativeModel({
model: 'gemini-ultra-vision',
});
async function multiPartContent() {
const filePart = {file_data: {file_uri: "gs://sararob_imagegeneration_test/kitten.jpeg", mime_type: "image/jpeg"}};
const textPart = {text: 'What is this picture about?'};
const request = {
contents: [{role: 'user', parts: [textPart, filePart]}],
};
const resp = await generativeVisionModel.generateContentStream(request);
const contentResponse = await resp.response;
console.log(JSON.stringify(contentResponse));
}
multiPartContent();
Go
画像
import (
"context"
"encoding/json"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
)
img := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://generativeai-downloads/images/scones.jpg",
}
prompt := genai.Text("What is in this image?")
resp, err := gemini.GenerateContent(ctx, img, prompt)
if err != nil {
return fmt.Errorf("error generating content: %w", err)
}
動画
package multimodalvideoaudio
import (
"context"
"errors"
"fmt"
"io"
"mime"
"path/filepath"
"cloud.google.com/go/vertexai/genai"
)
part := genai.FileData{
MIMEType: mime.TypeByExtension(filepath.Ext("pixel8.mp4")),
FileURI: "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
}
res, err := model.GenerateContent(ctx, part, genai.Text(`
Provide a description of the video.
The description should also contain anything important which people say in the video.
`))
変更後
Python
from google import genai
from google.genai.types import HttpOptions, Part
client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=[
Part.from_uri(
file_uri="gs://cloud-samples-data/generative-ai/video/ad_copy_from_video.mp4",
mime_type="video/mp4",
),
"What is in the video?",
],
)
print(response.text)
Java
GenerateContentResponse
モジュールをインポートします。
import com.google.genai.types.GenerateContentResponse;
マルチモーダル プロンプトでテキスト、画像、動画を組み合わせて指定します。
Content content =
Content.fromParts(
Part.fromText("describe the image"),
Part.fromUri("gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg"));
結合したプロンプトをモデルに提供します。
GenerateContentResponse response =
client.models.generateContent("gemini-2.5-flash", content, null);
完全な実装については、GenerateContentWithImageInput.java をご覧ください。
JavaScript
const filePart = {file_data: {file_uri: "gs://sararob_imagegeneration_test/kitten.jpeg", mime_type: "image/jpeg"}};
const textPart = {text: 'What is this picture about?'};
const contents = [{role: 'user', parts: [textPart, filePart]}];
const response = await ai.models.generateContentStream({
model: 'gemini-2.5-flash-exp',
contents: contents,
});
let i = 0;
for await (const chunk of response) {
const text = chunk.text;
if (text) {
console.debug(text);
}
}
Go
画像
package main
import (
"context"
"encoding/json"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
config := &genai.GenerateContentConfig{}
config.ResponseModalities = []string{"IMAGE", "TEXT"}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("Generate a story about a cute baby turtle in a 3d digital art style. For each scene, generate an image."), config)
if err != nil {
log.Fatal(err)
}
映像と音声
package multimodalvideoaudio
import (
"context"
"errors"
"fmt"
"io"
"mime"
"path/filepath"
"cloud.google.com/go/vertexai/genai"
)
part := genai.FileData{
MIMEType: mime.TypeByExtension(filepath.Ext("pixel8.mp4")),
FileURI: "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
}
res, err := model.GenerateContent(ctx, part, genai.Text(`
Provide a description of the video.
The description should also contain anything important which people say in the video.
`))
テキスト生成
テキスト生成は、モデルが指定されたプロンプトに基づいて人間が作成したかのようなテキスト コンテンツを生成するプロセスです。実装を Vertex AI SDK に置き換えます。次のコードは Google Gen AI SDK を使用します。
同期生成
変更前
Python
response = model.generate_content(
"Why is sky blue?",
generation_config=generative_models.GenerationConfig(temperature=0),
)
assert response.text
Java
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
GenerateContentResponse response = model.generateContent("How are you?");
JavaScript
Vertex AI SDK と Google Gen AI SDK の両方で、JavaScript の非同期テキスト生成のみがサポートされています。
Go
gemini := client.GenerativeModel(modelName)
prompt := genai.Text(
"What's a good name for a flower shop that specializes in selling bouquets of dried flowers?")
resp, err := gemini.GenerateContent(ctx, prompt)
変更後
Python
response = client.models.generate_content(
model='gemini-2.5-flash', contents='Why is the sky blue?'
