This guide helps you understand, deploy, and use the dynamic web application with Java Jump Start Solution. This solution deploys a dynamic web app named Point of Sale. Point of Sale is a web app written in Java that mimics a real-world point of sale screen for a retail store. After you deploy the web app, you can test the user experience on the Point of Sale screen.
You deploy Point of Sale web app in Google Cloud using the Google-managed implementation of Kubernetes, Google Kubernetes Engine (GKE). With GKE, you can choose how granular the operational management of your infrastructure should be.
This solution provides high-level requirements to start your application software design. At the end of this guide, you will be able to select the Google Cloud components required for a deployment with similar cost, performance, and scalability.
This guide assumes that you're familiar with Java and basic cloud concepts, though not necessarily Google Cloud. Experience with Terraform is helpful.
Objectives
This solution guide helps you do the following:
Deploy a publicly accessible web application with GKE by completing the following high-level tasks:
- Configure a GKE Autopilot cluster that responds to the scaling, security, and infrastructure needs of the cluster.
- Configure a Google Cloud LoadBalancer through Kubernetes Services to enable incoming and outgoing traffic to the web application.
- Connect to Spanner from a GKE Pod following Google Cloud's recommended security practices.
- Build and redeploy securely.
Explore your deployment.
Use Cloud Trace to understand and manage problems.
Products used
The solution uses the following Google Cloud products:
- Google Kubernetes Engine: A managed environment for deploying, managing, and scaling containerized applications using Google infrastructure.
- Spanner: A fully managed relational database that lets your application scale and ensure high availability.
- Virtual Private Cloud: A global Virtual Private Cloud network that spans all Google Cloud regions and that lets you interconnect your cloud resources.
For information about how these products are configured and how they interact, see the next section.
Architecture
The following diagram shows the architecture of the Google Cloud resources that the solution deploys:
Components and configuration
The architecture includes the following components:
- A client request goes to Cloud Load Balancing, which distributes incoming traffic to a Virtual Private Cloud (VPC).
- Google Cloud assigns an external IP address to the VPC instance.
- The VPC provides connectivity to the resources of a
GKE Autopilot cluster. The cluster has a Kubernetes
Service of type
LoadBalancer
. This Service routes requests to the Pods running three Spring Boot Java service Pods. - The Pods have the following characteristics:
- The
api-server
Pod hosts the static content for the Vue.js frontend and exposes an API for the frontend. Calls to these APIs trigger connections to the inventory and payment services as needed. - The
inventory
service Pod connects to Spanner to store and retrieve inventory information. - The
payment
service Pod connects to Spanner to store payment details and generates a purchase bill.
- The
- The Spanner instance hosts inventory and payment data.
Cost
For an estimate of the cost of the Google Cloud resources that the dynamic web application with Java solution uses, see the precalculated estimate in the Google Cloud Pricing Calculator.
Use the estimate as a starting point to calculate the cost of your deployment. You can modify the estimate to reflect any configuration changes that you plan to make for the resources that are used in the solution.
The precalculated estimate is based on assumptions for certain factors, including the following:
- The Google Cloud locations where the resources are deployed.
- The amount of time that the resources are used.
Before you begin
To deploy this solution, you first need a Google Cloud project and some IAM permissions.
Create or choose a Google Cloud project
When you deploy the solution, you choose the Google Cloud project where the resources are deployed. You can either create a new project or use an existing project for the deployment.
If you want to create a new project, do so before you begin the deployment. Using a new project can help avoid conflicts with previously provisioned resources, such as resources that are used for production workloads.
To create a project, complete the following steps:
-
In the Google Cloud console, go to the project selector page.
-
Click Create project.
-
Name your project. Make a note of your generated project ID.
-
Edit the other fields as needed.
-
Click Create.
Get the required IAM permissions
To start the deployment process, you need the Identity and Access Management (IAM) permissions that are listed in the following table.
If you created a new project for this solution, then you have the roles/owner
basic role
in that project and have all the necessary permissions. If you don't have the
roles/owner
role, then ask your administrator to grant these permissions (or
the roles that include these permissions) to you.
