Tutorial de reconocimiento óptico de caracteres (OCR) (1.ª gen.)


Consulta cómo realizar el reconocimiento óptico de caracteres (OCR) en Google Cloud. En este tutorial se muestra cómo subir archivos de imagen a Cloud Storage, extraer texto de las imágenes con la API Cloud Vision, traducir el texto con la API Cloud Translation de Google y guardar las traducciones en Cloud Storage. Pub/Sub se usa para poner en cola varias tareas y activar las funciones de Cloud Run adecuadas para llevarlas a cabo.

Para obtener más información sobre cómo enviar una solicitud de detección de texto (OCR), consulta los artículos sobre cómo detectar texto en imágenes, detectar escritura a mano en imágenes o detectar texto en archivos (PDF o TIFF).

Objetivos

Costes

En este documento, se utilizan los siguientes componentes facturables de Google Cloud:

  • Cloud Run functions
  • Pub/Sub
  • Cloud Storage
  • Cloud Translation API
  • Cloud Vision

Para generar una estimación de costes basada en el uso previsto, utiliza la calculadora de precios.

Los usuarios nuevos Google Cloud pueden disfrutar de una prueba gratuita.

Antes de empezar

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Functions, Cloud Build, Cloud Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  5. Install the Google Cloud CLI.

  6. Si utilizas un proveedor de identidades (IdP) externo, primero debes iniciar sesión en la CLI de gcloud con tu identidad federada.

  7. Para inicializar gcloud CLI, ejecuta el siguiente comando:

    gcloud init
  8. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  9. Verify that billing is enabled for your Google Cloud project.

  10. Enable the Cloud Functions, Cloud Build, Cloud Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  11. Install the Google Cloud CLI.

  12. Si utilizas un proveedor de identidades (IdP) externo, primero debes iniciar sesión en la CLI de gcloud con tu identidad federada.

  13. Para inicializar gcloud CLI, ejecuta el siguiente comando:

    gcloud init
  14. Si ya tienes instalada la CLI de gcloud, actualízala ejecutando el siguiente comando:

    gcloud components update
  15. Prepara tu entorno de desarrollo.
  16. Visualizar el flujo de datos

    El flujo de datos en la aplicación del tutorial de OCR consta de varios pasos:

    1. Se sube a Cloud Storage una imagen que contiene texto en cualquier idioma.
    2. Se activa una función de Cloud Run que usa la API Vision para extraer el texto y detectar el idioma de origen.
    3. El texto se pone en cola para traducirse publicando un mensaje en un tema de Pub/Sub. Se pone en cola una traducción para cada idioma de destino que sea diferente del idioma de origen.
    4. Si el idioma de destino coincide con el de origen, se omite la cola de traducción y el texto se envía a la cola de resultados, que es un tema de Pub/Sub diferente.
    5. Una función de Cloud Run usa la API Translation para traducir el texto de la cola de traducción. El resultado traducido se envía a la cola de resultados.
    6. Otra función de Cloud Run guarda el texto traducido de la cola de resultados en Cloud Storage.
    7. Los resultados se encuentran en Cloud Storage como archivos de texto de cada traducción.

    Puede ser útil visualizar los pasos:

    Preparar la aplicación

    1. Crea un segmento de Cloud Storage para subir imágenes. YOUR_IMAGE_BUCKET_NAME es un nombre de segmento único a nivel global:

      gcloud storage buckets create gs://YOUR_IMAGE_BUCKET_NAME
    2. Crea un segmento de Cloud Storage para guardar las traducciones de texto, donde YOUR_RESULT_BUCKET_NAME es un nombre de segmento único a nivel mundial:

      gcloud storage buckets create gs://YOUR_RESULT_BUCKET_NAME
    3. Crea un tema de Pub/Sub para publicar solicitudes de traducción, donde YOUR_TRANSLATE_TOPIC_NAME es el nombre de tu tema de solicitudes de traducción:

      gcloud pubsub topics create YOUR_TRANSLATE_TOPIC_NAME
    4. Crea un tema de Pub/Sub para publicar los resultados de traducción terminados, donde YOUR_RESULT_TOPIC_NAME es el nombre del tema de resultados de traducción:

      gcloud pubsub topics create YOUR_RESULT_TOPIC_NAME
    5. Clona el repositorio de aplicaciones de muestra en la máquina local:

      Node.js

      git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

      Python

      git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

      Go

      git clone https://github.com/GoogleCloudPlatform/golang-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

      Java

      git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

    6. Cambia al directorio que contiene el código de ejemplo de Cloud Run Functions:

      Node.js

      cd nodejs-docs-samples/functions/ocr/app/

      Python

      cd python-docs-samples/functions/ocr/app/

      Go

      cd golang-samples/functions/ocr/app/

      Java

      cd java-docs-samples/functions/ocr/ocr-process-image/

    Información sobre el código

    Importar dependencias

    La aplicación debe importar varias dependencias para comunicarse con los servicios de Google Cloud Platform:

    Node.js

    // Get a reference to the Pub/Sub component
    const {PubSub} = require('@google-cloud/pubsub');
    const pubsub = new PubSub();
    // Get a reference to the Cloud Storage component
    const {Storage} = require('@google-cloud/storage');
    const storage = new Storage();
    
    // Get a reference to the Cloud Vision API component
    const Vision = require('@google-cloud/vision');
    const vision = new Vision.ImageAnnotatorClient();
    