)
print(response.text)
Java
GenerateContentResponse
モジュールをインポートします。
import com.google.genai.types.GenerateContentResponse;
generateContent
を使用してテキストを生成します。
GenerateContentResponse response =
client.models.generateContent("gemini-2.5-flash", "What is your name?", null);
完全な実装については、GenerateContent.java をご覧ください。
JavaScript
Vertex AI SDK と Google Gen AI SDK の両方で、JavaScript の非同期テキスト生成のみがサポートされています。
Go
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{Temperature: genai.Ptr[float32](0)}
// Call the GenerateContent method.
result, err := client.Models.GenerateContent(ctx, *model, genai.Text("What is your name?"), config)
非同期生成
変更前
Python
response = await model.generate_content_async(
"Why is sky blue?",
generation_config=generative_models.GenerationConfig(temperature=0),
)
Java
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ApiFuture<GenerateContentResponse> future = model.generateContentAsync("How are you?");
GenerateContentResponse response = future.get();
JavaScript
const {VertexAI} = require('@google-cloud/vertexai');
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: model,
});
const request = {
contents: [
{
role: 'user',
parts: [
{
text: 'Write a story about a magic backpack.',
},
],
},
],
};
console.log(JSON.stringify(request));
const result = await generativeModel.generateContent(request);
console.log(result.response.text);
Go
該当なし: Go は非同期オペレーションなしで同時実行タスクを管理します。
変更後
Python
response = await client.aio.models.generate_content(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
)
print(response.text)
Java
GenerateContentResponse
モジュールをインポートします。
import com.google.genai.types.GenerateContentResponse;
非同期でテキストを生成します。
CompletableFuture<GenerateContentResponse> responseFuture =
client.async.models.generateContent(
"gemini-2.5-flash", "Introduce Google AI Studio.", null);
responseFuture
.thenAccept(
response -> {
System.out.println("Async response: " + response.text());
})
.join();
完全な実装については、GenerateContentAsync.java をご覧ください。
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'why is the sky blue?',
});
console.debug(response.text);
Go
該当なし: Go は非同期オペレーションなしで同時実行タスクを管理します。
ストリーミング
変更前
Python
同期ストリーミング
stream = model.generate_content(
"Why is sky blue?",
stream=True,
generation_config=generative_models.GenerationConfig(temperature=0),
)
for chunk in stream:
assert (
chunk.text
or chunk.candidates[0].finish_reason
is generative_models.FinishReason.STOP
)
非同期ストリーミング
async_stream = await model.generate_content_async(
"Why is sky blue?",
stream=True,
generation_config=generative_models.GenerationConfig(temperature=0),
)
async for chunk in async_stream:
assert (
chunk.text
or chunk.candidates[0].finish_reason
is generative_models.FinishReason.STOP
)
Java
import com.google.cloud.vertexai.generativeai.ResponseStream;
import com.google.cloud.vertexai.api.GenerateContentResponse;
GenerativeModel model = new GenerativeModel("gemini-2.5-flash", vertexAi);
ResponseStream<GenerateContentResponse> responseStream = model.generateContentStream("How are you?");
JavaScript
// Initialize Vertex with your Cloud project and location
const vertexAI = new VertexAI({project: projectId, location: location});
// Instantiate the model
const generativeModel = vertexAI.getGenerativeModel({
model: model,
});
const request = {
contents: [{role: 'user', parts: [{text: 'What is Node.js?'}]}],
};
console.log('Prompt:');
console.log(request.contents[0].parts[0].text);
console.log('Streaming Response Text:');
// Create the response stream
const responseStream = await generativeModel.generateContentStream(request);
// Log the text response as it streams
for await (const item of responseStream.stream) {
process.stdout.write(item.candidates[0].content.parts[0].text);
}
Go
package streamtextbasic
import (
"context"
"errors"
"fmt"
"io"
"cloud.google.com/go/vertexai/genai"
"google.golang.org/api/iterator"
)
model := client.GenerativeModel(modelName)
iter := model.GenerateContentStream(
ctx,
genai.Text("Write a story about a magic backpack."),
)
for {
resp, err := iter.Next()
fmt.Fprint(w, "generated response: ")
for _, c := range resp.Candidates {
for _, p := range c.Content.Parts {
fmt.Fprintf(w, "%s ", p)
}
}
}
変更後
Python
同期ストリーミング
for chunk in client.models.generate_content_stream(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
):
print(chunk.text, end='')
非同期ストリーミング
async for chunk in await client.aio.models.generate_content_stream(
model='gemini-2.5-flash', contents='Tell me a story in 300 words.'