IAM permission required | Predefined role that includes the required permissions |
---|---|
|
Service Usage Admin ( roles/serviceusage.serviceUsageAdmin ) |
|
Service Account Admin ( roles/iam.serviceAccountAdmin ) |
|
Project IAM Admin ( roles/resourcemanager.projectIamAdmin ) |
config.deployments.create config.deployments.list |
Cloud Infrastructure Manager Admin ( roles/config.admin ) |
iam.serviceAccount.actAs |
Service Account User ( roles/iam.serviceAccountUser ) |
About temporary service account permissions
If you start the deployment process through the console, Google creates a service account to deploy the solution on your behalf (and to delete the deployment later if you choose). This service account is assigned certain IAM permissions temporarily; that is, the permissions are revoked automatically after the solution deployment and deletion operations are completed. Google recommends that after you delete the deployment, you delete the service account, as described later in this guide.
View the roles that are assigned to the service account
These roles are listed here in case an administrator of your Google Cloud project or organization needs this information.
- Compute Engine Network Admin (
roles/compute.networkAdmin
) - Kubernetes Engine Admin (
roles/container.admin
) - GKE Hub Editor (
roles/gkehub.editor
) - Service Account Admin (
roles/iam.serviceAccountAdmin
) - Service Account User (
roles/iam.serviceAccountUser
) - Project IAM Admin (
roles/resourcemanager.projectIamAdmin
) - Spanner Admin (
roles/storage.admin
) - Service Usage Admin (
roles/serviceusage.serviceUsageAdmin
)
Deploy the solution
To help you deploy this solution with minimal effort, a Terraform configuration is provided in GitHub. The Terraform configuration defines all the Google Cloud resources that are required for the solution.
You can deploy the solution by using one of the following methods:
Through the console: Use this method if you want to try the solution with the default configuration and see how it works. Cloud Build deploys all the resources that are required for the solution. When you no longer need the deployed solution, you can delete it through the console. Any resources that you create after you deploy the solution might need to be deleted separately.
To use this deployment method, follow the instructions in Deploy through the console.
Using the Terraform CLI: Use this method if you want to customize the solution or if you want to automate the provisioning and management of the resources by using the infrastructure as code (IaC) approach. Download the Terraform configuration from GitHub, optionally customize the code as necessary, and then deploy the solution by using the Terraform CLI. After you deploy the solution, you can continue to use Terraform to manage the solution.
To use this deployment method, follow the instructions in Deploy using the Terraform CLI.
Deploy through the console
Complete the following steps to deploy the preconfigured solution.
In the Google Cloud Jump Start Solutions catalog, go to the Dynamic web application with Java solution.
Review the information that's provided on the page, such as the estimated cost of the solution and the estimated deployment time.
When you're ready to start deploying the solution, click Deploy.
A step-by-step configuration pane is displayed.
Complete the steps in the configuration pane.
Note the name that you enter for the deployment. This name is required later when you delete the deployment.
When you click Deploy, the Solution deployments page is displayed. The Status field on this page shows Deploying.
Wait for the solution to be deployed.
If the deployment fails, the Status field shows Failed. You can use the Cloud Build log to diagnose the errors. For more information, see Errors when deploying through the console.
After the deployment is completed, the Status field changes to Deployed.
To view and use the deployed Point of Sale web app, follow the instructions in Explore your deployed dynamic web application using Java.
To view the Google Cloud resources that are deployed and their configuration, take an interactive tour.
When you no longer need the solution, you can delete it to avoid continued billing for the Google Cloud resources. For more information, see Delete the solution deployment.
Deploy using the Terraform CLI
This section describes how you can customize the solution or automate the provisioning and management of the solution by using the Terraform CLI. Solutions that you deploy by using the Terraform CLI are not displayed in the Solution deployments page in the Google Cloud console.
Set up the Terraform client
You can run Terraform either in Cloud Shell or on your local host. This guide describes how to run Terraform in Cloud Shell, which has Terraform preinstalled and configured to authenticate with Google Cloud.
The Terraform code for this solution is available in a GitHub repository.
Clone the GitHub repository to Cloud Shell.
A prompt is displayed to confirm downloading the GitHub repository to Cloud Shell.
Click Confirm.
Cloud Shell is launched in a separate browser tab, and the Terraform code is downloaded to the
$HOME/cloudshell_open
directory of your Cloud Shell environment.In Cloud Shell, check whether the current working directory is
$HOME/cloudshell_open/terraform-example-java-dynamic-point-of-sale/infra
. This is the directory that contains the Terraform configuration files for the solution. If you need to change to that directory, run the following command:cd $HOME/cloudshell_open/terraform-example-java-dynamic-point-of-sale/infra
Initialize Terraform by running the following command:
terraform init
Wait until you see the following message:
Terraform has been successfully initialized!
