AlloyDB AI は、AlloyDB for PostgreSQL と AlloyDB Omni に含まれる機能スイートで、機械学習(ML)モデルのセマンティック機能と予測機能をデータに適用できます。このページでは、AlloyDB で利用可能な ML を活用した AI 関数の概要について説明します。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-04-03 UTC。"],[[["AlloyDB AI integrates machine learning capabilities into AlloyDB for PostgreSQL and AlloyDB Omni, allowing users to apply ML models to their data."],["The `vector` extension, a customized version of `pgvector`, is available for storing embeddings in vector columns and creating `IVF`, `IVFFlat`, or `HSNW` indexes."],["AlloyDB AI introduces the `alloydb_scann` extension, which implements a highly efficient nearest-neighbor index using the ScaNN algorithm for PostgreSQL 15 compatible databases."],["Users can utilize the `google_ml_integration` extension to generate embeddings and invoke predictions through SQL transactions, using functions like `embedding()` and `google_ml.embedding()`."],["AlloyDB Omni can be configured to integrate with Vertex AI, enabling applications to invoke predictions from any model in the Vertex AI Model Garden and generate embeddings using the `text-embedding-005` English models."]]],[]]