    // Get a reference to the Translate API component
    const {Translate} = require('@google-cloud/translate').v2;
    const translate = new Translate();
    

    Python

    import base64
    import json
    import os
    from typing import Dict, TypeVar
    
    from google.cloud import pubsub_v1
    from google.cloud import storage
    from google.cloud import translate_v2 as translate
    from google.cloud import vision
    
    vision_client = vision.ImageAnnotatorClient()
    translate_client = translate.Client()
    publisher = pubsub_v1.PublisherClient()
    storage_client = storage.Client()
    
    project_id = os.environ["GCP_PROJECT"]

    Go

    
    // Package ocr contains Go samples for creating OCR
    // (Optical Character Recognition) Cloud functions.
    package ocr
    
    import (
    	"context"
    	"fmt"
    	"os"
    	"strings"
    	"time"
    
    	"cloud.google.com/go/pubsub"
    	"cloud.google.com/go/storage"
    	"cloud.google.com/go/translate"
    	vision "cloud.google.com/go/vision/apiv1"
    	"golang.org/x/text/language"
    )
    
    type ocrMessage struct {
    	Text     string       `json:"text"`
    	FileName string       `json:"fileName"`
    	Lang     language.Tag `json:"lang"`
    	SrcLang  language.Tag `json:"srcLang"`
    }
    
    // GCSEvent is the payload of a GCS event.
    type GCSEvent struct {
    	Bucket         string    `json:"bucket"`
    	Name           string    `json:"name"`
    	Metageneration string    `json:"metageneration"`
    	ResourceState  string    `json:"resourceState"`
    	TimeCreated    time.Time `json:"timeCreated"`
    	Updated        time.Time `json:"updated"`
    }
    
    // PubSubMessage is the payload of a Pub/Sub event.
    // See the documentation for more details:
    // https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage
    type PubSubMessage struct {
    	Data []byte `json:"data"`
    }
    
    var (
    	visionClient    *vision.ImageAnnotatorClient
    	translateClient *translate.Client
    	pubsubClient    *pubsub.Client
    	storageClient   *storage.Client
    
    	projectID      string
    	resultBucket   string
    	resultTopic    string
    	toLang         []string
    	translateTopic string
    )
    
    func setup(ctx context.Context) error {
    	projectID = os.Getenv("GCP_PROJECT")
    	resultBucket = os.Getenv("RESULT_BUCKET")
    	resultTopic = os.Getenv("RESULT_TOPIC")
    	toLang = strings.Split(os.Getenv("TO_LANG"), ",")
    	translateTopic = os.Getenv("TRANSLATE_TOPIC")
    
    	var err error // Prevent shadowing clients with :=.
    
    	if visionClient == nil {
    		visionClient, err = vision.NewImageAnnotatorClient(ctx)
    		if err != nil {
    			return fmt.Errorf("vision.NewImageAnnotatorClient: %w", err)
    		}
    	}
    
    	if translateClient == nil {
    		translateClient, err = translate.NewClient(ctx)
    		if err != nil {
    			return fmt.Errorf("translate.NewClient: %w", err)
    		}
    	}
    
    	if pubsubClient == nil {
    		pubsubClient, err = pubsub.NewClient(ctx, projectID)
    		if err != nil {
    			return fmt.Errorf("translate.NewClient: %w", err)
    		}
    	}
    
    	if storageClient == nil {
    		storageClient, err = storage.NewClient(ctx)
    		if err != nil {
    			return fmt.Errorf("storage.NewClient: %w", err)
    		}
    	}
    	return nil
    }
    

    Java

    public class OcrProcessImage implements BackgroundFunction<GcsEvent> {
      // TODO<developer> set these environment variables
      private static final String PROJECT_ID = System.getenv("GCP_PROJECT");
      private static final String TRANSLATE_TOPIC_NAME = System.getenv("TRANSLATE_TOPIC");
      private static final String[] TO_LANGS = System.getenv("TO_LANG").split(",");
    
      private static final Logger logger = Logger.getLogger(OcrProcessImage.class.getName());
      private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();
      private Publisher publisher;
    
      public OcrProcessImage() throws IOException {
        publisher = Publisher.newBuilder(
            ProjectTopicName.of(PROJECT_ID, TRANSLATE_TOPIC_NAME)).build();
      }
    }

    Procesar imágenes

    La siguiente función lee un archivo de imagen subido de Cloud Storage y llama a una función para detectar si la imagen contiene texto:

    Node.js

    /**
     * This function is exported by index.js, and is executed when
     * a file is uploaded to the Cloud Storage bucket you created
     * for uploading images.
     *
     * @param {object} event A Google Cloud Storage File object.
     */
    exports.processImage = async event => {
      const {bucket, name} = event;
    
      if (!bucket) {
        throw new Error(
          'Bucket not provided. Make sure you have a "bucket" property in your request'
        );
      }
      if (!name) {
        throw new Error(
          'Filename not provided. Make sure you have a "name" property in your request'
        );
      }
    
      await detectText(bucket, name);
      console.log(`File ${name} processed.`);
    };

    Python

    def process_image(file_info: dict, context: dict) -> None:
        """Cloud Function triggered by Cloud Storage when a file is changed.
    
        Args:
            file_info: Metadata of the changed file, provided by the
                triggering Cloud Storage event.
            context: a dictionary containing metadata about the event.
    