Configure the Terraform variables
The Terraform code that you downloaded includes variables that you can use to customize the deployment based on your requirements. For example, you can specify the Google Cloud project and the region where you want the solution to be deployed.
Make sure that the current working directory is
$HOME/cloudshell_open/terraform-example-java-dynamic-point-of-sale/infra
. If it isn't, go to that directory.In the same directory, create a text file named
terraform.tfvars
.In the
terraform.tfvars
file, copy the following code snippet, and set values for the required variables.- Follow the instructions that are provided as comments in the code snippet.
- This code snippet includes only the variables for which you must set
values. The Terraform configuration includes other variables that have
default values. To review all the variables and the default values, see
the
variables.tf
file that's available in the$HOME/cloudshell_open/terraform-example-java-dynamic-point-of-sale/infra
directory. - Make sure that each value that you set in the
terraform.tfvars
file matches the variable type as declared in thevariables.tf
file. For example, if the type that’s defined for a variable in thevariables.tf
file isbool
, then you must specifytrue
orfalse
as the value of that variable in theterraform.tfvars
file.
# This is an example of the terraform.tfvars file. # The values in this file must match the variable types declared in variables.tf. # The values in this file override any defaults in variables.tf. # ID of the project in which you want to deploy the solution project_id = "PROJECT_ID"
For information about the values that you can assign to the required variables, see the following:
- PROJECT_ID: Identifying projects
Validate and review the Terraform configuration
Make sure that the current working directory is
$HOME/cloudshell_open/terraform-example-java-dynamic-point-of-sale/infra
. If it isn't, go to that directory.Verify that the Terraform configuration has no errors:
terraform validate
If the command returns any errors, make the required corrections in the configuration and then run the
terraform validate
command again. Repeat this step until the command returns the following message:Success! The configuration is valid.
Review the resources that are defined in the configuration:
terraform plan
If you didn't create the
terraform.tfvars
file as described earlier, Terraform prompts you to enter values for the variables that don't have default values. Enter the required values.The output of the
terraform plan
command is a list of the resources that Terraform provisions when you apply the configuration.If you want to make any changes, edit the configuration and then run the
terraform validate
andterraform plan
commands again.
Provision the resources
When no further changes are necessary in the Terraform configuration, deploy the resources.
Make sure that the current working directory is
$HOME/cloudshell_open/terraform-example-java-dynamic-point-of-sale/infra
. If it isn't, go to that directory.Apply the Terraform configuration:
terraform apply
If you didn't create the
terraform.tfvars
file as described earlier, Terraform prompts you to enter values for the variables that don't have default values. Enter the required values.Terraform displays a list of the resources that will be created.
When you're prompted to perform the actions, enter
yes
.Terraform displays messages showing the progress of the deployment.
If the deployment can't be completed, Terraform displays the errors that caused the failure. Review the error messages and update the configuration to fix the errors. Then run the
terraform apply
command again. For help with troubleshooting Terraform errors, see Errors when deploying the solution using the Terraform CLI.After all the resources are created, Terraform displays the following message:
Apply complete!
To view and use the deployed Point of Sale web app, follow the instructions in Explore your deployed dynamic web application using Java.
After the deployment is completed, the output is similar to the following:
pos_application_url = "http://34.27.130.180/"
The
pos_application_url
is the IP address of your application frontend. GKE assigns this IP address to the public endpoint of the load balancer that exposes your application to the internet.To view the Google Cloud resources that are deployed and their configuration, take an interactive tour.
When you no longer need the solution, you can delete it to avoid continued billing for the Google Cloud resources. For more information, see Delete the solution deployment.
Explore your deployed dynamic web app
You have now deployed the Point of Sale dynamic web app! Visit the Point of Sale website and look around, and then explore how the solution works in Google Cloud console. Be aware that it can take a few minutes after deploying the application for the site to show up at the provided address.
What is the Point of Sale web app?
This Jump Start Solution uses a sample dynamic web app named Point of Sale to demonstrate how Google Cloud GKE infrastructure can help Java developers build, deploy, and manage web apps with static assets and dynamic content. Point of Sale is a web app that mimics a real-world checkout terminal for a retail store.