):
print(chunk.text, end='')
Java
ResponseStream
モジュールと GenerateContentResponse
モジュールをインポートします。
import com.google.genai.ResponseStream;
import com.google.genai.types.GenerateContentResponse;
モデルにプロンプトを指定して結果をストリーミングします。
ResponseStream<GenerateContentResponse> responseStream =
client.models.generateContentStream(
"gemini-2.5-flash", "Tell me a story in 300 words.", null);
System.out.println("Streaming response: ");
for (GenerateContentResponse res : responseStream) {
System.out.print(res.text());
}
完全な実装については、GenerateContentAsync.java をご覧ください。
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContentStream({
model: 'gemini-2.5-flash-exp',
contents:
'Generate a story about a cute baby turtle in a 3d digital art style. For each scene, generate an image.',
config: {
responseModalities: [Modality.IMAGE, Modality.TEXT],
},
});
let i = 0;
for await (const chunk of response) {
const text = chunk.text;
const data = chunk.data;
if (text) {
console.debug(text);
} else if (data) {
const fileName = `generate_content_streaming_image_${i++}.png`;
console.debug(`Writing response image to file: ${fileName}.`);
fs.writeFileSync(fileName, data);
}
}
Go
client, err := genai.NewClient(ctx, nil)
var config *genai.GenerateContentConfig = &genai.GenerateContentConfig{SystemInstruction: &genai.Content{Parts: []*genai.Part{&genai.Part{Text: "You are a story writer."}}}}
// Call the GenerateContent method.
for result, err := range client.Models.GenerateContentStream(ctx, *model, genai.Text("Tell me a story in 300 words."), config) {
if err != nil {
log.Fatal(err)
}
fmt.Print(result.Text())
}
画像生成
画像生成とは、モデルがテキストによる説明やその他の入力モードから画像を作成するプロセスです。実装を Vertex AI SDK に置き換えます。次のコードは Google Gen AI SDK を使用します。
変更前
Python
model = ImageGenerationModel.from_pretrained("imagegeneration@002")
response = model.generate_images(
prompt="Astronaut riding a horse",
# Optional:
number_of_images=1,
seed=0,
)
response[0].show()
response[0].save("image1.png")
Java
画像生成は Java Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
JavaScript
画像生成は JavaScript Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
Go
画像生成は Go Vertex AI SDK ではサポートされていませんが、Google Gen AI SDK ではサポートされています。
変更後
Python
from google.genai import types
# Generate Image
response1 = client.models.generate_images(
model='imagen-3.0-generate-002',
prompt='An umbrella in the foreground, and a rainy night sky in the background',
config=types.GenerateImagesConfig(
number_of_images=1,
include_rai_reason=True,
output_mime_type='image/jpeg',
),
)
response1.generated_images[0].image.show()
Java
import com.google.genai.types.GenerateImagesConfig;
import com.google.genai.types.GenerateImagesResponse;
import com.google.genai.types.Image;
GenerateImagesConfig generateImagesConfig =
GenerateImagesConfig.builder()
.numberOfImages(1)
.outputMimeType("image/jpeg")
.includeSafetyAttributes(true)
.build();
GenerateImagesResponse generatedImagesResponse =
client.models.generateImages(
"imagen-3.0-generate-002", "Robot holding a red skateboard", generateImagesConfig);
Image generatedImage = generatedImagesResponse.generatedImages().get().get(0).image().get();
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateImages({
model: 'imagen-3.0-generate-002',
prompt: 'Robot holding a red skateboard',
config: {
numberOfImages: 1,
includeRaiReason: true,
},
});
console.debug(response?.generatedImages?.[0]?.image?.imageBytes);
Go
import (
"encoding/json"
"google.golang.org/genai"
)
fmt.Println("Generate image example.")
response1, err := client.Models.GenerateImages(
ctx, "imagen-3.0-generate-002",
/*prompt=*/ "An umbrella in the foreground, and a rainy night sky in the background",
&genai.GenerateImagesConfig{
IncludeRAIReason: true,
IncludeSafetyAttributes: true,
OutputMIMEType: "image/jpeg",
},
)
生成制御機能
生成制御とは、自由形式のテキストを生成するのではなく、特定の制約、形式、スタイル、属性に準拠するようにモデルの出力をガイドするプロセスを指します。実装を Vertex AI SDK から Google Gen AI SDK を使用する次のコードに置き換えます。
変更前
Python
_RESPONSE_SCHEMA_STRUCT = {
"type": "object",
"properties": {
"location": {
"type": "string",
},
},
"required": ["location"],
}
response = model.generate_content(
contents="Why is sky blue? Respond in JSON Format.",
generation_config=generative_models.GenerationConfig(
...