        Returns:
            None; the output is written to stdout and Stackdriver Logging.
        """
        bucket = validate_message(file_info, "bucket")
        name = validate_message(file_info, "name")
    
        detect_text(bucket, name)
    
        print(f"File '{file_info['name']}' processed.")

    Go

    
    package ocr
    
    import (
    	"context"
    	"fmt"
    	"log"
    )
    
    // ProcessImage is executed when a file is uploaded to the Cloud Storage bucket you
    // created for uploading images. It runs detectText, which processes the image for text.
    func ProcessImage(ctx context.Context, event GCSEvent) error {
    	if err := setup(ctx); err != nil {
    		return fmt.Errorf("ProcessImage: %w", err)
    	}
    	if event.Bucket == "" {
    		return fmt.Errorf("empty file.Bucket")
    	}
    	if event.Name == "" {
    		return fmt.Errorf("empty file.Name")
    	}
    	if err := detectText(ctx, event.Bucket, event.Name); err != nil {
    		return fmt.Errorf("detectText: %w", err)
    	}
    	log.Printf("File %s processed.", event.Name)
    	return nil
    }
    

    Java

    
    import com.google.cloud.functions.BackgroundFunction;
    import com.google.cloud.functions.Context;
    import com.google.cloud.pubsub.v1.Publisher;
    import com.google.cloud.translate.v3.DetectLanguageRequest;
    import com.google.cloud.translate.v3.DetectLanguageResponse;
    import com.google.cloud.translate.v3.LocationName;
    import com.google.cloud.translate.v3.TranslationServiceClient;
    import com.google.cloud.vision.v1.AnnotateImageRequest;
    import com.google.cloud.vision.v1.AnnotateImageResponse;
    import com.google.cloud.vision.v1.Feature;
    import com.google.cloud.vision.v1.Image;
    import com.google.cloud.vision.v1.ImageAnnotatorClient;
    import com.google.cloud.vision.v1.ImageSource;
    import com.google.protobuf.ByteString;
    import com.google.pubsub.v1.ProjectTopicName;
    import com.google.pubsub.v1.PubsubMessage;
    import functions.eventpojos.GcsEvent;
    import java.io.IOException;
    import java.util.ArrayList;
    import java.util.List;
    import java.util.concurrent.ExecutionException;
    import java.util.logging.Level;
    import java.util.logging.Logger;
    
      @Override
      public void accept(GcsEvent gcsEvent, Context context) {
    
        // Validate parameters
        String bucket = gcsEvent.getBucket();
        if (bucket == null) {
          throw new IllegalArgumentException("Missing bucket parameter");
        }
        String filename = gcsEvent.getName();
        if (filename == null) {
          throw new IllegalArgumentException("Missing name parameter");
        }
    
        detectText(bucket, filename);
      }
    }

    La siguiente función extrae texto de la imagen mediante la API Vision y lo pone en cola para traducirlo:

    Node.js

    /**
     * Detects the text in an image using the Google Vision API.
     *
     * @param {string} bucketName Cloud Storage bucket name.
     * @param {string} filename Cloud Storage file name.
     * @returns {Promise}
     */
    const detectText = async (bucketName, filename) => {
      console.log(`Looking for text in image ${filename}`);
      const [textDetections] = await vision.textDetection(
        `gs://${bucketName}/${filename}`
      );
      const [annotation] = textDetections.textAnnotations;
      const text = annotation ? annotation.description.trim() : '';
      console.log('Extracted text from image:', text);
    
      let [translateDetection] = await translate.detect(text);
      if (Array.isArray(translateDetection)) {
        [translateDetection] = translateDetection;
      }
      console.log(
        `Detected language "${translateDetection.language}" for ${filename}`
      );
    
      // Submit a message to the bus for each language we're going to translate to
      const TO_LANGS = process.env.TO_LANG.split(',');
      const topicName = process.env.TRANSLATE_TOPIC;
    
      const tasks = TO_LANGS.map(lang => {
        const messageData = {
          text: text,
          filename: filename,
          lang: lang,
        };
    
        // Helper function that publishes translation result to a Pub/Sub topic
        // For more information on publishing Pub/Sub messages, see this page:
        //   https://cloud.google.com/pubsub/docs/publisher
        return publishResult(topicName, messageData);
      });
    
      return Promise.all(tasks);
    };

    Python

    def detect_text(bucket: str, filename: str) -> None:
        """
        Extract the text from an image uploaded to Cloud Storage.
    
        Extract the text from an image uploaded to Cloud Storage, then
        publish messages requesting subscribing services translate the text
        to each target language and save the result.
    
        Args:
            bucket: name of GCS bucket in which the file is stored.
            filename: name of the file to be read.
    
        Returns:
            None; the output is written to stdout and Stackdriver Logging.
        """
        print("Looking for text in image {}".format(filename))
    
        futures = []
    
        image = vision.Image(
            source=vision.ImageSource(gcs_image_uri=f"gs://{bucket}/{filename}")
        )
        text_detection_response = vision_client.text_detection(image=image)
        annotations = text_detection_response.text_annotations
    
        if len(annotations) > 0:
            text = annotations[0].description
        else:
            text = ""
    
        print(f"Extracted text {text} from image ({len(text)} chars).")
    
        detect_language_response = translate_client.detect_language(text)
        src_lang = detect_language_response["language"]
        print(f"Detected language {src_lang} for text {text}.")
    