The application frontend is used by a sales representative to check out items for a customer at a retail store. On this screen, the sales representative can perform the following actions:
- Add items to their cart and proceed to pay.
- Clear the cart or remove items from the cart.
- See a payment receipt. When the user pays, the web app displays a bill with the result of the transaction.
Other edge cases are also covered. For example, if the user attempts to pay with no elements in the cart, the web app displays an error message.
To view the Google Cloud resources that are deployed and their configuration, take an interactive tour.
Explore the frontend
To launch the deployed Point of Sale web app frontend:
Go to the Services page in the Google Cloud console.
Click the IP address of the Endpoints for the
api-server-lb
external load balancer. The frontend of your Point of Sale web app opens in a new browser window.
You can now interact with the Point of Sale web app just as its users would see it, including adding products, paying, or seeing the bill.
Generate load to the web app
To examine how GKE responds to normal increases in traffic on
your web app, send traced requests to the web application. The following steps
use hey
to automatically send
several requests. hey
comes pre-installed on the Cloud Shell:
In Cloud Shell, make sure that the current working directory is
$HOME/cloudshell_open/terraform-example-java-dynamic-point-of-sale/infra
. If it isn't, go to that directory.Send 150 requests to the web application:
export LB_IP_ADDRESS=$(gcloud compute addresses list --filter=name:jss-pos-1 --format='value(address)') hey -n 150 \ -m POST \ -H 'Content-Type: application/json' \ -d '{"paidAmount":14.59865,"type":"CASH","items":[{"itemId":"19a89a67-3958-46cf-9776-c29983871c93","itemCount":1},{"itemId":"729d0dd6-950e-4098-8f70-e7144076e899","itemCount":1}]}' \ http://$LB_IP_ADDRESS/api/pay
The script assigns the IP address of the frontend of the dynamic web app to the
LB_IP_ADDRESS
variable.The output is the similar to the following:
Summary: Total: 8.7963 secs Slowest: 6.0000 secs Fastest: 0.7981 secs Average: 2.7593 secs Requests/sec: 17.0527 Total data: 132600 bytes Size/request: 884 bytes Response time histogram: 0.798 [1] |■ 1.318 [24] |■■■■■■■■■■■■■■■■■■■■■■■ 1.838 [42] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 2.359 [26] |■■■■■■■■■■■■■■■■■■■■■■■■■ 2.879 [7] |■■■■■■■ 3.399 [0] | 3.919 [7] |■■■■■■■ 4.439 [11] |■■■■■■■■■■ 4.960 [6] |■■■■■■ 5.480 [9] |■■■■■■■■■ 6.000 [17] |■■■■■■■■■■■■■■■■ Latency distribution: 10% in 1.1932 secs 25% in 1.5938 secs 50% in 1.9906 secs 75% in 4.3013 secs 90% in 5.5936 secs 95% in 5.8922 secs 99% in 6.0000 secs Details (average, fastest, slowest): DNS+dialup: 0.0016 secs, 0.7981 secs, 6.0000 secs DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0000 secs req write: 0.0004 secs, 0.0000 secs, 0.0036 secs resp wait: 2.7565 secs, 0.7980 secs, 5.9930 secs resp read: 0.0001 secs, 0.0000 secs, 0.0002 secs Status code distribution: [200] 150 responses
The
Status code distribution
field shows the 150 responses confirmation. This means that the script has executed 150 successful payments.
Delete the solution deployment
When you no longer need the solution deployment, to avoid continued billing for the resources that you created, delete the deployment.
Delete through the console
Use this procedure if you deployed the solution through the console.
In the Google Cloud console, go to the Solution deployments page.
Select the project that contains the deployment that you want to delete.
Locate the deployment that you want to delete.
In the row for the deployment, click
Actions and then select Delete.You might need to scroll to see Actions in the row.
Enter the name of the deployment and then click Confirm.
The Status field shows Deleting.
If the deletion fails, see the troubleshooting guidance in Error when deleting a deployment.
When you no longer need the Google Cloud project that you used for the solution, you can delete the project. For more information, see Optional: Delete the project.
Delete using the Terraform CLI
Use this procedure if you deployed the solution by using the Terraform CLI.
