Générer du texte à l'aide d'un modèle text-bison et de la fonction ML.GENERATE_TEXT

Ce tutoriel explique comment créer un modèle distant basé sur le grand modèle de langage text-bison@002 et l'utiliser avec la fonction ML.GENERATE_TEXT pour effectuer plusieurs tâches de génération de texte. Ce tutoriel utilise la table publique bigquery-public-data.imdb.reviews.

Autorisations requises

  • Pour créer l'ensemble de données, vous devez disposer de l'autorisation Identity and Access Management (IAM) bigquery.datasets.create.
  • Pour créer la ressource de connexion, vous devez disposer des autorisations IAM suivantes :

    • bigquery.connections.create
    • bigquery.connections.get
  • Pour accorder des autorisations au compte de service de la connexion, vous devez disposer de l'autorisation suivante :

    • resourcemanager.projects.setIamPolicy
  • Pour créer le modèle, vous avez besoin des autorisations suivantes :

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • Pour exécuter une inférence, vous devez disposer des autorisations suivantes :

    • bigquery.models.getData
    • bigquery.jobs.create

Coûts

Dans ce document, vous utilisez les composants facturables suivants de Google Cloud :

  • BigQuery ML: You incur costs for the data that you process in BigQuery.
  • Vertex AI: You incur costs for calls to the Vertex AI service that's represented by the remote model.

Obtenez une estimation des coûts en fonction de votre utilisation prévue à l'aide du simulateur de coût. Les nouveaux utilisateurs de Google Cloud peuvent bénéficier d'un essai gratuit.

Pour en savoir plus sur les tarifs de BigQuery, consultez la page Tarifs de BigQuery dans la documentation BigQuery.

Pour en savoir plus sur les tarifs de Vertex AI, consultez la page Tarifs de Vertex AI.

Avant de commencer

  1. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  2. Make sure that billing is enabled for your Google Cloud project.

  3. Enable the BigQuery, BigQuery Connection, and Vertex AI APIs.

    Enable the APIs

Créer un ensemble de données

Vous allez créer un ensemble de données BigQuery pour stocker votre modèle de ML :

  1. Dans la console Google Cloud, accédez à la page "BigQuery".

    Accéder à la page "BigQuery"

  2. Dans le volet Explorateur, cliquez sur le nom de votre projet.

  3. Cliquez sur Afficher les actions > Créer un ensemble de données.

    Créer l'ensemble de données

  4. Sur la page Créer un ensemble de données, procédez comme suit :

    • Dans le champ ID de l'ensemble de données, saisissez bqml_tutorial.

    • Pour Type d'emplacement, sélectionnez Multirégional, puis sélectionnez US (plusieurs régions aux États-Unis).

      Les ensembles de données publics sont stockés dans l'emplacement multirégional US. Par souci de simplicité, stockez votre ensemble de données dans le même emplacement.

    • Conservez les autres paramètres par défaut, puis cliquez sur Créer un ensemble de données.

      Créer une page d'ensemble de données

Créer une connexion

Créez une connexion de ressource cloud et obtenez le compte de service de la connexion. Créez la connexion dans le même emplacement que l'ensemble de données que vous avez créé à l'étape précédente.

Sélectionnez l'une des options suivantes :

Console

  1. Accédez à la page BigQuery.

    Accéder à BigQuery

  2. Pour créer une connexion, cliquez sur Ajouter, puis sur Connexions aux sources de données externes.

  3. Dans la liste Type de connexion, sélectionnez Modèles distants Vertex AI, fonctions distantes et BigLake (ressource Cloud).

  4. Dans le champ ID de connexion, saisissez un nom pour votre connexion.

  5. Cliquez sur Create connection (Créer une connexion).

  6. Cliquez sur Accéder à la connexion.

  7. Dans le volet Informations de connexion, copiez l'ID du compte de service à utiliser à l'étape suivante.

bq

  1. Dans un environnement de ligne de commande, créez une connexion :

    bq mk --connection --location=REGION --project_id=PROJECT_ID \
        --connection_type=CLOUD_RESOURCE CONNECTION_ID

    Le paramètre --project_id remplace le projet par défaut.