        # Submit a message to the bus for each target language
        to_langs = os.environ["TO_LANG"].split(",")
        for target_lang in to_langs:
            topic_name = os.environ["TRANSLATE_TOPIC"]
            if src_lang == target_lang or src_lang == "und":
                topic_name = os.environ["RESULT_TOPIC"]
            message = {
                "text": text,
                "filename": filename,
                "lang": target_lang,
                "src_lang": src_lang,
            }
            message_data = json.dumps(message).encode("utf-8")
            topic_path = publisher.topic_path(project_id, topic_name)
            future = publisher.publish(topic_path, data=message_data)
            futures.append(future)
        for future in futures:
            future.result()

    Go

    
    package ocr
    
    import (
    	"context"
    	"encoding/json"
    	"fmt"
    	"log"
    
    	"cloud.google.com/go/pubsub"
    	"cloud.google.com/go/vision/v2/apiv1/visionpb"
    	"golang.org/x/text/language"
    )
    
    // detectText detects the text in an image using the Google Vision API.
    func detectText(ctx context.Context, bucketName, fileName string) error {
    	log.Printf("Looking for text in image %v", fileName)
    	maxResults := 1
    	image := &visionpb.Image{
    		Source: &visionpb.ImageSource{
    			GcsImageUri: fmt.Sprintf("gs://%s/%s", bucketName, fileName),
    		},
    	}
    	annotations, err := visionClient.DetectTexts(ctx, image, &visionpb.ImageContext{}, maxResults)
    	if err != nil {
    		return fmt.Errorf("DetectTexts: %w", err)
    	}
    	text := ""
    	if len(annotations) > 0 {
    		text = annotations[0].Description
    	}
    	if len(annotations) == 0 || len(text) == 0 {
    		log.Printf("No text detected in image %q. Returning early.", fileName)
    		return nil
    	}
    	log.Printf("Extracted text %q from image (%d chars).", text, len(text))
    
    	detectResponse, err := translateClient.DetectLanguage(ctx, []string{text})
    	if err != nil {
    		return fmt.Errorf("DetectLanguage: %w", err)
    	}
    	if len(detectResponse) == 0 || len(detectResponse[0]) == 0 {
    		return fmt.Errorf("DetectLanguage gave empty response")
    	}
    	srcLang := detectResponse[0][0].Language.String()
    	log.Printf("Detected language %q for text %q.", srcLang, text)
    
    	// Submit a message to the bus for each target language
    	for _, targetLang := range toLang {
    		topicName := translateTopic
    		if srcLang == targetLang || srcLang == "und" { // detection returns "und" for undefined language
    			topicName = resultTopic
    		}
    		targetTag, err := language.Parse(targetLang)
    		if err != nil {
    			return fmt.Errorf("language.Parse: %w", err)
    		}
    		srcTag, err := language.Parse(srcLang)
    		if err != nil {
    			return fmt.Errorf("language.Parse: %w", err)
    		}
    		message, err := json.Marshal(ocrMessage{
    			Text:     text,
    			FileName: fileName,
    			Lang:     targetTag,
    			SrcLang:  srcTag,
    		})
    		if err != nil {
    			return fmt.Errorf("json.Marshal: %w", err)
    		}
    		topic := pubsubClient.Topic(topicName)
    		ok, err := topic.Exists(ctx)
    		if err != nil {
    			return fmt.Errorf("Exists: %w", err)
    		}
    		if !ok {
    			topic, err = pubsubClient.CreateTopic(ctx, topicName)
    			if err != nil {
    				return fmt.Errorf("CreateTopic: %w", err)
    			}
    		}
    		msg := &pubsub.Message{
    			Data: []byte(message),
    		}
    		if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
    			return fmt.Errorf("Get: %w", err)
    		}
    	}
    	return nil
    }
    

    Java

    private void detectText(String bucket, String filename) {
      logger.info("Looking for text in image " + filename);
    
      List<AnnotateImageRequest> visionRequests = new ArrayList<>();
      String gcsPath = String.format("gs://%s/%s", bucket, filename);
    
      ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
      Image img = Image.newBuilder().setSource(imgSource).build();
    
      Feature textFeature = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
      AnnotateImageRequest visionRequest =
          AnnotateImageRequest.newBuilder().addFeatures(textFeature).setImage(img).build();
      visionRequests.add(visionRequest);
    
      // Detect text in an image using the Cloud Vision API
      AnnotateImageResponse visionResponse;
      try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
        visionResponse = client.batchAnnotateImages(visionRequests).getResponses(0);
        if (visionResponse == null || !visionResponse.hasFullTextAnnotation()) {
          logger.info(String.format("Image %s contains no text", filename));
          return;
        }
    
        if (visionResponse.hasError()) {
          // Log error
          logger.log(
              Level.SEVERE, "Error in vision API call: " + visionResponse.getError().getMessage());
          return;
        }
      } catch (IOException e) {
        // Log error (since IOException cannot be thrown by a Cloud Function)
        logger.log(Level.SEVERE, "Error detecting text: " + e.getMessage(), e);
        return;
      }
    
      String text = visionResponse.getFullTextAnnotation().getText();
      logger.info("Extracted text from image: " + text);
    