In Cloud Shell, make sure that the current working directory is
$HOME/cloudshell_open/terraform-example-java-dynamic-point-of-sale/infra
. If it isn't, go to that directory.Remove the resources that were provisioned by Terraform:
terraform destroy
Terraform displays a list of the resources that will be destroyed.
When you're prompted to perform the actions, enter
yes
.Terraform displays messages showing the progress. After all the resources are deleted, Terraform displays the following message:
Destroy complete!
If the deletion fails, see the troubleshooting guidance in Error when deleting a deployment.
When you no longer need the Google Cloud project that you used for the solution, you can delete the project. For more information, see Optional: Delete the project.
Optional: Delete the project
If you deployed the solution in a new Google Cloud project, and if you no longer need the project, then delete it by completing the following steps:
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- At the prompt, type the project ID, and then click Shut down.
If you decide to retain the project, then delete the service account that was created for this solution, as described in the next section.
Optional: Delete the service account
If you deleted the project that you used for the solution, then skip this section.
As mentioned earlier in this guide, when you deployed the solution, a service account was created on your behalf. The service account was assigned certain IAM permissions temporarily; that is, the permissions were revoked automatically after the solution deployment and deletion operations were completed, but the service account isn't deleted. Google recommends that you delete this service account.
If you deployed the solution through the Google Cloud console, go to the Solution deployments page. (If you're already on that page, refresh the browser.) A process is triggered in the background to delete the service account. No further action is necessary.
If you deployed the solution by using the Terraform CLI, complete the following steps:
In the Google Cloud console, go to the Service accounts page.
Select the project that you used for the solution.
Select the service account that you want to delete.
The email ID of the service account that was created for the solution is in the following format:
goog-sc-DEPLOYMENT_NAME-NNN@PROJECT_ID.iam.gserviceaccount.com
The email ID contains the following values:
- DEPLOYMENT_NAME: the name of the deployment.
- NNN: a random 3-digit number.
- PROJECT_ID: the ID of the project in which you deployed the solution.
Click Delete.
Troubleshoot errors
The actions that you can take to diagnose and resolve errors depend on the deployment method and the complexity of the error.
Errors when deploying through the console
If the deployment fails when you use the console, do the following:
Go to the Solution deployments page.
If the deployment failed, the Status field shows Failed.
View the details of the errors that caused the failure:
In the row for the deployment, click
Actions.You might need to scroll to see Actions in the row.
Select View Cloud Build logs.
Review the Cloud Build log and take appropriate action to resolve the issue that caused the failure.
Errors when deploying using the Terraform CLI
If the deployment fails when you use Terraform, the output of the terraform
apply
command includes error messages that you can review to diagnose the
problem.
The examples in the following sections show deployment errors that you might encounter when you use Terraform.
API not enabled error
If you create a project and then immediately attempt to deploy the solution in the new project, the deployment might fail with an error like the following:
Error: Error creating Network: googleapi: Error 403: Compute Engine API has not
been used in project PROJECT_ID before or it is disabled. Enable it by visiting
https://console.developers.google.com/apis/api/compute.googleapis.com/overview?project=PROJECT_ID
then retry. If you enabled this API recently, wait a few minutes for the action
to propagate to our systems and retry.
If this error occurs, wait a few minutes and then run the terraform apply
command again.
Cannot assign requested address error
When you run the terraform apply
command, a cannot assign requested address
error might occur, with a message like the following:
Error: Error creating service account:
Post "https://iam.googleapis.com/v1/projects/PROJECT_ID/serviceAccounts:
dial tcp [2001:db8:ffff:ffff::5f]:443:
connect: cannot assign requested address
If this error occurs, run the terraform apply
command again.
Error when deleting a deployment
In certain cases, attempts to delete a deployment might fail:
- After deploying a solution through the console, if you change any resource that was provisioned by the solution, and if you then try to delete the deployment, the deletion might fail. The Status field on the Solution deployments page shows Failed, and the Cloud Build log shows the cause of the error.
- After deploying a solution by using the Terraform CLI, if you change any
resource by using a non-Terraform interface (for example,
the console), and if you then try to delete the deployment,
the deletion might fail. The messages in the output of the
terraform destroy
command show the cause of the error.
Review the error logs and messages, identify and delete the resources that caused the error, and then try deleting the deployment again.
