str
The Cloud Storage corpus data which could be associated in
train data. The data path format is
gs://. A newline
delimited jsonl/ndjson file.
For search-tuning model, each line should have the \_id,
title and text. Example:
{"_id": "doc1", title: "relevant doc", "text": "relevant text"}
query_data_path
str
The gcs query data which could be associated in train data.
The data path format is
gs://. A newline
delimited jsonl/ndjson file.
For search-tuning model, each line should have the \_id and
text. Example: {"_id": "query1", "text": "example query"}
train_data_path
str
Cloud Storage training data path whose format should be
gs://. The file should
be in tsv format. Each line should have the doc_id and
query_id and score (number).
For search-tuning model, it should have the query-id
corpus-id score as tsv file header. The score should be a
number in [0, inf+). The larger the number is, the more
relevant the pair is. Example:
- query-id\tcorpus-id\tscore
- query1\tdoc1\t1
test_data_path
str
Cloud Storage test data. Same format as train_data_path. If
not provided, a random 80/20 train/test split will be
performed on train_data_path.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-07 UTC."],[],[],null,["# Class GcsTrainingInput (0.13.11)\n\nVersion latestkeyboard_arrow_down\n\n- [0.13.11 (latest)](/python/docs/reference/discoveryengine/latest/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.13.10](/python/docs/reference/discoveryengine/0.13.10/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.12.3](/python/docs/reference/discoveryengine/0.12.3/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.11.14](/python/docs/reference/discoveryengine/0.11.14/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.10.0](/python/docs/reference/discoveryengine/0.10.0/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.9.1](/python/docs/reference/discoveryengine/0.9.1/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.8.1](/python/docs/reference/discoveryengine/0.8.1/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.7.0](/python/docs/reference/discoveryengine/0.7.0/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.6.0](/python/docs/reference/discoveryengine/0.6.0/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.5.0](/python/docs/reference/discoveryengine/0.5.0/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.4.1](/python/docs/reference/discoveryengine/0.4.1/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.3.1](/python/docs/reference/discoveryengine/0.3.1/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.2.1](/python/docs/reference/discoveryengine/0.2.1/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput)\n- [0.1.1](/python/docs/reference/discoveryengine/0.1.1/google.cloud.discoveryengine_v1.types.TrainCustomModelRequest.GcsTrainingInput) \n\n GcsTrainingInput(mapping=None, *, ignore_unknown_fields=False, **kwargs)\n\nCloud Storage training data input."]]