      // Detect language using the Cloud Translation API
      DetectLanguageRequest languageRequest =
          DetectLanguageRequest.newBuilder()
              .setParent(LOCATION_NAME)
              .setMimeType("text/plain")
              .setContent(text)
              .build();
      DetectLanguageResponse languageResponse;
      try (TranslationServiceClient client = TranslationServiceClient.create()) {
        languageResponse = client.detectLanguage(languageRequest);
      } catch (IOException e) {
        // Log error (since IOException cannot be thrown by a function)
        logger.log(Level.SEVERE, "Error detecting language: " + e.getMessage(), e);
        return;
      }
    
      if (languageResponse.getLanguagesCount() == 0) {
        logger.info("No languages were detected for text: " + text);
        return;
      }
    
      String languageCode = languageResponse.getLanguages(0).getLanguageCode();
      logger.info(String.format("Detected language %s for file %s", languageCode, filename));
    
      // Send a Pub/Sub translation request for every language we're going to translate to
      for (String targetLanguage : TO_LANGS) {
        logger.info("Sending translation request for language " + targetLanguage);
        OcrTranslateApiMessage message = new OcrTranslateApiMessage(text, filename, targetLanguage);
        ByteString byteStr = ByteString.copyFrom(message.toPubsubData());
        PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();
        try {
          publisher.publish(pubsubApiMessage).get();
        } catch (InterruptedException | ExecutionException e) {
          // Log error
          logger.log(Level.SEVERE, "Error publishing translation request: " + e.getMessage(), e);
          return;
        }
      }
    }

    Traducir texto

    La siguiente función traduce el texto extraído y pone en cola el texto traducido para que se guarde de nuevo en Cloud Storage:

    Node.js

    /**
     * This function is exported by index.js, and is executed when
     * a message is published to the Cloud Pub/Sub topic specified
     * by the TRANSLATE_TOPIC environment variable. The function
     * translates text using the Google Translate API.
     *
     * @param {object} event The Cloud Pub/Sub Message object.
     * @param {string} {messageObject}.data The "data" property of the Cloud Pub/Sub
     * Message. This property will be a base64-encoded string that you must decode.
     */
    exports.translateText = async event => {
      const pubsubData = event.data;
      const jsonStr = Buffer.from(pubsubData, 'base64').toString();
      const {text, filename, lang} = JSON.parse(jsonStr);
    
      if (!text) {
        throw new Error(
          'Text not provided. Make sure you have a "text" property in your request'
        );
      }
      if (!filename) {
        throw new Error(
          'Filename not provided. Make sure you have a "filename" property in your request'
        );
      }
      if (!lang) {
        throw new Error(
          'Language not provided. Make sure you have a "lang" property in your request'
        );
      }
    
      console.log(`Translating text into ${lang}`);
      const [translation] = await translate.translate(text, lang);
    
      console.log('Translated text:', translation);
    
      const messageData = {
        text: translation,
        filename: filename,
        lang: lang,
      };
    
      await publishResult(process.env.RESULT_TOPIC, messageData);
      console.log(`Text translated to ${lang}`);
    };

    Python

    def translate_text(event: dict, context: dict) -> None:
        """Cloud Function triggered by PubSub when a message is received from
        a subscription.
    
        Translates the text in the message from the specified source language
        to the requested target language, then sends a message requesting another
        service save the result.
    
        Args:
            event: dictionary containing the PubSub event.
            context: a dictionary containing metadata about the event.
    
        Returns:
            None; the output is written to stdout and Stackdriver Logging.
        """
        if event.get("data"):
            message_data = base64.b64decode(event["data"]).decode("utf-8")
            message = json.loads(message_data)
        else:
            raise ValueError("Data sector is missing in the Pub/Sub message.")
    
        text = validate_message(message, "text")
        filename = validate_message(message, "filename")
        target_lang = validate_message(message, "lang")
        src_lang = validate_message(message, "src_lang")
    
        print(f"Translating text into {target_lang}.")
        translated_text = translate_client.translate(
            text, target_language=target_lang, source_language=src_lang
        )
        topic_name = os.environ["RESULT_TOPIC"]
        message = {
            "text": translated_text["translatedText"],
            "filename": filename,
            "lang": target_lang,
        }
        encoded_message = json.dumps(message).encode("utf-8")
        topic_path = publisher.topic_path(project_id, topic_name)
        future = publisher.publish(topic_path, data=encoded_message)
        future.result()

    Go

    
    package ocr
    
    import (
    	"context"
    	"encoding/json"
    	"fmt"
    	"log"
    
    	"cloud.google.com/go/pubsub"
    	"cloud.google.com/go/translate"
    )
    