    Remplacez les éléments suivants :

    • REGION : votre région de connexion
    • PROJECT_ID : ID de votre projet Google Cloud
    • CONNECTION_ID : ID de votre connexion

    Lorsque vous créez une ressource de connexion, BigQuery crée un compte de service système unique et l'associe à la connexion.

    Dépannage : Si vous obtenez l'erreur de connexion suivante, mettez à jour le Google Cloud SDK :

    Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
    
  2. Récupérez et copiez l'ID du compte de service pour l'utiliser lors d'une prochaine étape :

    bq show --connection PROJECT_ID.REGION.CONNECTION_ID

    Le résultat ressemble à ce qui suit :

    name                          properties
    1234.REGION.CONNECTION_ID     {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
    

Terraform

Ajoutez la section suivante à votre fichier main.tf.

 ## This creates a cloud resource connection.
 ## Note: The cloud resource nested object has only one output only field - serviceAccountId.
 resource "google_bigquery_connection" "connection" {
    connection_id = "CONNECTION_ID"
    project = "PROJECT_ID"
    location = "REGION"
    cloud_resource {}
}        
Remplacez les éléments suivants :

  • CONNECTION_ID : ID de votre connexion
  • PROJECT_ID : ID de votre projet Google Cloud
  • REGION : votre région de connexion

Accorder des autorisations au compte de service de la connexion

Attribuez le rôle d'utilisateur Vertex AI au compte de service de la connexion. Vous devez accorder ce rôle dans le projet que vous avez créé ou sélectionné dans la section Avant de commencer. L'attribution du rôle dans un autre projet génère l'erreur bqcx-1234567890-xxxx@gcp-sa-bigquery-condel.iam.gserviceaccount.com does not have the permission to access resource.

Pour accorder le rôle, procédez comme suit :

  1. Accédez à la page IAM et administration.

    Accéder à IAM et administration

  2. Cliquez sur Accorder l'accès.

  3. Dans le champ Nouveaux comptes principaux, saisissez l'ID du compte de service que vous avez copié précédemment.

  4. Dans le champ Sélectionner un rôle, sélectionnez Vertex AI, puis le rôle Utilisateur Vertex AI.

  5. Cliquez sur Enregistrer.

Créer le modèle distant

Créez un modèle distant représentant un grand modèle de langage (LLM) hébergé sur Vertex AI :

SQL

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, exécutez l'instruction suivante :

    CREATE OR REPLACE MODEL `bqml_tutorial.llm_model`
    REMOTE WITH CONNECTION `LOCATION.CONNECTION_ID`
    OPTIONS (ENDPOINT = 'text-bison@002');

    Remplacez les éléments suivants :

    • LOCATION : emplacement de la connexion
    • CONNECTION_ID : ID de votre connexion BigQuery.

      Lorsque vous affichez les détails de la connexion dans la console Google Cloud, il s'agit de la valeur de la dernière section de l'ID de connexion complet affiché dans ID de connexion (par exemple, projects/myproject/locations/connection_location/connections/myconnection).

    L'exécution de la requête prend plusieurs secondes, après quoi le modèle llm_model apparaît dans l'ensemble de données bqml_tutorial dans le volet Explorateur. Étant donné que la requête utilise une instruction CREATE MODEL pour créer un modèle, il n'y a aucun résultat de requête.

