- 3.29.0 (latest)
- 3.27.0
- 3.26.0
- 3.25.0
- 3.24.0
- 3.23.1
- 3.22.0
- 3.21.0
- 3.20.1
- 3.19.0
- 3.18.0
- 3.17.2
- 3.16.0
- 3.15.0
- 3.14.1
- 3.13.0
- 3.12.0
- 3.11.4
- 3.4.0
- 3.3.6
- 3.2.0
- 3.1.0
- 3.0.1
- 2.34.4
- 2.33.0
- 2.32.0
- 2.31.0
- 2.30.1
- 2.29.0
- 2.28.1
- 2.27.1
- 2.26.0
- 2.25.2
- 2.24.1
- 2.23.3
- 2.22.1
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.1
- 2.15.0
- 2.14.0
- 2.13.1
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.2
- 2.5.0
- 2.4.0
- 2.3.1
- 2.2.0
- 2.1.0
- 2.0.0
- 1.28.2
- 1.27.2
- 1.26.1
- 1.25.0
- 1.24.0
- 1.23.1
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
Python Client for Google BigQuery
Querying massive datasets can be time consuming and expensive without the right hardware and infrastructure. Google BigQuery solves this problem by enabling super-fast, SQL queries against append-mostly tables, using the processing power of Google’s infrastructure.
Quick Start
In order to use this library, you first need to go through the following steps:
Installation
Install this library in a virtualenv using pip. virtualenv is a tool to create isolated Python environments. The basic problem it addresses is one of dependencies and versions, and indirectly permissions.
With virtualenv, it’s possible to install this library without needing system install permissions, and without clashing with the installed system dependencies.
Supported Python Versions
Python >= 3.7
Unsupported Python Versions
Python == 2.7, Python == 3.5, Python == 3.6.
The last version of this library compatible with Python 2.7 and 3.5 is google-cloud-bigquery==1.28.0.
Mac/Linux
pip install virtualenv
virtualenv <your-env>
source <your-env>/bin/activate
<your-env>/bin/pip install google-cloud-bigquery
Windows
pip install virtualenv
virtualenv <your-env>
<your-env>\Scripts\activate
<your-env>\Scripts\pip.exe install google-cloud-bigquery
Example Usage
Perform a query
from google.cloud import bigquery
client = bigquery.Client()
# Perform a query.
QUERY = (
'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '
'WHERE state = "TX" '
'LIMIT 100')
query_job = client.query(QUERY) # API request
rows = query_job.result() # Waits for query to finish
for row in rows:
print(row.name)
Instrumenting With OpenTelemetry
This application uses OpenTelemetry to output tracing data from API calls to BigQuery. To enable OpenTelemetry tracing in the BigQuery client the following PyPI packages need to be installed:
pip install google-cloud-bigquery[opentelemetry] opentelemetry-exporter-google-cloud
After installation, OpenTelemetry can be used in the BigQuery client and in BigQuery jobs. First, however, an exporter must be specified for where the trace data will be outputted to. An example of this can be found here:
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchExportSpanProcessor
from opentelemetry.exporter.cloud_trace import CloudTraceSpanExporter
trace.set_tracer_provider(TracerProvider())
trace.get_tracer_provider().add_span_processor(
BatchExportSpanProcessor(CloudTraceSpanExporter())
)
In this example all tracing data will be published to the Google Cloud Trace console. For more information on OpenTelemetry, please consult the OpenTelemetry documentation.