response_schema=_RESPONSE_SCHEMA_STRUCT,
),
)
Java
import com.google.cloud.vertexai.api.Schema;
import com.google.cloud.vertexai.api.Type;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.PartMaker;
GenerationConfig generationConfig = GenerationConfig.newBuilder()
.setResponseMimeType("application/json")
.setResponseSchema(Schema.newBuilder()
.setType(Type.ARRAY)
.setItems(Schema.newBuilder()
.setType(Type.OBJECT)
.putProperties("object", Schema.newBuilder().setType(Type.STRING).build())
.build())
.build())
.build();
GenerativeModel model = new GenerativeModel(modelName, vertexAI)
.withGenerationConfig(generationConfig);
GenerateContentResponse response = model.generateContent(
ContentMaker.fromMultiModalData(
PartMaker.fromMimeTypeAndData("image/jpeg",
"gs://cloud-samples-data/generative-ai/image/office-desk.jpeg"),
PartMaker.fromMimeTypeAndData("image/jpeg",
"gs://cloud-samples-data/generative-ai/image/gardening-tools.jpeg"),
"Generate a list of objects in the images."
)
);
JavaScript
// Initialize Vertex with your Cloud project and location
const vertex_ai = new VertexAI({project: project, location: location});
// Instantiate the model
const responseSchema = {
type: 'ARRAY',
items: {
type: 'OBJECT',
properties: {
'recipeName': {
type: 'STRING',
description: 'Name of the recipe',
nullable: false,
},
},
required: ['recipeName'],
},
};
const generativeModel = vertex_ai.getGenerativeModel({
model: 'gemini-2.5-flash',
generationConfig: {
responseSchema: responseSchema,
responseMimeType: 'application/json',
}
});
async function generateContentControlledOutput() {
const req = {
contents: [{role: 'user', parts: [{text: 'list 3 popular cookie recipe'}]}],
};
const resp = await generativeModel.generateContent(req);
console.log('aggregated response: ', JSON.stringify(resp.response));
};
generateContentControlledOutput();
Go
import (
"context"
"cloud.google.com/go/vertexai/genai"
)
model.GenerationConfig.ResponseMIMEType = "application/json"
// Build an OpenAPI schema, in memory
model.GenerationConfig.ResponseSchema = &genai.Schema{
Type: genai.TypeArray,
Items: &genai.Schema{
Type: genai.TypeArray,
Items: &genai.Schema{
Type: genai.TypeObject,
Properties: map[string]*genai.Schema{
"object": {
Type: genai.TypeString,
},
},
},
},
}
img1 := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://cloud-samples-data/generative-ai/image/office-desk.jpeg",
}
img2 := genai.FileData{
MIMEType: "image/jpeg",
FileURI: "gs://cloud-samples-data/generative-ai/image/gardening-tools.jpeg",
}
prompt := "Generate a list of objects in the images."
res, err := model.GenerateContent(ctx, img1, img2, genai.Text(prompt))
変更後
Python
response_schema = {
"type": "ARRAY",
"items": {
"type": "OBJECT",
"properties": {
"recipe_name": {"type": "STRING"},
"ingredients": {"type": "ARRAY", "items": {"type": "STRING"}},
},
"required": ["recipe_name", "ingredients"],
},
}
prompt = """
List a few popular cookie recipes.