BigQuery DataFrames

Avant d'essayer cet exemple, suivez les instructions de configuration pour BigQuery DataFrames du guide de démarrage rapide de BigQuery DataFrames. Pour en savoir plus, consultez la documentation de référence sur BigQuery DataFrames.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour un environnement de développement local.

import bigframes
from bigframes.ml.llm import PaLM2TextGenerator

bigframes.options.bigquery.project = PROJECT_ID
bigframes.options.bigquery.location = LOCATION

model = PaLM2TextGenerator()

Effectuer une extraction de mots clés

Effectuez une extraction de mots clés sur des avis de films IMDB à l'aide du modèle distant et de la fonction ML.GENERATE_TEXT :

SQL

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, saisissez l'instruction suivante pour effectuer l'extraction de mots clés sur cinq avis de films :

    SELECT
    ml_generate_text_result['predictions'][0]['content'] AS generated_text,
    ml_generate_text_result['predictions'][0]['safetyAttributes']
      AS safety_attributes,
    * EXCEPT (ml_generate_text_result)
    FROM
    ML.GENERATE_TEXT(
      MODEL `bqml_tutorial.llm_model`,
      (
        SELECT
          CONCAT('Extract the key words from the text below: ', review) AS prompt,
          *
        FROM
          `bigquery-public-data.imdb.reviews`
        LIMIT 5
      ),
      STRUCT(
        0.2 AS temperature,
        100 AS max_output_tokens));

    Le résultat ressemble à ce qui suit, les colonnes non générées étant omises pour plus de clarté :

    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | generated_text                         | safety_attributes                           | ml_generate_text_status | prompt                     | ... |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | " Keywords:\n- British Airways\n-      | {"blocked":false,"categories":              |                         | Extract the key words from |     |
    | acting\n- story\n- kid\n- switch off"  | ["Death, Harm & Tragedy","Derogatory",      |                         | the text below: I had to   |     |
    |                                        | "Finance","Health","Insult",                |                         | see this on the British    |     |
    |                                        | "Profanity","Religion & Belief",            |                         | Airways plane. It was      |     |
    |                                        | "Sexual","Toxic"]                           |                         | terribly bad acting and    |     |
    |                                        | "safetyRatings":[{"category":               |                         | a dumb story. Not even     |     |
    |                                        | "Dangerous Content","probabilityScore"...   |                         | a kid would enjoy this...  |     |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | " - Family movie\n- ITV station\n- THE | {"blocked":false,"categories":              |                         | Extract the key words from |     |
    | REAL HOWARD SPITZ\n- Roald Dahl\n-     | ["Death, Harm & Tragedy","Derogatory",      |                         | the text below: This is    |     |
    | DOCTOR WHO\n- Pulp fiction\n- Child    | "Health","Illicit Drugs","Insult",          |                         | a family movie that was    |     |
    | abuse\n- KINDERGARTEN COP\n- PC\n-     | "Legal","Profanity","Public Safety",        |                         | broadcast on my local      |     |
    | Children's author\n- Vadim Jean\n-     | "Sexual","Toxic","Violent"],                |                         | ITV station at 1.00 am a   |     |
    | Haphazard\n- Kelsey Grammar\n-         | "safetyRatings":[{"category":               |                         | couple of nights ago.      |     |
    | Dead pan\n- Ridiculous camera angles"  | "Dangerous Content","probabilityScore"...   |                         | This might be a strange... |     |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    

    Les résultats incluent les colonnes suivantes :

    • generated_text : texte généré.
    • safety_attributes : attributs de sécurité et informations indiquant si le contenu est bloqué en raison de l'une des catégories bloquantes. Pour en savoir plus sur les attributs de sécurité, consultez API PaLM de Vertex AI.
    • ml_generate_text_status : état de réponse d'API pour la ligne correspondante. Si l'opération a abouti, cette valeur est vide.
    • prompt : requête utilisée pour l'analyse des sentiments.
    • Toutes les colonnes de la table bigquery-public-data.imdb.reviews.
  3. Facultatif : Au lieu d'analyser manuellement le fichier JSON renvoyé par la fonction comme vous l'avez fait à l'étape précédente, utilisez l'argument flatten_json_output pour renvoyer le texte généré et les attributs de sécurité dans des colonnes distinctes.