    // TranslateText is executed when a message is published to the Cloud Pub/Sub
    // topic specified by the TRANSLATE_TOPIC environment variable, and translates
    // the text using the Google Translate API.
    func TranslateText(ctx context.Context, event PubSubMessage) error {
    	if err := setup(ctx); err != nil {
    		return fmt.Errorf("setup: %w", err)
    	}
    	if event.Data == nil {
    		return fmt.Errorf("empty data")
    	}
    	var message ocrMessage
    	if err := json.Unmarshal(event.Data, &message); err != nil {
    		return fmt.Errorf("json.Unmarshal: %w", err)
    	}
    
    	log.Printf("Translating text into %s.", message.Lang.String())
    	opts := translate.Options{
    		Source: message.SrcLang,
    	}
    	translateResponse, err := translateClient.Translate(ctx, []string{message.Text}, message.Lang, &opts)
    	if err != nil {
    		return fmt.Errorf("Translate: %w", err)
    	}
    	if len(translateResponse) == 0 {
    		return fmt.Errorf("Empty Translate response")
    	}
    	translatedText := translateResponse[0]
    
    	messageData, err := json.Marshal(ocrMessage{
    		Text:     translatedText.Text,
    		FileName: message.FileName,
    		Lang:     message.Lang,
    		SrcLang:  message.SrcLang,
    	})
    	if err != nil {
    		return fmt.Errorf("json.Marshal: %w", err)
    	}
    
    	topic := pubsubClient.Topic(resultTopic)
    	ok, err := topic.Exists(ctx)
    	if err != nil {
    		return fmt.Errorf("Exists: %w", err)
    	}
    	if !ok {
    		topic, err = pubsubClient.CreateTopic(ctx, resultTopic)
    		if err != nil {
    			return fmt.Errorf("CreateTopic: %w", err)
    		}
    	}
    	msg := &pubsub.Message{
    		Data: messageData,
    	}
    	if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
    		return fmt.Errorf("Get: %w", err)
    	}
    	log.Printf("Sent translation: %q", translatedText.Text)
    	return nil
    }
    

    Java

    
    import com.google.cloud.functions.BackgroundFunction;
    import com.google.cloud.functions.Context;
    import com.google.cloud.pubsub.v1.Publisher;
    import com.google.cloud.translate.v3.LocationName;
    import com.google.cloud.translate.v3.TranslateTextRequest;
    import com.google.cloud.translate.v3.TranslateTextResponse;
    import com.google.cloud.translate.v3.TranslationServiceClient;
    import com.google.protobuf.ByteString;
    import com.google.pubsub.v1.ProjectTopicName;
    import com.google.pubsub.v1.PubsubMessage;
    import functions.eventpojos.Message;
    import java.io.IOException;
    import java.nio.charset.StandardCharsets;
    import java.util.concurrent.ExecutionException;
    import java.util.logging.Level;
    import java.util.logging.Logger;
    
    public class OcrTranslateText implements BackgroundFunction<Message> {
      private static final Logger logger = Logger.getLogger(OcrTranslateText.class.getName());
    
      // TODO<developer> set these environment variables
      private static final String PROJECT_ID = getenv("GCP_PROJECT");
      private static final String RESULTS_TOPIC_NAME = getenv("RESULT_TOPIC");
      private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();
    
      private Publisher publisher;
    
      public OcrTranslateText() throws IOException {
        publisher = Publisher.newBuilder(
            ProjectTopicName.of(PROJECT_ID, RESULTS_TOPIC_NAME)).build();
      }
    
      @Override
      public void accept(Message pubSubMessage, Context context) {
        OcrTranslateApiMessage ocrMessage = OcrTranslateApiMessage.fromPubsubData(
            pubSubMessage.getData().getBytes(StandardCharsets.UTF_8));
    
        String targetLang = ocrMessage.getLang();
        logger.info("Translating text into " + targetLang);
    
        // Translate text to target language
        String text = ocrMessage.getText();
        TranslateTextRequest request =
            TranslateTextRequest.newBuilder()
                .setParent(LOCATION_NAME)
                .setMimeType("text/plain")
                .setTargetLanguageCode(targetLang)
                .addContents(text)
                .build();
    
        TranslateTextResponse response;
        try (TranslationServiceClient client = TranslationServiceClient.create()) {
          response = client.translateText(request);
        } catch (IOException e) {
          // Log error (since IOException cannot be thrown by a function)
          logger.log(Level.SEVERE, "Error translating text: " + e.getMessage(), e);
          return;
        }
        if (response.getTranslationsCount() == 0) {
          return;
        }
    
        String translatedText = response.getTranslations(0).getTranslatedText();
        logger.info("Translated text: " + translatedText);
    
        // Send translated text to (subsequent) Pub/Sub topic
        String filename = ocrMessage.getFilename();
        OcrTranslateApiMessage translateMessage = new OcrTranslateApiMessage(
            translatedText, filename, targetLang);
        try {
          ByteString byteStr = ByteString.copyFrom(translateMessage.toPubsubData());
          PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();
    
          publisher.publish(pubsubApiMessage).get();
          logger.info("Text translated to " + targetLang);
        } catch (InterruptedException | ExecutionException e) {
          // Log error (since these exception types cannot be thrown by a function)
          logger.log(Level.SEVERE, "Error publishing translation save request: " + e.getMessage(), e);
        }
      }
    
      // Avoid ungraceful deployment failures due to unset environment variables.
      // If you get this warning you should redeploy with the variable set.
      private static String getenv(String name) {
        String value = System.getenv(name);
        if (value == null) {
          logger.warning("Environment variable " + name + " was not set");
          value = "MISSING";
        }
        return value;
      }
    }

    Guardar las traducciones

    Por último, la siguiente función recibe el texto traducido y lo vuelve a guardar en Cloud Storage:

    Node.js

    /**
     * This function is exported by index.js, and is executed when
     * a message is published to the Cloud Pub/Sub topic specified
     * by the RESULT_TOPIC environment variable. The function saves
     * the data packet to a file in GCS.
     *
     * @param {object} event The Cloud Pub/Sub Message object.
     * @param {string} {messageObject}.data The "data" property of the Cloud Pub/Sub
     * Message. This property will be a base64-encoded string that you must decode.
     */
    exports.saveResult = async event => {
      const pubsubData = event.data;
      const jsonStr = Buffer.from(pubsubData, 'base64').toString();
      const {text, filename, lang} = JSON.parse(jsonStr);
    
      if (!text) {
        throw new Error(
          'Text not provided. Make sure you have a "text" property in your request'
        );
      }
      if (!filename) {
        throw new Error(
          'Filename not provided. Make sure you have a "filename" property in your request'
        );
      }
      if (!lang) {
        throw new Error(
          'Language not provided. Make sure you have a "lang" property in your request'
        );
      }
    
      console.log(`Received request to save file ${filename}`);
    
      const bucketName = process.env.RESULT_BUCKET;
      const newFilename = renameImageForSave(filename, lang);
      const file = storage.bucket(bucketName).file(newFilename);
    
      console.log(`Saving result to ${newFilename} in bucket ${bucketName}`);
    
      await file.save(text);
      console.log('File saved.');
    };

    Python

    def save_result(event: dict, context: dict) -> None:
        """
        Cloud Function triggered by PubSub when a message is received from
        a subscription.
    
        Args:
            event: dictionary containing the PubSub event.
            context: a dictionary containing metadata about the event.
    
        Returns:
            None; the output is written to stdout and Stackdriver Logging.
        """
        if event.get("data"):
            message_data = base64.b64decode(event["data"]).decode("utf-8")
            message = json.loads(message_data)
        else:
            raise ValueError("Data sector is missing in the Pub/Sub message.")
    
        text = validate_message(message, "text")
        filename = validate_message(message, "filename")
        lang = validate_message(message, "lang")
    
        print(f"Received request to save file {filename}.")
    
        bucket_name = os.environ["RESULT_BUCKET"]
        result_filename = f"{filename}_{lang}.txt"
        bucket = storage_client.get_bucket(bucket_name)
        blob = bucket.blob(result_filename)
    
        print(f"Saving result to {result_filename} in bucket {bucket_name}.")
    
        blob.upload_from_string(text)
    
        print("File saved.")

    Go

    
    package ocr
    
    import (
    	"context"
    	"encoding/json"
    	"fmt"
    	"log"
    )
    
    // SaveResult is executed when a message is published to the Cloud Pub/Sub topic
    // specified by the RESULT_TOPIC environment vairable, and saves the data packet
    // to a file in GCS.
    func SaveResult(ctx context.Context, event PubSubMessage) error {
    	if err := setup(ctx); err != nil {
    		return fmt.Errorf("ProcessImage: %w", err)
    	}
    	var message ocrMessage
    	if event.Data == nil {
    		return fmt.Errorf("Empty data")
    	}
    	if err := json.Unmarshal(event.Data, &message); err != nil {
    		return fmt.Errorf("json.Unmarshal: %w", err)
    	}
    	log.Printf("Received request to save file %q.", message.FileName)
    
    	resultFilename := fmt.Sprintf("%s_%s.txt", message.FileName, message.Lang)
    	bucket := storageClient.Bucket(resultBucket)
    
    	log.Printf("Saving result to %q in bucket %q.", resultFilename, resultBucket)
    
    	w := bucket.Object(resultFilename).NewWriter(ctx)
    	defer w.Close()
    	fmt.Fprint(w, message.Text)
    
    	log.Printf("File saved.")
    	return nil
    }
    

    Java

    
    import com.google.cloud.functions.BackgroundFunction;
    import com.google.cloud.functions.Context;
    import com.google.cloud.storage.BlobId;
    import com.google.cloud.storage.BlobInfo;
    import com.google.cloud.storage.Storage;
    import com.google.cloud.storage.StorageOptions;
    import functions.eventpojos.PubsubMessage;
    import java.nio.charset.StandardCharsets;
    import java.util.logging.Logger;
    
    public class OcrSaveResult implements BackgroundFunction<PubsubMessage> {
      // TODO<developer> set this environment variable
      private static final String RESULT_BUCKET = System.getenv("RESULT_BUCKET");
    
      private static final Storage STORAGE = StorageOptions.getDefaultInstance().getService();
      private static final Logger logger = Logger.getLogger(OcrSaveResult.class.getName());
    
      @Override
      public void accept(PubsubMessage pubSubMessage, Context context) {
        OcrTranslateApiMessage ocrMessage = OcrTranslateApiMessage.fromPubsubData(
            pubSubMessage.getData().getBytes(StandardCharsets.UTF_8));
    
        logger.info("Received request to save file " +  ocrMessage.getFilename());
    
        String newFileName = String.format(
            "%s_to_%s.txt", ocrMessage.getFilename(), ocrMessage.getLang());
    
        // Save file to RESULT_BUCKET with name newFileNaem
        logger.info(String.format("Saving result to %s in bucket %s", newFileName, RESULT_BUCKET));
        BlobInfo blobInfo = BlobInfo.newBuilder(BlobId.of(RESULT_BUCKET, newFileName)).build();
        STORAGE.create(blobInfo, ocrMessage.getText().getBytes(StandardCharsets.UTF_8));
        logger.info("File saved");
      }
    }

    Desplegar las funciones

    1. Para desplegar la función de procesamiento de imágenes con un activador de Cloud Storage, ejecuta el siguiente comando en el directorio que contiene el código de muestra (o el archivo pom.xml en el caso de Java):

      Node.js

      gcloud functions deploy ocr-extract \
      --runtime nodejs20 \
      --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
      --entry-point processImage \
      --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

      Usa la marca --runtime para especificar el ID del entorno de ejecución de una versión compatible de Node.js para ejecutar tu función.