"""
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=prompt,
config={
"response_mime_type": "application/json",
"response_schema": response_schema,
},
)
Java
Schema
モジュールと Type
モジュールをインポートします。
import com.google.genai.types.Schema;
import com.google.genai.types.Type;
レスポンス スキーマを作成します。
Schema schema =
Schema.builder()
.type(Type.Known.ARRAY)
.items(
Schema.builder()
.type(Type.Known.OBJECT)
.properties(
ImmutableMap.of(
"recipe_name",
Schema.builder().type(Type.Known.STRING).build(),
"ingredients",
Schema.builder()
.type(Type.Known.ARRAY)
.items(Schema.builder().type(Type.Known.STRING))
.build()))
.required("recipe_name", "ingredients"))
.build();
コンテンツ構成にスキーマを追加します。
GenerateContentConfig config =
GenerateContentConfig.builder()
.responseMimeType("application/json")
.candidateCount(1)
.responseSchema(schema)
.build();
構成を使用してレスポンスを生成します。
GenerateContentResponse response =
client.models.generateContent(
"gemini-2.5-flash", "List a few popular cookie recipes.", config);
完全な実装については、GenerateContentWithResponseSchema.java をご覧ください。
JavaScript
const ai = new GoogleGenAI({
vertexai: true,
project: GOOGLE_CLOUD_PROJECT,
location: GOOGLE_CLOUD_LOCATION,
});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'List 3 popular cookie recipes.',
config: {
responseMimeType: 'application/json',
responseSchema: {
type: Type.ARRAY,
items: {
type: Type.OBJECT,
properties: {
'recipeName': {
type: Type.STRING,
description: 'Name of the recipe',
nullable: false,
},
},
required: ['recipeName'],
},
},
},
});
console.debug(response.text);
Go
import (
"context"
"encoding/json"
genai "google.golang.org/genai"
)
cacheContents := []*genai.Content{
{
Parts: []*genai.Part{
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2312.11805v3.pdf",
MIMEType: "application/pdf",
}},
{FileData: &genai.FileData{
FileURI: "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
MIMEType: "application/pdf",
}},
},
Role: "user",
},
}
config := &genai.CreateCachedContentConfig{
Contents: cacheContents,
SystemInstruction: &genai.Content{
Parts: []*genai.Part{
{Text: systemInstruction},
},
},
DisplayName: "example-cache",
TTL: "86400s",
}
res, err := client.Caches.Create(ctx, modelName, config)
if err != nil {
return "", fmt.Errorf("failed to create content cache: %w", err)
}
cachedContent, err := json.MarshalIndent(res, "", " ")
if err != nil {
return "", fmt.Errorf("failed to marshal cache info: %w", err)
}
トークンのカウント
トークンは、モデルが処理、分析、生成するテキストの基本単位(文字、単語、フレーズ)です。レスポンス内のトークンをカウントまたは計算するには、実装を Vertex AI SDK から Google Gen AI SDK を使用する次のコードに置き換えます。
変更前
Python
content = ["Why is sky blue?", "Explain it like I'm 5."]
response = model.count_tokens(content)
Java
import com.google.cloud.vertexai.api.CountTokensResponse;
CountTokensResponse response = model.countTokens(textPrompt);
int promptTokenCount = response.getTotalTokens();
int promptCharCount = response.getTotalBillableCharacters();
GenerateContentResponse contentResponse = model.generateContent(textPrompt);
int tokenCount = contentResponse.getUsageMetadata().getPromptTokenCount();
int candidateTokenCount = contentResponse.getUsageMetadata().getCandidatesTokenCount();
int totalTokenCount = contentResponse.getUsageMetadata().getTotalTokenCount();
JavaScript
const request = {
contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
};
const response = await generativeModel.countTokens(request);
console.log('count tokens response: ', JSON.stringify(response));
Go
package tokencount
import (
"context"
"fmt"
"cloud.google.com/go/vertexai/genai"
)
resp, err := model.CountTokens(ctx, prompt)
fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp.TotalTokens)
resp2, err := model.GenerateContent(ctx, prompt)
fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp2.UsageMetadata.PromptTokenCount)
fmt.Fprintf(w, "Number of tokens for the candidates: %d\n", resp2.UsageMetadata.CandidatesTokenCount)
fmt.Fprintf(w, "Total number of tokens: %d\n", resp2.UsageMetadata.TotalTokenCount)
変更後
Python
トークン数をカウントする
response = client.models.count_tokens(
model='gemini-2.5-flash',
contents='why is the sky blue?',
)
print(response)
コンピューティング トークン
response = client.models.compute_tokens(
model='gemini-2.5-flash',
contents='why is the sky blue?',
)
print(response)
Java
CountTokensResponse
モジュールと ComputeTokensResponse
モジュールをインポートします。
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.ComputeTokensResponse;
countTokens
を使用して、プロンプトに使用されたトークン数をカウントします。
CountTokensResponse response =
client.models.countTokens("gemini-2.5-flash", "What is your name?", null);
プロンプトがトークン化される方法をより詳細に分析するには、computeTokens
を使用します。
ComputeTokensResponse response =
client.models.computeTokens("gemini-2.5-flash", "What is your name?", null);
完全な実装については、CountTokens.java をご覧ください。
JavaScript
const response = await ai.models.countTokens({
model: 'gemini-2.5-flash',
contents: 'The quick brown fox jumps over the lazy dog.',
});
Go
import (
"context"
"flag"
"fmt"
"log"
"google.golang.org/genai"
)
client, err := genai.NewClient(ctx, &genai.ClientConfig{Backend: genai.BackendVertexAI})
fmt.Println("Count tokens example.")
countTokensResult, err := client.Models.CountTokens(ctx, *model, genai.Text("What is your name?"), nil)
fmt.Println(countTokensResult.TotalTokens)