    Dans l'éditeur de requête, exécutez l'instruction suivante :

    SELECT
    *
    FROM
    ML.GENERATE_TEXT(
      MODEL `bqml_tutorial.llm_model`,
      (
        SELECT
          CONCAT('Extract the key words from the text below: ', review) AS prompt,
          *
        FROM
          `bigquery-public-data.imdb.reviews`
        LIMIT 5
      ),
      STRUCT(
        0.2 AS temperature,
        100 AS max_output_tokens,
        TRUE AS flatten_json_output));

    Le résultat ressemble à ce qui suit, les colonnes non générées étant omises pour plus de clarté :

    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | ml_generate_text_llm_result            | ml_generate_text_rai_result                 | ml_generate_text_status | prompt                     | ... |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | Keywords:                              | {"blocked":false,"categories":              |                         | Extract the key words from |     |
    | - British Airways                      | ["Death, Harm & Tragedy","Derogatory",      |                         | the text below: I had to   |     |
    | - acting                               | "Finance","Health","Insult",                |                         | see this on the British    |     |
    | - story                                | "Profanity","Religion & Belief",            |                         | Airways plane. It was      |     |
    | - kid                                  | "Sexual","Toxic"]                           |                         | terribly bad acting and    |     |
    | - switch off                           | "safetyRatings":[{"category":               |                         | a dumb story. Not even     |     |
    |                                        | "Dangerous Content","probabilityScore"...   |                         | a kid would enjoy this...  |     |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | - Family movie                         | {"blocked":false,"categories":              |                         | Extract the key words from |     |
    | - ITV station                          | ["Death, Harm & Tragedy","Derogatory",      |                         | the text below: This is    |     |
    | - THE REAL HOWARD SPITZ                | "Health","Illicit Drugs","Insult",          |                         | a family movie that was    |     |
    | - Roald Dahl                           | "Legal","Profanity","Public Safety",        |                         | broadcast on my local      |     |
    | - DOCTOR WHO                           | "Sexual","Toxic","Violent"],                |                         | ITV station at 1.00 am a   |     |
    | - Pulp Fiction                         | "safetyRatings":[{"category":               |                         | couple of nights ago.      |     |
    | - ...                                  | "Dangerous Content","probabilityScore"...   |                         | This might be a strange... |     |
    +----------------------------------------+---------------------------------------------+-------------------------+----------------------------+-----+
    

    Les résultats incluent les colonnes suivantes :

    • ml_generate_text_llm_result : texte généré.
    • ml_generate_text_rai_result : attributs de sécurité et informations indiquant si le contenu est bloqué en raison de l'une des catégories bloquantes. Pour en savoir plus sur les attributs de sécurité, consultez API PaLM de Vertex AI.
    • ml_generate_text_status : état de réponse d'API pour la ligne correspondante. Si l'opération a abouti, cette valeur est vide.
    • prompt : requête utilisée pour l'extraction de mots clés.
    • Toutes les colonnes de la table bigquery-public-data.imdb.reviews.

BigQuery DataFrames

Avant d'essayer cet exemple, suivez les instructions de configuration pour BigQuery DataFrames du guide de démarrage rapide de BigQuery DataFrames. Pour en savoir plus, consultez la documentation de référence sur BigQuery DataFrames.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour un environnement de développement local.

