La siguiente es una muestra del archivo YAML que se crea cuando ejecutas el comando bmctl create config
. Si deseas obtener más información sobre este comando y cómo usarlo para crear diferentes tipos de parámetros de configuración de clústeres, consulta los siguientes temas:
- Descripción general de la instalación: elige un modelo de implementación
- Crear clústeres de administrador
- Crea clústeres de usuario
- Crea clústeres híbridos
- Crea clústeres independientes
Archivo de configuración de clúster
# bmctl configuration variables. Because this section is valid YAML but not a valid Kubernetes
# resource, this section can only be included when using bmctl to
# create the initial admin/hybrid cluster. Afterwards, when creating user clusters by directly
# applying the cluster and node pool resources to the existing cluster, you must remove this
# section.
gcrKeyPath: <path to GCR service account key>
sshPrivateKeyPath: <path to SSH private key, used for node access>
gkeConnectAgentServiceAccountKeyPath: <path to Connect agent service account key>
gkeConnectRegisterServiceAccountKeyPath: <path to Hub registration service account key>
cloudOperationsServiceAccountKeyPath: <path to Cloud Operations service account key>
---
apiVersion: v1
kind: Namespace
metadata:
name: cluster-example
---
apiVersion: baremetal.cluster.gke.io/v1
kind: Cluster
metadata:
name: example
namespace: cluster-example
spec:
# Cluster type. This can be:
# 1) admin: to create an admin cluster. This can later be used to create user clusters.
# 2) user: to create a user cluster. Requires an existing admin cluster.
# 3) hybrid: to create a hybrid cluster that runs admin cluster components and user workloads.
# 4) standalone: to create a cluster that manages itself, runs user workloads, but does not manage other clusters.
type: admin
# Anthos cluster version.
anthosBareMetalVersion: 1.10.8
# GKE connect configuration
gkeConnect:
projectID: <GCP project ID>
# Control plane configuration
controlPlane:
nodePoolSpec:
nodes:
# Control plane node pools. Typically, this is either a single machine
# or 3 machines if using a high availability deployment.
- address: <Machine 1 IP>
# Cluster networking configuration
clusterNetwork:
# Pods specify the IP ranges from which pod networks are allocated.
pods:
cidrBlocks:
- 192.168.0.0/16
# Services specify the network ranges from which service virtual IPs are allocated.
# This can be any RFC 1918 range that does not conflict with any other IP range
# in the cluster and node pool resources.
services:
cidrBlocks:
- 10.96.0.0/20
# Load balancer configuration
loadBalancer:
# Load balancer mode can be either 'bundled' or 'manual'.
# In 'bundled' mode a load balancer will be installed on load balancer nodes during cluster creation.
# In 'manual' mode the cluster relies on a manually-configured external load balancer.
mode: bundled
# Load balancer port configuration
ports:
# Specifies the port the load balancer serves the Kubernetes control plane on.
# In 'manual' mode the external load balancer must be listening on this port.
controlPlaneLBPort: 443
# There are two load balancer virtual IP (VIP) addresses: one for the control plane
# and one for the L7 Ingress service. The VIPs must be in the same subnet as the load balancer nodes.
# These IP addresses do not correspond to physical network interfaces.
vips:
# ControlPlaneVIP specifies the VIP to connect to the Kubernetes API server.
# This address must not be in the address pools below.
controlPlaneVIP: 10.0.0.8
# IngressVIP specifies the VIP shared by all services for ingress traffic.
# Allowed only in non-admin clusters.
# This address must be in the address pools below.
# ingressVIP: 10.0.0.2
# AddressPools is a list of non-overlapping IP ranges for the data plane load balancer.
# All addresses must be in the same subnet as the load balancer nodes.
# Address pool configuration is only valid for 'bundled' LB mode in non-admin clusters.
# addressPools:
# - name: pool1
# addresses:
# # Each address must be either in the CIDR form (1.2.3.0/24)
# # or range form (1.2.3.1-1.2.3.5).
# - 10.0.0.1-10.0.0.4
# A load balancer node pool can be configured to specify nodes used for load balancing.
# These nodes are part of the Kubernetes cluster and run regular workloads as well as load balancers.
# If the node pool config is absent then the control plane nodes are used.
# Node pool configuration is only valid for 'bundled' LB mode.
# nodePoolSpec:
# nodes:
# - address: <Machine 1 IP>
# Proxy configuration
# proxy:
# url: http://[username:password@]domain
# # A list of IPs, hostnames or domains that should not be proxied.
# noProxy:
# - 127.0.0.1
# - localhost
# Logging and Monitoring
clusterOperations:
# Cloud project for logs and metrics.
projectID: <GCP project ID>
# Cloud location for logs and metrics.
location: us-central1
# Whether collection of application logs/metrics should be enabled (in addition to
# collection of system logs/metrics which correspond to system components such as
# Kubernetes control plane or cluster management agents).
# enableApplication: false
# Storage configuration
storage:
# lvpNodeMounts specifies the config for local PersistentVolumes backed by mounted disks.
# These disks need to be formatted and mounted by the user, which can be done before or after
# cluster creation.
lvpNodeMounts:
# path specifies the host machine path where mounted disks will be discovered and a local PV
# will be created for each mount.
path: /mnt/localpv-disk
# storageClassName specifies the StorageClass that PVs will be created with. The StorageClass
# is created during cluster creation.
storageClassName: local-disks
# lvpShare specifies the config for local PersistentVolumes backed by subdirectories in a shared filesystem.
# These subdirectories are automatically created during cluster creation.
lvpShare:
# path specifies the host machine path where subdirectories will be created on each host. A local PV
# will be created for each subdirectory.
path: /mnt/localpv-share
# storageClassName specifies the StorageClass that PVs will be created with. The StorageClass
# is created during cluster creation.
storageClassName: local-shared
# numPVUnderSharedPath specifies the number of subdirectories to create under path.
numPVUnderSharedPath: 5
# NodeConfig specifies the configuration that applies to all nodes in the cluster.
nodeConfig:
# podDensity specifies the pod density configuration.
podDensity:
# maxPodsPerNode specifies at most how many pods can be run on a single node.
maxPodsPerNode: 250
# containerRuntime specifies which container runtime to use for scheduling containers on nodes.
# containerd and docker are supported.
containerRuntime: containerd
# KubeVirt configuration, uncomment this section if you want to install kubevirt to the cluster
# kubevirt:
# # if useEmulation is enabled, hardware accelerator (i.e relies on cpu feature like vmx or svm)
# # will not be attempted. QEMU will be used for software emulation.
# # useEmulation must be specified for KubeVirt installation
# useEmulation: false
# Authentication; uncomment this section if you wish to enable authentication to the cluster with OpenID Connect.
# authentication:
# oidc:
# # issuerURL specifies the URL of your OpenID provider, such as "https://accounts.google.com". The Kubernetes API
# # server uses this URL to discover public keys for verifying tokens. Must use HTTPS.
# issuerURL: <URL for OIDC Provider; required>
# # clientID specifies the ID for the client application that makes authentication requests to the OpenID
# # provider.
# clientID: <ID for OIDC client application; required>
# # clientSecret specifies the secret for the client application.
# clientSecret: <Secret for OIDC client application; optional>
# # kubectlRedirectURL specifies the redirect URL (required) for the gcloud CLI, such as
# # "http://localhost:[PORT]/callback".
# kubectlRedirectURL: <Redirect URL for the gcloud CLI; optional, default is "http://kubectl.redirect.invalid">
# # username specifies the JWT claim to use as the username. The default is "sub", which is expected to be a
# # unique identifier of the end user.
# username: <JWT claim to use as the username; optional, default is "sub">
# # usernamePrefix specifies the prefix prepended to username claims to prevent clashes with existing names.
# usernamePrefix: <Prefix prepended to username claims; optional>
# # group specifies the JWT claim that the provider will use to return your security groups.
# group: <JWT claim to use as the group name; optional>
# # groupPrefix specifies the prefix prepended to group claims to prevent clashes with existing names.
# groupPrefix: <Prefix prepended to group claims; optional>
# # scopes specifies additional scopes to send to the OpenID provider as a comma-delimited list.
# scopes: <Additional scopes to send to OIDC provider as a comma-separated list; optional>
# # extraParams specifies additional key-value parameters to send to the OpenID provider as a comma-delimited
# # list.
# extraParams: <Additional key-value parameters to send to OIDC provider as a comma-separated list; optional>
# # proxy specifies the proxy server to use for the cluster to connect to your OIDC provider, if applicable.
# # Example: https://user:password@10.10.10.10:8888. If left blank, this defaults to no proxy.
# proxy: <Proxy server to use for the cluster to connect to your OIDC provider; optional, default is no proxy>
# # deployCloudConsoleProxy specifies whether to deploy a reverse proxy in the cluster to allow Google Cloud
# # Console access to the on-premises OIDC provider for authenticating users. If your identity provider is not
# # reachable over the public internet, and you wish to authenticate using Google Cloud console, then this field
# # must be set to true. If left blank, this field defaults to false.
# deployCloudConsoleProxy: <Whether to deploy a reverse proxy for Google Cloud console authentication; optional>
# # certificateAuthorityData specifies a Base64 PEM-encoded certificate authority certificate of your identity
# # provider. It's not needed if your identity provider's certificate was issued by a well-known public CA.
# # However, if deployCloudConsoleProxy is true, then this value must be provided, even for a well-known public
# # CA.
# certificateAuthorityData: <Base64 PEM-encoded certificate authority certificate of your OIDC provider; optional>
# Node access configuration; uncomment this section if you wish to use a non-root user
# with passwordless sudo capability for machine login.
# nodeAccess:
# loginUser: <login user name>
---
# Node pools for worker nodes
apiVersion: baremetal.cluster.gke.io/v1
kind: NodePool
metadata:
name: node-pool-1
namespace: cluster-my-cluster
spec:
clusterName: my-cluster
nodes:
- address: <Machine 2 IP>
- address: <Machine 3 IP>
# Taints and labels are reconciled to the nodes of the node pool unless the node has
# “baremetal.cluster.gke.io/label-taint-no-sync” annotated.
taints:
- key: <key1>
value: <value1>
# The effect can be either 'NoSchedule', 'PreferNoSchedule', or 'NoExecute'.
# 'NoSchedule' means no pod will be able to schedule onto the node unless it has a matching toleration.
# 'PreferNoSchedule' means the system avoids placing a pod that does not tolerate the taint on the node, but it is
# not required.
# `NoExecute` means pods that do not tolerate the taint will be evicted immediately, and pods that do tolerate the
# taint will never be evicted.
effect: NoSchedule
labels:
key1: <value1>
key2: <value2>