      Python

      gcloud functions deploy ocr-extract \
      --runtime python312 \
      --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
      --entry-point process_image \
      --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Python compatible para ejecutar tu función.

      Go

      gcloud functions deploy ocr-extract \
      --runtime go121 \
      --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
      --entry-point ProcessImage \
      --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Go compatible para ejecutar tu función.

      Java

      gcloud functions deploy ocr-extract \
      --entry-point functions.OcrProcessImage \
      --runtime java17 \
      --memory 512MB \
      --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
      --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Java compatible para ejecutar tu función.

      donde YOUR_IMAGE_BUCKET_NAME es el nombre del segmento de Cloud Storage al que subirás las imágenes.

    2. Para desplegar la función de traducción de texto con un activador de Pub/Sub, ejecuta el siguiente comando en el directorio que contiene el código de ejemplo (o, en el caso de Java, el archivo pom.xml):

      Node.js

      gcloud functions deploy ocr-translate \
      --runtime nodejs20 \
      --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
      --entry-point translateText \
      --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

      Usa la marca --runtime para especificar el ID del entorno de ejecución de una versión compatible de Node.js para ejecutar tu función.

      Python

      gcloud functions deploy ocr-translate \
      --runtime python312 \
      --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
      --entry-point translate_text \
      --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Python compatible para ejecutar tu función.

      Go

      gcloud functions deploy ocr-translate \
      --runtime go121 \
      --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
      --entry-point TranslateText \
      --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Go compatible para ejecutar tu función.

      Java

      gcloud functions deploy ocr-translate \
      --entry-point functions.OcrTranslateText \
      --runtime java17 \
      --memory 512MB \
      --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
      --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Java compatible para ejecutar tu función.

    3. Para desplegar la función que guarda los resultados en Cloud Storage con un activador de Cloud Pub/Sub, ejecuta el siguiente comando en el directorio que contiene el código de ejemplo (o, en el caso de Java, el archivo pom.xml):

      Node.js

      gcloud functions deploy ocr-save \
      --runtime nodejs20 \
      --trigger-topic YOUR_RESULT_TOPIC_NAME \
      --entry-point saveResult \
      --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

      Usa la marca --runtime para especificar el ID del entorno de ejecución de una versión compatible de Node.js para ejecutar tu función.

      Python

      gcloud functions deploy ocr-save \
      --runtime python312 \
      --trigger-topic YOUR_RESULT_TOPIC_NAME \
      --entry-point save_result \
      --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Python compatible para ejecutar tu función.

      Go

      gcloud functions deploy ocr-save \
      --runtime go121 \
      --trigger-topic YOUR_RESULT_TOPIC_NAME \
      --entry-point SaveResult \
      --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Go compatible para ejecutar tu función.

      Java

      gcloud functions deploy ocr-save \
      --entry-point functions.OcrSaveResult \
      --runtime java17 \
      --memory 512MB \
      --trigger-topic YOUR_RESULT_TOPIC_NAME \
      --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

      Usa la marca --runtime para especificar el ID de tiempo de ejecución de una versión de Java compatible para ejecutar tu función.

    Subir una imagen

    1. Sube una imagen al segmento de Cloud Storage de imágenes:

      gcloud storage cp PATH_TO_IMAGE gs://YOUR_IMAGE_BUCKET_NAME

      donde

      • PATH_TO_IMAGE es la ruta a un archivo de imagen (que contiene texto) en tu sistema local.
      • YOUR_IMAGE_BUCKET_NAME es el nombre del segmento en el que vas a subir las imágenes.

      Puedes descargar una de las imágenes del proyecto de ejemplo.

    2. Consulta los registros para asegurarte de que las ejecuciones se han completado:

      gcloud functions logs read --limit 100
    3. Puedes ver las traducciones guardadas en el segmento de Cloud Storage que hayas usado para YOUR_RESULT_BUCKET_NAME.

    Limpieza

    Para evitar que los recursos utilizados en este tutorial se cobren en tu cuenta de Google Cloud, elimina el proyecto que contiene los recursos o conserva el proyecto y elimina los recursos.

    Eliminar el proyecto

    La forma más fácil de evitar que te cobren es eliminar el proyecto que has creado para el tutorial.

    Para ello, sigue las instrucciones que aparecen a continuación:

    1. In the Google Cloud console, go to the Manage resources page.

      Go to Manage resources

    2. In the project list, select the project that you want to delete, and then click Delete.
    3. In the dialog, type the project ID, and then click Shut down to delete the project.

    Eliminar la función

    Si eliminas funciones de Cloud Run, no se eliminarán los recursos almacenados en Cloud Storage.

    Para eliminar las funciones de Cloud Run que has creado en este tutorial, ejecuta los siguientes comandos:

    gcloud functions delete ocr-extract
    gcloud functions delete ocr-translate
    gcloud functions delete ocr-save

    También puedes eliminar funciones de Cloud Run desde la Google Cloud consola.