Utilisez la fonction predict pour exécuter le modèle distant :

import bigframes.pandas as bpd

df = bpd.read_gbq("bigquery-public-data.imdb.reviews", max_results=5)
df_prompt_prefix = "Extract the key words from the text below: "
df_prompt = df_prompt_prefix + df["review"]

# Predict using the model
df_pred = model.predict(df_prompt, temperature=0.2, max_output_tokens=100)
df_pred.peek(5)

Le résultat ressemble à ce qui suit : Result_visualization

Effectuer une analyse des sentiments

Effectuez une analyse des sentiments sur des avis de films IMDB à l'aide du modèle distant et de la fonction ML.GENERATE_TEXT :

SQL

  1. Dans la console Google Cloud, accédez à la page BigQuery.

    Accéder à BigQuery

  2. Dans l'éditeur de requête, exécutez l'instruction suivante pour effectuer une analyse des sentiments sur cinq avis de films :

    SELECT
    ml_generate_text_result['predictions'][0]['content'] AS generated_text,
    ml_generate_text_result['predictions'][0]['safetyAttributes']
      AS safety_attributes,
    * EXCEPT (ml_generate_text_result)
    FROM
    ML.GENERATE_TEXT(
      MODEL `bqml_tutorial.llm_model`,
      (
        SELECT
          CONCAT(
            'perform sentiment analysis on the following text, return one the following categories: positive, negative: ',
            review) AS prompt,
          *
        FROM
          `bigquery-public-data.imdb.reviews`
        LIMIT 5
      ),
      STRUCT(
        0.2 AS temperature,
        100 AS max_output_tokens));

    Le résultat ressemble à ce qui suit, les colonnes non générées étant omises pour plus de clarté :

    +----------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | generated_text | safety_attributes                           | ml_generate_text_status | prompt                     | ... |
    +----------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | "negative"     | {"blocked":false,"categories":              |                         | perform sentiment analysis |     |
    |                | ["Death, Harm & Tragedy","Derogatory",      |                         | on the following text,     |     |
    |                | "Finance","Health","Insult",                |                         | return one the following   |     |
    |                | "Profanity","Religion & Belief",            |                         | categories: positive,      |     |
    |                | "Sexual","Toxic"]                           |                         | negative: I  had to see    |     |
    |                | "safetyRatings":[{"category":               |                         | this on the British        |     |
    |                | "Dangerous Content","probabilityScore"...   |                         | Airways plane. It was...   |     | 
    +----------------+---------------------------------------------+-------------------------+----------------------------+-----+
    | "negative"     | {"blocked":false,"categories":              |                         | perform sentiment analysis |     |
    |                | ["Death, Harm & Tragedy","Derogatory",      |                         | on the following text,     |     |
    |                | "Health","Illicit Drugs","Insult",          |                         | return one the following   |     |
    |                | "Legal","Profanity","Public Safety",        |                         | categories: positive,      |     |
    |                | "Sexual","Toxic","Violent"],                |                         | negative: This is a family |     |
    |                | "safetyRatings":[{"category":               |                         | movie that was broadcast   |     |
    |                | "Dangerous Content","probabilityScore"...   |                         | on my local ITV station... |     |
    +----------------+---------------------------------------------+-------------------------+----------------------------+-----+
    

    Les résultats incluent les mêmes colonnes que celles décrites dans la section Effectuer une extraction de mots clés.

BigQuery DataFrames

Avant d'essayer cet exemple, suivez les instructions de configuration pour BigQuery DataFrames du guide de démarrage rapide de BigQuery DataFrames. Pour en savoir plus, consultez la documentation de référence sur BigQuery DataFrames.

Pour vous authentifier auprès de BigQuery, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez la page Configurer l'authentification pour un environnement de développement local.

Utilisez la fonction predict pour exécuter le modèle distant :

import bigframes.pandas as bpd

df = bpd.read_gbq("bigquery-public-data.imdb.reviews", max_results=5)
df_prompt_prefix = "perform sentiment analysis on the following text, return one the following categories: positive, negative: "
df_prompt = df_prompt_prefix + df["review"]

# Predict using the model
df_pred = model.predict(df_prompt, temperature=0.2, max_output_tokens=100)
df_pred.peek(5)

Le résultat ressemble à ce qui suit : Result_visualization

Effectuer un nettoyage

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.