本頁面說明如何使用 AML AI 產生的平台記錄,做為 Cloud Logging 的一部分。AML AI 會使用 Logging API 服務名稱 financialservices.googleapis.com
記錄下列活動:
- 建立引擎設定 (調整)
- 建立模型 (訓練)
- 回測作業
- 預測作業
事前準備
如要查看及管理記錄,請確認您具備正確的身分與存取權管理權限和角色。
平台記錄啟用狀態
反洗錢 AI 的平台記錄一律處於啟用狀態 (無法關閉)。
記錄嚴重性
AML AI 記錄項目會使用三種嚴重性層級:
NOTICE
:在作業開始或成功時傳送的項目ERROR
是關於失敗作業結束的項目INFO
用於作業進度項目
查看平台記錄檔
如要查看平台記錄,請按照下列指示操作:
控制台
如要在 Google Cloud 控制台中查看平台記錄,請按照下列步驟操作:
前往「Logs Explorer」(記錄檔探索工具):
選取適當的 Google Cloud 專案。
在「Query」欄位中輸入下列查詢指令:
logName=("projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fbacktest" OR "projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fengine_config_creation" OR "projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fmodel_creation" OR "projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fprediction")
其中:
PROJECT_ID
是您要偵錯或監控的專案 ID。例如:my-project
。點選「執行查詢」。
gcloud
gcloud 指令列工具提供 Cloud Logging 的指令列介面。
如要查看專案的記錄,請執行下列指令:
gcloud logging read 'logName=("projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fbacktest" OR "projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fengine_config_creation" OR "projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fmodel_creation" OR "projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fprediction")' --project=PROJECT_ID
其中 PROJECT_ID
是 Google Cloud 專案的 ID。
如要進一步瞭解如何搭配使用 gcloud 工具和 Cloud Logging,請參閱 gcloud logging
。
瞭解平台記錄檔
本節說明如何瞭解 AML AI 的特定平台記錄。
開始記錄
作業開始執行時,系統會產生含有 eventKind=START
的記錄。
以下是開始預測執行作業的記錄範例。
jsonPayload: '@type': type.googleapis.com/google.cloud.financialservices.logging.v1.PredictionLog engineVersion: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/engineVersions/ENGINE_VERSION_ID eventKind: START predictionResult: dataset: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/datasets/DATASET_ID endTime: '2023-05-31T00:00:00Z' model: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/models/MODEL_ID outputs: explainabilityDestination: tableUri: bq://PROJECT_ID.DATASET_ID.EXPLAINABILITY_TABLE_ID writeDisposition: WRITE_EMPTY predictionDestination: tableUri: bq://PROJECT_ID.DATASET_ID.PREDICTION_TABLE_ID writeDisposition: WRITE_EMPTY logName: projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fprediction operation: first: true id: projects/PROJECT_NUMBER/locations/REGION_ID/operations/OPERATION_ID producer: financialservices.googleapis.com receiveTimestamp: '2023-06-07T12:30:48.417285528Z' resource: labels: instance_id: INSTANCE_ID location: REGION_ID prediction_result_id: PREDICTION_ID resource_container: projects/PROJECT_NUMBER type: financialservices.googleapis.com/PredictionResult
您可以在記錄檔探索工具的「查詢」欄位中新增其他指令,進一步縮小顯示的記錄範圍。
新增下列指令,即可在所選資料集上顯示所有已啟動的預測執行作業:
logName="projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fprediction" AND jsonPayload.predictionResult.dataset="projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/datasets/DATASET_ID" AND jsonPayload.eventKind="START"
進度記錄
含有 eventKind=PROGRESS
的記錄會提供作業進度資訊。
以下是建立模型的記錄範例。completedTaskCount
與 taskCount
可用於估算模型訓練的進度。
jsonPayload: '@type': type.googleapis.com/google.cloud.financialservices.logging.v1.ModelCreationLog completedTaskCount: 11 engineVersion: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/engineVersions/ENGINE_VERSION_ID eventKind: PROGRESS model: endTime: '2023-05-31T00:00:00Z' engineConfig: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/engineConfigs/ENGINE_CONFIG_ID engineVersion: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/engineVersions/ENGINE_VERSION_ID lineOfBusiness: RETAIL primaryDataset: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/datasets/DATASET_ID state: CREATING partyCount: '9246' taskCount: 16 logName: projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fmodel_creation operation: id: projects/PROJECT_NUMBER/locations/REGION_ID/operations/OPERATION_ID producer: financialservices.googleapis.com receiveTimestamp: '2023-06-07T13:57:00.454668648Z' resource: labels: instance_id: INSTANCE_ID location: REGION_ID model_id: MODEL_ID resource_container: projects/PROJECT_NUMBER type: financialservices.googleapis.com/Model severity: INFO timestamp: '2023-06-07T13:56:59.772973055Z'
結束記錄
作業結束時,系統會產生含有 eventKind=END
的記錄。
以下是引擎設定建立失敗的記錄範例。這份報告包含提供資料集中錯誤資料的錯誤。
jsonPayload: '@type': type.googleapis.com/google.cloud.financialservices.logging.v1.EngineConfigCreationLog completedTaskCount: 3 engineConfig: engineVersion: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/engineVersions/ENGINE_VERSION_ID lineOfBusiness: RETAIL performanceTarget: partyInvestigationsPerPeriodHint: '100' state: CREATING tuning: endTime: '2019-04-30T00:00:00Z' primaryDataset: projects/PROJECT_ID/locations/REGION_ID/instances/INSTANCE_ID/datasets/DATASET_ID eventKind: END operationStatus: code: 9 details: - '@type': type.googleapis.com/google.rpc.ErrorInfo domain: financialservices.googleapis.com metadata: count: '15' data_field: party_id, validity_start_time data_table: party description: There is a duplicate primary key value in the database resulting in unique key violation. Note that for tables with validity_start_time, the primary key includes validity_start_time test: GROUP BY party_id, validity_start_time HAVING count(1) > 1 reason: DUPLICATE_PRIMARY_KEY message: Dataset validation failed with 1 error. See error details for individual violations. partyCount: '9246' taskCount: 16 logName: projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fengine_config_creation operation: id: projects/PROJECT_NUMBER/locations/REGION_ID/operations/OPERATION_ID last: true producer: financialservices.googleapis.com receiveTimestamp: '2023-06-07T14:26:30.214382295Z' resource: labels: engine_config_id: ENGINE_CONFIG_ID instance_id: INSTANCE_ID location: REGION_ID resource_container: projects/PROJECT_NUMBER type: financialservices.googleapis.com/EngineConfig severity: ERROR timestamp: '2023-06-07T14:26:29.670913895Z'
如要查看所有建立引擎設定錯誤記錄,請使用下列篩選器:
logName="projects/PROJECT_ID/logs/financialservices.googleapis.com%2Fengine_config_creation" AND severity>=ERROR