If a console-based deployment doesn't get deleted and if you can't diagnose the error by using the Cloud Build log, then you can delete the deployment by using the Terraform CLI, as described in the next section.
Delete a console-based deployment by using the Terraform CLI
This section describes how to delete a console-based deployment if errors occur when you try to delete it through the console. In this approach, you download the Terraform configuration for the deployment that you want to delete and then use the Terraform CLI to delete the deployment.
Identify the region where the deployment's Terraform code, logs, and other data are stored. This region might be different from the region that you selected while deploying the solution.
In the Google Cloud console, go to the Solution deployments page.
Select the project that contains the deployment that you want to delete.
In the list of deployments, identify the row for the deployment that you want to delete.
Click
View all row content.In the Location column, note the second location, as highlighted in the following example:
In the Google Cloud console, activate Cloud Shell.
At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.
Create environment variables for the project ID, region, and name of the deployment that you want to delete:
export REGION="REGION" export PROJECT_ID="PROJECT_ID" export DEPLOYMENT_NAME="DEPLOYMENT_NAME"
In these commands, replace the following:
- REGION: the location that you noted earlier in this procedure.
- PROJECT_ID: the ID of the project where you deployed the solution.
- DEPLOYMENT_NAME: the name of the deployment that you want to delete.
Get the ID of the latest revision of the deployment that you want to delete:
export REVISION_ID=$(curl \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://config.googleapis.com/v1alpha2/projects/${PROJECT_ID}/locations/${REGION}/deployments/${DEPLOYMENT_NAME}" \ | jq .latestRevision -r) echo $REVISION_ID
The output is similar to the following:
projects/PROJECT_ID/locations/REGION/deployments/DEPLOYMENT_NAME/revisions/r-0
Get the Cloud Storage location of the Terraform configuration for the deployment:
export CONTENT_PATH=$(curl \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://config.googleapis.com/v1alpha2/${REVISION_ID}" \ | jq .applyResults.content -r) echo $CONTENT_PATH
The following is an example of the output of this command:
gs://PROJECT_ID-REGION-blueprint-config/DEPLOYMENT_NAME/r-0/apply_results/content
Download the Terraform configuration from Cloud Storage to Cloud Shell:
gcloud storage cp $CONTENT_PATH $HOME --recursive cd $HOME/content/infra
Wait until the
Operation completed
message is displayed, as shown in the following example:Operation completed over 45 objects/268.5 KiB
Initialize Terraform:
terraform init
Wait until you see the following message:
Terraform has been successfully initialized!
Remove the deployed resources:
terraform destroy
Terraform displays a list of the resources that will be destroyed.
If any warnings about undeclared variables are displayed, ignore the warnings.
When you're prompted to perform the actions, enter
yes
.Terraform displays messages showing the progress. After all the resources are deleted, Terraform displays the following message:
Destroy complete!
Delete the deployment artifact:
curl -X DELETE \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://config.googleapis.com/v1alpha2/projects/${PROJECT_ID}/locations/${REGION}/deployments/${DEPLOYMENT_NAME}?force=true&delete_policy=abandon"
Wait a few seconds and then verify that the deployment artifact was deleted:
curl -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ "https://config.googleapis.com/v1alpha2/projects/${PROJECT_ID}/locations/${REGION}/deployments/${DEPLOYMENT_NAME}" \ | jq .error.message
If the output shows
null
, wait a few seconds and then run the command again.After the deployment artifact is deleted, a message as shown in the following example is displayed:
Resource 'projects/PROJECT_ID/locations/REGION/deployments/DEPLOYMENT_NAME' was not found
Submit feedback
Jump Start Solutions are for informational purposes only and are not officially supported products. Google may change or remove solutions without notice.
To troubleshoot errors, review the Cloud Build logs and the Terraform output.
To submit feedback, do the following:
- For documentation, in-console tutorials, or the solution, use the Send Feedback button on the page.
- For unmodified Terraform code, create issues in the GitHub repository. GitHub issues are reviewed on a best-effort basis and are not intended for general usage questions.
- For issues with the products that are used in the solution, contact Cloud Customer Care.
What's next
To continue learning more about deploying Java applications with Google Cloud products and capabilities, see:
- Deploy a Java service to Cloud Run for more automated infrastructure management.
- Build your first web app with Firebase.
- Deploy an app in a container image to a GKE cluster quickstart.